
Deploying an Active Voice Application on a Three-
Level Active Network Node Architecture

Long Le1,2, Georg Carle1, Henning Sanneck1, and Sebastian Zander1

1 GMD Fokus, Kaiserin-Augusta-Alle 31, 10589 Berlin, Germany
{carle, sanneck, zander, le}@fokus.gmd.de

2 Department of Computer Science, University of North Carolina at Chapel Hill,
NC 27599-3175, USA
le@cs.unc.edu

Abstract. Active networks have been recently highlighted as a key enabling
technology to obtain immense flexibility in terms of network deployment,
configurability, and customized packet processing. However, this flexibility is
often achieved at the cost of router performance. In this paper, we present a
three-level node architecture that combines flexibility and high performance of
network nodes. We design and implement an active network application for
real-time speech transmissions on top of this three-level platform. In our
application, plug-in modules are downloaded onto certain network nodes to
monitor packet loss rate of voice streams and to perform application-specific
packet processing when necessary. In particular, we propose to perform loss
concealment algorithms for voice data streams at active network nodes to
regenerate lost packets. The regenerated speech data streams are robust enough
to tolerate further packet losses along the data path so that the concealment
algorithms at another downstream node or at the receiver can still take effect.
We call our approach reactive concealment for speech transmission to
distinguish it from concealment performed at the receiver and also proactive
schemes like Forward Error Correction. Our approach is bandwidth-efficient
and retains the applications’ end-to-end semantics.

1 Introduction

We present a three-level active network node architecture to fulfil the requirements
for necessary flexibility without impairing the routers’ performance. The architecture
is composed of three different levels. The fixed part contains components for
forwarding functionality and QoS primitives. These components are optimised and
static because of performance reasons. The programmable part encompasses the
interfaces of the fixed part and provides abstractions of the fixed part as well as an
open interface to the higher level. The active part offers a limited execution
environment for lightweight active code. Our three-level architecture is very
interesting for vendors of legacy routers since their proprietary interfaces can be
wrapped around by a generic interface and thus integrated and migrated to an active

network environment. A prototype of our architecture has been implemented on top of
Hitachi’s high-speed routers GR2000.

Based on our network node architecture, we have designed an application for real-
time speech transmission. Recent application-level techniques like Adaptive
Packetization and Concealment (AP/C) have demonstrated that the perceived speech
quality can be improved by exploiting speech stationarity [Sann98]. However as
AP/C exploits the property of speech stationarity, its applicability is typically limited
to isolated, i.e. non-consecutive losses. When the rate of burst losses is high, AP/C
does not achieve any significant performance improvement compared to other
techniques. Furthermore, it has been shown that speech quality drops significantly in
the occurrence of burst losses [GS85]. We believe that this is the point where
flexibility provided by active network nodes can be exploited to help applications at
end systems to perform better. Our node architecture offers sufficient flexibility for
programming hardware components via a generic interface to perform application-
specific tasks. These tasks include monitoring of RTP streams to measure packet loss
rate and enforce QoS primitives implemented in hardware to give these streams
higher priority only when it is necessary. When the packet loss rate exceeds a certain
threshold, a plug-in module of concealment algorithms is downloaded and performed
at certain network nodes to regenerate lost packets and to inject them into voice
streams. The network nodes are programmed via an open interface to perform
application-specific processing in software only for the specified voice streams. Other
packets passing through the network nodes are forwarded in hardware to retain high
performance.

The rest of this paper is structured as follows. In section 2 we briefly review
related work. Section 3 presents our three-level active node architecture that we
developed within the BANG project [BANG]. We also discuss AP/C algorithm that
we download to the active network nodes to perform loss concealment for voice
streams as an application on top of our three-level active network platform. We then
present our approach of placing active network nodes at certain locations within the
network to leverage the efficiency of the receiver’ s concealment performance. Section
4 shows the results of a simulation study to evaluate the efficiency of our approach. In
section 5 we describe the prototype implementation of our three-level active network
node architecture. Finally, in section 6 we give conclusions of our work and outline
potential future work areas.

