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Abstract— The widespread deployment of the IEEE 802.11
protocol has made it the de facto standard for wireless network
access and allows Internet users to move freely (at least within a
hotspot coverage). The convenience brought about by the IEEE
802.11 protocol is also accompanied by new technical challenges
such as poor performance of the widely used transport protocol
TCP due to the limited and varying bandwidth resources of the
wireless medium. In this work, we seek to enhance efficiency
of bandwidth usage for TCP over wireless links and improve
TCP goodput. Our insight is that TCP acknowledgments can
be spared on wireless links to save precious bandwidth resource
of these links. We propose a simple technique that leverages
the layer coordination between TCP and MAC to suppress TCP
acknowledgments. Our technique istransparentto both TCP and
MAC and does notrequire their modification or replacement.

I. I NTRODUCTION AND MOTIVATION

As wireless technologies continue to mature, they have
become an integral part of the Internet. Wireless technologies
such as the IEEE 802.11 protocol provide users with easy
access to the Internet and have now been widely deployed at
many places such as university campuses, corporate networks,
hotels, coffee shops, and airports. The deployment of wireless
Internet allow users to move freely (at least within a wireless
hotspot coverage). Beyond serving as a last-hop link, wireless
technologies such as the IEEE 802.11 protocol can also be
used to set up wireless infrastructure in metropolitan areas [2],
[8], [1], [9] as well as in rural areas [29].

The new opportunities opened up by wireless technologies
are also accompanied with new technical challenges. First, the
wireless medium has limited and varying bandwidth resources.
Second, due to intermediate bit error rates and interferences
between nodes [4], performance of network protocols such
as TCP that were originally designed for wired networks
degrade significantly on wireless networks [15]. Third, since
the current IEEE 802.11 technology does not provide any
mechanism to support fairness and/or quality of service, severe
unfairness between flows can arise in wireless networks [27],
[10], [18]. For example, when multiple wireless stations are
serviced by an access point, unfairness between upstream and
downstream flows occurs. This situation arises because the
access point has the same probability for acquiring the wireless
medium as each wireless station but must simultaneously serve
multiple downstream flows.

Significant research and standardization effort has been
undertaken to address the challenges mentioned above. For
example, the IEEE 802.11e protocol [32] supports quality of

service and allows a certain node to obtain a larger share of
available bandwidth than other wireless stations. Besides IEEE
802.11e, a number of MAC protocols have been proposed to
improve efficiency of bandwidth usage and address unfairness
issues [3], [10], [19]. Another line of research applies the
concept of the Weighted Fair Queuing (WFQ) algorithm [13]
and its variants such as Self-Clocked Fair Queueing [16]
or Start-Time Fair Queueing [17] to the context of wireless
networks. These approaches either have an ideal centralized
node that has perfect knowledge of all nodes [21], [22],
[24], [26] or employ a distributed algorithm that approximates
the centralized model [30], [23]. Other approaches propose
modifications to TCP [20], [11] or support mechanisms for
TCP [6], [27]. We note that most of these approaches require
substantial modifications of either TCP or the IEEE 802.11
protocol and face significant deployment hurdles.

In this work, we investigate a new approach for improving
efficiency of bandwidth usage for the widely used transport
protocol TCP without any modification of either TCP or
the IEEE 802.11 protocol. In fact, a salient feature of our
approach is that it istransparentto both TCP and the 802.11
protocol anddoes notrequire their modification or replacement
(the rationale behind our approach is that any solutions that
require modifications of either operating systems or network
infrastructure usually fail to obtain widespread deployment). A
key observation in our approach is that TCP acknowledgment
packets can be spared to save precious bandwidth resource on
wireless first-hop/last-hop links.