2 Related Work

The concept of active networks allows users to execute codes on network nodes to
meet their application-specific requirements. Another concept is to have well-defined
open interfaces to network nodes and to separate their internal states from signaling
and management mechanisms. This concept proposes the programmability of network
nodes and thus reduces the operations that users are allowed to perform inside the
network. A survey of research projects on active and programmable networks can be
found in [TSS97] and [CKVV99].

Applying the concepts of active and programmable networks, application-level
performance can be improved significantly thanks to the network nodes’ application-
specific packet processing. This is especially true for multimedia data that has a
specific flow structure. Typical examples for application-specific packet processing at
network nodes are media transcoding [AMZ95], media scaling [KCD00], packet
filtering [BET98], or discarding [BCZ97] for video distribution on heterogeneous
networks with limited bandwidth. Surprisingly, there are very few active network
projects that exploit the active nodes’ capability of application-specific packet
processing to improve quality of Internet voice or audio transmissions. The work we
are aware of is [BET98], [FMSB98], [MHMS98]. In [BET98] active nodes add an
optimal amount of redundant data on a per-link basis to protect audio streams against
packet loss. [FMSB98] and [MHMS98] describe the use of so called protocol boosters
that allow dynamic protocol customization to heterogeneous environments within the
network. A protocol booster can run on an active node and performs forward error
correction to improve transmission quality over a lossy link. Similar concepts
although not explicitly targeted for active networks are described in [BKGM00].

Since most packet losses on the Internet are due to congestion (except for wireless
networks), we argue that it is not the most efficient method to transmit redundant data
on a link that is already congested. We propose an approach where application-
specific packet processing is performed at an uncongested active node to regenerate
audio packets lost due to congestion at congested upstream nodes. Furthermore, the
efficiency of our algorithm for lost packets’ regeneration can be significantly
improved when it is combined with other programmable modules. These modules
include DiffServ and monitoring services that are implemented within our
architectural framework. Other programmable modules are being designed and
implemented.

Following the concept of programmable networks, the IEEE Project 1520 [P1520]
is an effort to standardize programming interfaces for network nodes. It defines a
structure of four layers with open interfaces for network nodes: physical element level
(PE), virtual network device level (VNDL), network generic services level (NGSL),
value-added services level (VASL). The interfaces of these four levels are called
CCM (Connection and Management), L (lower), U (upper), and V (value-added)
interfaces. Recently, it has been proposed to split the L-interface into a generic
abstraction interface (L-) and a service specific abstraction interface (L+). The
architecture presented in this paper is related to the P1520 framework proposed in
[LDVS99]. The P1520 interfaces described in [RBWYK00], [BVKV00] map quite
well with our architecture. Currently further development of our architecture is being
carried out within the FAIN project [BANG], [FAIN], [GPLD00].

3 A Three-Level Active Network Node Architecture

Despite immense flexibility gain, implementing low-level forwarding and QoS
primitives within active components do not seem to be realistic in the foreseeable
future due to performance constraints. This consideration leads to the introduction of
our three levels. The three-level architecture achieves the necessary flexibility without

impairing the router’s performance. The key design of our architecture is to de-couple
the control software from the forwarding functionality implemented in hardware. The
fixed level of our architecture contains static and optimized forwarding components
with QoS primitives that cannot be made programmable due to performance reasons.
In our node architecture, data packets that make up for the majority of packets
flowing through a network node are processed directly by hardware in the fixed level.
The programmable level exploits the primitives and high performance of the fixed
part to provide end-to-end services with an open interface. Control packets without
application-specific requirements are serviced by generic network mechanisms in the
programmable level. In order to provide a good perceived quality, multimedia
applications typically require that a certain end-to-end quality of service is
guaranteed. The programmable part can fulfil the requirements of quality of service
by enforcing Differentiated Services primitives [BBC98] in a co-ordinated way
between network nodes. Monitoring of streams’ packet loss rate is another important
service of the programmable level.