We make the following important assumptions in this paper:
(1) Wireless stations access the Internet via a WLAN access
point. Thus, TCP flows (either upstream or downstream)
have a single wireless first-hop/last-hop link between the
access point and the wireless stations. Improving efficiency
of bandwidth usage for TCP flows between two arbitrary
nodes in ad hoc wireless networks is not addressed in this
paper and is a subject of our future research. (2) It is in the
interest of the access point to improve the performance of
the wireless stations’ TCP flows and the wireless stations can
trust the access point to a certain degree. This assumption is
consonant with current deployment scenarios, e.g., the owner
of a wireless hotspot is interested in improving efficiency of
bandwidth usage to be able to serve more customers. Further,
like in the current deployment scenario, if the access point
were to act selfishly or maliciously, it could simply deny
providing services to the wireless stations, silently drop their
packets, or sniff them. Our two assumptions allow the access
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point to function as a proxy for the wireless stations.
The rest of our paper is organized as follows. Section II

reviews related work. Section III quantifies the overhead of
TCP acknowledgment packets over the IEEE 802.11 protocol
and gives the details of our approach. Section IV presents
results of our simulation. Section V concludes our paper.

II. RELATED WORK

As noted in Section I, a large amount of work has been
done by the research community to address the challenges of
wireless networks. Existing work falls roughly into the fol-
lowing categories: (1) improving MAC performance, fairness,
and enhancing service differentiation, (2) designing support
mechanisms for TCP, and (3) modification of TCP.

Aad and Castelluccia investigated MAC mechanisms to
support service differentiation in IEEE 802.11 networks by
evaluating three different schemes: variation of the contention
window (each priority level uses a different backoff increment
function), variation of the inter frame spacing (each priority
level has a different DCF Inter-frame SpaceDIFS value), and
variation of the maximum frame length [3]. Their simulations
showed that variation of DIFS values obtains the best general
properties and recommended it for service differentiation.

Barry et al. proposed a modified MAC that uses different
minimum and maximum for backoff intervals for different
traffic classes (e.g., interactive applications such as voice
has higher priority than background TCP) [7]. Further, they
proposed a virtual MAC (VMAC) algorithm that emulates the
behavior of real MAC but makes no actual data transmission.
VMAC is used to estimate the load of the wireless medium and
provides hints for a distributed admision control algorithm.

The IEEE 802.11e protocol has been finalized as an ex-
tension of the IEEE 802.11 protocol to provide quality of
service over wireless LANs [32]. The IEEE 802.11e protocol
generalizes the IEEE 802.11 protocol and supports different
traffic categories such as voice, audio, video, and data. When
a wireless station has backlogged data from multiple traffic
categories, it will compete for the wireless medium with the
highest backlogged traffic category. Differentiation between
traffic categories is realized by assigning different minimum
and maximum values from which backoff intervals are chosen
such that the higher the traffic category, the shorter the backoff
interval is.

A large body of work investigated fair scheduling algorithms
in wireless networks [21], [22], [24], [26], [30], [23]. These
algorithms were derived from the Weighted Fair Queuing
(WFQ) algorithm [13] and its variants such as Self-Clocked
Fair Queueing [16] or Start-Time Fair Queueing [17] for the
context of wireless networks. The key insight of these algo-
rithms is that a backlogged flow unable to transmit its packets
during its scheduled slot due to channel errors can be later
compensated. Different algorithms differ in how compensation
is done and how much compensation is allowed to enforce
both short-term and long-term fairness. Further, wireless fair
scheduling algorithms are either centralized [21], [22], [24],
[26] or distributed [30], [23].

Casetti et al. presented TCP Westwood where the sender
estimates the end-to-end available bandwidth and adjusts its

transmission rate based on the arrivals of TCP ACKs [11].
The key idea is that arrivals of TCP ACKs provide better
congestion indication than simply counting duplicate ACKs
(such as done by TCP Reno) in the presence of lossy links.

Bakre and Badrinath proposed Indirect TCP (I-TCP) to
support host mobility [5]. I-TCP divides a TCP connection
into two separate connections at the base station: a regular
TCP connection between the fixed host and the base station
and a specialized TCP connection between the base station
and the mobile host. When a handoff occurs, retransmission
timers of the specialized TCP connection are cleared and the
connection enters slow start to obtain new information about
the network conditions.

Balakrishnan et al. introduced asnoop agentat the base
station that monitors TCP packets in both directions and
caches TCP data packets that were sent across the wireless
link but have not yet been acknowledged [6]. The snoop agent
can detect a packet loss by the expiration of a timer or by
the arrival of a number of duplicate ACKs. The snoop agent
retransmits the lost packet and suppresses duplicate ACKs.

Chakravorty et al. improved HTTP performance over GPRS
links by using a transparent TCP proxy [12]. The TCP proxy
divides a TCP connection between a wireless station and a
fixed host into two TCP connections: one between the wireless
node and the proxy and the other between the proxy and
the fixed host. The TCP connection between the proxy and
the wireless node is optimized for GPRS links to avoid slow
start and further growth of the congestion window beyond
the bandwidth delay product. Further, since packet losses on
GPRS links are usually due to radio losses or cell reselections,
congestion control mechanisms such as halving the congestion
window are unnecessary and can be avoided.

Pilosof et al. investigated fairness issues between upstream
and downsream TCP flows at a base station through analysis
and simulation [27]. They observed that the unfairness in
throughput ratio between upstream and downstream TCP flows
can be as high as 800. This unfairness arises from the fact
that the base station has to forward packets for multiple
downstream TCP flows but only has an equal chance to acquire
the wireless medium as the wireless stations. Pilosof et al. pro-
posed to improve fairness between upstream and downstream
TCP flows by manipulating the receiver’s advertised window
in TCP ACKs (and thus throttle upstream TCP flows that are
using more bandwidth than their fair share).

With the exceptions of the work by Balakrishnan et al.,
Chakravorty et al., and Pilosof et al., other work requires
modification of either TCP or the network infrastructure and
are thus unlikely to be deployed in near future. The motivation
for our work is that we need atransparentsolution that can
interact with TCP and IEEE 802.11 networks.

III. I MPROVING TCP GOODPUT IN 802.11 ACCESS

NETWORKS

Our approach is based on the observation that TCP acknowl-
edgment packets (ACK packets) can be spared to save precious
bandwidth resource on the wireless link. Although these TCP
ACK packets are small, they incur a large overhead at the
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link layer because the RTS/CTS handshake at the link layer
has to be completed for the transmission ofeach IP packet.
Further, the IEEE 802.11 standard dictates that the RTS and
CTS frames be transmitted at the base rate [31]. Thus, the
higher the rate the wireless link is operated at, the larger the
overhead of the RTS/CTS handshake for a transmission of an
IP packet is on the wireless link. The rest of this Section is
organized as follows. The overhead for TCP ACK packets is
quantified in Section III-A. Section III-B presents the overall
system architecture of our approach. Sections III-C and III-
D discuss the details of our approach for downstream and
upstream TCP flows.

A. Quantifying the Overhead of TCP ACK packets

Let bRate and cRate be the basic and channel data rate,
rts, cts, andMack be the sizes of the RTS, CTS, and ACK
frame, sifs and difs be the SIFS and DIFS interval in the
IEEE 802.11 protocol. Further, letHtcp and Hmac be the
header sizes of a TCP segment and a MAC frame (including
preamble). The transmission time for a TCP data segment of
sizes is computed as

Tdata = difs+3�sifs+
rts+ cts

bRate
+
s+Htcp +Hmac +Mack

cRate
(1)

The transmission for a TCP ACK packet is computed as

Tack = difs+3� sifs+
rts+ cts

bRate
+
Htcp +Hmac +Mack

cRate
(2)

Let n be the average number of TCP ACKs generated by
a TCP receiver of a TCP data segment. If all TCP ACKs are
suppressed,n = 0. If a TCP receiver sends a TCP ACK for
every otherTCP data segment,n = 0:5. If a TCP receiver
sends a TCP ACK foreveryTCP data segment,n = 1. The
goodput of a long-lived TCP flow is computed as