Exploiting the monitoring service, the application level can download and execute
plug-in modules only on necessary network nodes. In our architecture, services of the
programmable level are implemented on top of the fixed part. The node-local
interface to the fixed part is implemented by establishing an automated telnet
connection to Hitachi’s gigabit routers to perform the necessary router configuration.
By doing this, we separate the data path and the control path to avoid performance
loss. The programmable level is in turn controlled by the active level via an open
interface. The active level offers a limited execution environment for lightweight
active codes. Lightweight active codes are usually application-specific algorithms.
Lightweight active codes use the module interfaces of the programmable part to
access the functionality of the fixed part implemented in hardware. Lightweight active
code typically contains function calls or simple scripts to the module interfaces of the
programmable part with specific parameters. Other active codes contain simple
instructions for downloading programmable modules onto network nodes. After these
modules are downloaded, subsequent active codes carry along only parameters
necessary to configure these modules.

3.1 Mapping of P1520 Interfaces to the Three-Level Active Node Architecture

A network node in the three-level active node architecture consists of a hardware-
dependent and a hardware-independent part. The main idea here is to develop a
framework for programmable routers via a generic interface. However this generic
framework exploits hardware specific features (such as the QoS primitives of Hitachi
GR2000 gigabit router) to achieve high performance. Thus, the network node’s
programmability is generic while active codes can stil l exploit network node’s
specific features.

Our architecture stands in close relation with the proposed P1520 framework
[LDVS99]. Fig. 1 shows a view on the three-level active node architecture with
relation to the P1520 interface specifications. In our architecture, an automated telnet
connection between the GR2000 router and a PC router controller is the interface

between the fixed and the programmable level. The GR2000 on one side of the telnet
connection forms the active node’s hardware-dependent part. The PC router controller
is a Linux box running the active node’s software on the other side. It furthermore
offers limited execution environments for plug-in modules that could burden the
GR2000 resources otherwise. The telnet interface is roughly equivalent to the CCM-
interface of P1520. On the hardware-dependent side, it is accessed by a telnet C
library that enables the configuration of the GR2000 hardware’s QoS and filtering
primitives. This library is in turn wrapped by a Java library to leverage active code
from hardware and operating systems’ dependencies. The GR2000 Java interface is
used to configure low-level router primitives. This interface could be identified to be
at the L- level because it abstracts from the device-specific GR2000 interface, yet it
does not completely fit into the P1520 framework. On top of the L- interface higher
level QoS modules are implemented. These modules first abstract from specific
devices and offer an interface to software architectures at the L+ level. They have
purely local as well as service-specific semantics.

GR2000 C-Interface

Netlink Sockets / Java-Interface

Active Network Applications

Limited Execution
Environment

L -

V

U

Corresponding
P1520 Interfaces

Modules for
IP QoS support

DiffServ Metering

Router Configuration:
• QoS Configuration
• Filter Configuration

L +

Concealment

Router Controller GR2000

CCM

Programmable

Active

Fixed

Module configuration

Fig. 1. Three-level active node architecture

Active network applications trigger the installation of active components using the
end-to-end V interface. The installation consists of transporting the active components
to the remote active nodes using a mobile agent. The transport mechanism is
implemented by a Java mobile agent platform that was modified for this special
purpose. Application designers are shielded from implementation details of the
mobile agent platform and only have access to a network device via an abstract
interface. The virtual network device level realizes the code transport mechanisms to
the local node and limits the access to local resources of the GR2000 routers as well
as the PC router controller. Thus, the L interface can be used by application designers
to access resources of the GR2000 routers and the PC router controller without
detailed knowledge about code transport mechanisms or router configurations. Under
the control of a host manager the active components are installed and executed. At the
U level network-wide services can be accessed by active code. Finally, interfaces at

the V level allow applications to combine services of lower levels. For example, an
application can configure and access the meter modules of programmable nodes to
estimate the packet loss rate along the path of a multimedia stream. Having this
information, it can either enforce the routers’ QoS capability at the bottleneck link or
download and perform a concealment algorithm at another programmable network
node downstream of the bottleneck link.