GoodputTCP =
s

Tdata + n� Tack
(3)

Figure 1 depicts the goodput of a long-lived TCP flow over
an 802.11b network as a function of the TCP data segment size
s (we use a typical setting of an 802.11b network:bRate =

1 Mbps, cRate = 11 Mbps, sifs = 10 �s, difs = 50 �s,
rts = 44 bytes, cts = 40 bytes, Hmac = 40 bytes, and
Htcp = 40 bytes). As expected, TCP goodput increases with
the TCP data segment size since the overhead (RTS/CTS and
protocol overhead) is ameliorated. Further, as can be seen in
Figure 1, TCP goodput can be improved by approximately
50% if TCP ACKs are suppressed (compared to TCP receiver’s
policy of acknowledging every TCP data segment). When
compared to TCP receiver’s policy of acknowledging every
other TCP data segment, TCP goodput with ACK suppression
can be improved by approximately 20%.

B. Architectural Overview

We present a simple technique to remove the overhead
of TCP ACK packets by leveraging the layer coordination
between TCP and MAC in 802.11 wireless networks. Our
technique exploits the fact that the IEEE 802.11 protocol
already implements a semi-reliable transmission: each data
frame encapsulating an IP packet transmitted on the wireless
medium is succeeded by an ACK frame that acknowledges
the successful transmission of the data frame. Thus, TCP
ACK packets can be suppressed and acknowledgments for
TCP data packets that were successfully transmitted across the
wireless link can be implicitly provided by using the 802.11
ACK frames. The absence of an ACK frame indicates that
the transmission of the data frame was unsuccessful and a
retransmission is necessary. We note that transmissions pro-
vided by the IEEE 802.11 protocol are semi-reliable because
retransmissions for RTS and a short data frame are performed
up to ShortRetryLimit times and for a long data frame
up to LongRetryLimit times. After that, the data frame is
dropped and higher layer is notified of the failed transmission.
ShortRetryLimit and LongRetryLimit are configurable
parameters with default values of 7 and 4 respectively [31].

To remove the overhead caused by TCP ACK packets on
wireless links, we rely on the WLAN access point to act as
a proxy for the wireless stations. The access point buffers
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TCP data packets for wireless stations. Further, for upstream
TCP flows, i.e., when wireless stations are TCP senders, the
access point suppresses TCP ACK packets from fixed hosts
in Internet. For downstream TCP flows, i.e., when wireless
stations are TCP receivers, the access point generates TCP
ACK packets for the wireless stations and passes on these
packets to fixed hosts in the Internet. (We note that our tech-
nique does not prevent or adversely affect TCP performance
in scenarios where the other communicating host is also a
wireless station. However, for ease of presentation, we assume
that the other communicating host connects to fixed networks
in the Internet.)

One can argue that our technique weakens the end-to-end
semantics because TCP data packets may be acknowledged
prematurely before they actually reach the final destinations.
However, we note that the end-to-end semantics can be re-
tained to a certain degree by refraining from acknowledging
TCP FINs prematurely (i.e., TCP FINs have to be exchanged
end-to-end).

We introduce a new component called Wireless Coordina-
tion Protocol (WCP) that sits between the IP and the MAC
layer at the access point and the wireless stations. Fig. 2
illustrates the overall system architecture of our approach.
Our techniques assume that WCP can intercept and suppress
outgoing TCP ACK packets from the IP layer when necessary.
In BSD, Linux and Windows systems, this can actually be
achieved quite easily by implementing an intermediate layer
between the network device drivers and IP. Further, we assume
a close coordination between the WCP and the MAC layer.
In particular, we assume that WCP will be informed by the
MAC layer about the successful or failed transmission of a
TCP data packet. This assumption is necessary for the access
point to generate TCP ACK packets for fixed hosts in the
Internet (for downstream TCP flows). Further, this assumption
is also necessary for the access point and the wireless stations
to initiate a retransmission of a TCP data packet that was
dropped by the link layer after a number of failed attempts.
We note that this assumptiondoes notrequire any modification
to the MAC protocol - at most, it only requires a modification
to the MAC driver. This assumption is actually quite realistic
since many modern wireless NICs and their associated drivers
offer fine-grained control over the hardware [25].

C. ACK Suppressions in a Downstream TCP Flow

Details of our approach for a downstream TCP flow are
depicted in Fig. 3. The access point caches TCP data packets
originating from fixed hosts in the Internet in a packet buffer
and subsequently transmits these packets to wireless stations.
When a TCP data packet is successfully transmitted across the
wireless link, the access point removes the TCP data packet
from its internal buffer, generates a TCP ACK packet for the
TCP data packet, and sends the TCP ACK packet to the fixed
host. Outgoing TCP ACK packets at the wireless stations are
intercepted and suppressed by the WCP layer.

When notified of the failed transmission of a TCP data
packet, WCP at the access point passes down that TCP data
packet to the MAC layer again and initiates its retransmission.
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Fig. 3. ACK suppression in a downstream TCP flow
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Fig. 4. ACK suppression in an upstream TCP flow

Since our overall goal is to improve TCP performance without
requiring modifications of TCP implementation or the IEEE
802.11 protocol, we need to be careful in this case. On
the one hand, WCP should be able to pass down several
outstanding TCP data packets from a TCP flow to the MAC
layer. The rationale behind this is that we want to have several
packets buffered at the MAC layer so that processing time at
the WCP layer would not result in missed opportunities for
transmission at the MAC layer and would not degrade the
link throughput. On the other hand, since multiple TCP data
packets are buffered and transmitted at the MAC layer in a
(typically) FIFO manner, the retransmission of a TCP data
packet would cause the reordering of TCP data packets at
the wireless stations and trigger duplicate TCP ACKs. For
this reason, WCP at the wireless stations must intercept and
suppress the duplicate TCP ACKs to avoid using precious
bandwidth of the wireless link.

Since TCP data packets originating from fixed hosts may
be lost or reordered before arriving at the wireless link, the
access point must send duplicate TCP ACK packets on behalf
of the wireless stations when it detects out-of-order TCP data
packets. These TCP ACK packets are necessary for the fixed
hosts to retransmit their lost TCP data packets. However, the
access point does not have to buffer out-of-order TCP data
packets and send them to the wireless stations in-order. Rather,
the access point simply forwards TCP data packets to the
wireless stations in the order that they arrive (reordering can
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be done by local TCP receivers and suppression of duplicate
TCP ACKs can be done by WCP at the wireless stations).

D. ACK Suppressions in an Upstream TCP Flow

Details of our approach for an upstream TCP flow are
illustrated in Fig. 4. The access point caches TCP data packets
originating from wireless stations in a packet buffer and
forwards them to fixed hosts in the Internet. WCP at the
access point performs the following tasks for upstream TCP
flows. (1) It intercepts and suppresses TCP ACK packets from
fixed hosts in the Internet to save bandwidth resource of the
wireless link. Further, it removes cached TCP data packets
that are acknowledged by TCP ACKs from fixed hosts from
its packet buffer. (2) Since TCP data packets may be lost in
the Internet, WCP at the access point has to detect (and drop)
duplicate TCP ACKs from fixed hosts in the Internet, and
retransmits the lost TCP data packets (as indicated by the
duplicate TCP ACKs). Further, since duplicate TCP ACKs
from fixed hosts may never arrive at the access point, WCP
needs to maintain retransmission timers for the transmitted
TCP data packets (in the same manner as a TCP sender would
do it). When a timer expires, the TCP data packet with that
timer is retransmitted. (3) WCP at the access point needs
to maintain a congestion window that dictates the maximum
number of TCP data packets allowed for an upstream TCP flow
to avoid causing congestion in the Internet. This congestion
window is updated by using the TCP ACK packets from fixed
hosts in the Internet in the same manner as TCP would update
a congestion window. In other words, since the access point
acts as a proxy for the wireless stations, it implements most
features of a regular TCP stack.

The WCP layer at the wireless stations generates a TCP
ACK packet for each TCP data packet that is successfully
transmitted across the wireless link and requests the IP layer
to pass the TCP ACK packet up to the TCP layer.

A problem that could ensue at the wireless stations is that
since all TCP data packets are acknowledged by the WCP
layer, TCP could increase its congestion window to a large
value and would have too many outstanding TCP data packets.
Consequences of this potential problem are two-fold. (1) It
causes unnecessary buffering at the wireless stations that not
only consumes memory resources but also increases end-to-
end latency (and thus has an adverse impact on interactive
applications such as web browsing). (2) It can cause the
internal buffer at the IP layer to overflow (the IP layer’s packet
buffer is typically set to about 50 packets on Linux and BSD
systems that we know of) that results in loss of TCP data
packets and has an adverse effect on TCP performance.

There are several methods to prevent the problem mentioned
above. (1) The simplest method is to monitor the number
of outstanding TCP data packets of an upstream TCP flow
at the WCP layer at the wireless stations. If this number
exceeds a certain threshold, say 20 packets, WCP acts like
a RED router [14] and drops outgoing TCP data packets
probabilistically. We believe that this method is too coarse.
(2) WCP can generate three duplicate TCP ACKs and request
the IP layer to pass these packets to TCP. This would cause

Internet

Access point

Fig. 5. Simulation topology.

the TCP sender at a wireless station to reduce its transmission
rate. Since this method would cause retransmission of TCP
data packets, WCP must intercept outgoing TCP data packets,
detect and drop the duplicate TCP data packets. This method
appears to be rather complicated. (3) If ECN [28] is supported
by the TCP sender and receiver, a more elegant solution for
WCP is to set the Congestion Window Reduced (CWR) bit in
the TCP header of a TCP ACK packet that it generates when
the number of outstanding TCP data packets exceeds a certain
threshold. In this method, WCP acts like an ECN-enabled RED
router. However, this method requires ECN support at both end
systems. (4) WCP generates a TCP ACK packet where the
receiver window is set to 0 to throttle the local TCP sender.
Later, when the buffer of outgoing TCP data packets shrinks,
WCP can generate another TCP ACK packet with a non-zero
receiver window to allow the local TCP sender to transmit its
packets again. This is the method that we use in our approach.

IV. SIMULATION RESULTS

We performed simulations inns-2 to quantify the effects of
ACK suppression. Our simulation topology is shown in Fig. 5
and models a scenario whereN wireless stations are placed
equi-distant from the access point. The wireless network is
802.11b with a base rate of 1 Mbps and a channel data rate
of 11 Mbps. The TCP segment size is set to 1460 bytes.
The access point is connected to the Internet via a 100-Mbps
uplink with a one-way propagation delay of 20 milliseconds.
All experiments ran for 30 minutes but results of the first 10
minutes were discarded to eliminate the start-up phase. We
vary the number of upstream and downstream TCP flows and
show our results in Figres 6 and 7. Our results demonstrate
the performance improvement of TCP ACK suppression is
approximately 50% in comparison with the receiver’s policy
of acknowledging every TCP data segment and approximately
20% in comparison with the receiver’s policy of acknowledg-
ing every other TCP data segment.

V. SUMMARY AND CONCLUSIONS

In this paper, we argued that TCP ACK packets on wireless
links can be spared to save precious bandwidth on these links.
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We quantified the overhead of TCP ACK packets on these links
to be as high as 50%. We presented a simple technique that
leverages layer coordination between TCP and MAC to spare
TCP ACK packets and improve efficient bandwidth usage of
wireless links. Our technique has access points act as a proxy
for TCP senders or receivers at wireless stations. Unlike most
existing work, that improves TCP raw throughput, our work
seeks to improve TCP goodput by suppressing TCP ACKs over
wireless links. Further, an attractive feature of our technique
is that it is transparent to both TCP and MAC and does not
require their modification.
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