3.2 DiffServ Module

To achieve interoperability with standard QoS control mechanisms, programmable
routers’ interfaces allow resource control by traditional QoS control as well as by
components dynamically deployed by active networks. The three-level active node
architecture is designed to offer such an open QoS control interface. Fig. 2 shows the
investigated architecture. It is based on our three-level active node architecture,
shown on the right side of the figure, but extends the proprietary GR2000 router
interface with a standardized DiffServ interface for QoS control specified by the L+
level.

GR2000 Router Controller

GR2000 C-Interface

Netlink Sockets (Linux QoS)

CCM

L -

V

U

L +

DiffServ

Active Programs

Mobile Agent Code Transport

Active Code

BANG Platform

QoS Control Application

Linux Kernel

Fig. 2. Three-level active node architecture and DiffServ interface

Instead of accessing the GR2000 via a proprietary and router vendor specific
interface, active components control the router via a DiffServ API. The DiffServ API
also enables non-active QoS control applications to configure a GR2000 router. On
one side, this API allows an easy realization of the proposed architecture. On the
other side, it allows future porting of the architecture to other routers. Comparing our
architecture with the P1520 interface proposal, the L interface is divided into two sub-
layers: L+ providing a standardized QoS control interface and L- providing a mapping
from the DiffServ layer to the router specific API.

This DiffServ interface definition was implemented using the C programming
language. The DiffServ C-interface allows programs to control the router by setting
and deleting the DiffServ structures defined by the L+ interface. Because active code
is implemented in Java within our three-level active node architecture, it is necessary
to wrap the developed C-interface by a Java interface providing similar functionality,

i.e. implement the L+ IDL definition in Java. Thus, legacy programs can use the C-
interface whereas active programs may use the Java-interface.

GR2000

GR2000 C-Interface

netlink sockets

CCM

L -

L +

NIC

netlink2GR2000

tc

Kernel

dslplus2tc

lib_dslplus (C)

lib_dslplus
(Java wrapper) P 1520 conformant DiffServ L+

implementation

Fig. 3. DiffServ module structure

Fig. 3 shows the internal layering of the DiffServ module. Note that besides access
via the L+ interface, it is also possible to use other lower interface levels. In addition
to the P1520 L- interface also intermediate levels exist, namely the GR2000 C (or
Java) interface and the ‘ tc’ tool which is a well-known traffic control tool to configure
the Linux QoS interface. The ‘ tc’ tool is implemented beyond the Linux netlink
interface which can be considered equivalent to the CCM interface. The DiffServ
implementation presented in this paper realizes a standardized interface for QoS
control on Hitachi’ s GR2000 router. The DiffServ interface is implemented in Java
and C for providing access to traditional as well as active management components.
Section 5 will demonstrate how active networks can be used to provide QoS to
multimedia applications by autonomous components deployed in case of network
congestion.

3.3 Active Meter Module

In traditional metering systems, data is gathered by distributed meters in the network.
The metering data is collected by readers and transferred to some management entity
on an end system. The RTFM architecture [RFC2063] is an example for such a
traditional system. In an active network we have to deal with mainly two additional
issues. First, active networks enable the rapid deployment of new protocols and
services within the network. This means that even end users might be able to
introduce new protocols and services. Active metering must deal with these new
protocols and services. Therefore an active meter must be flexible and extensible. In
the extreme case that the user is able to deploy a new protocol, it must be possible to
meter this protocol for testing, accounting and management purposes.

The second issue arises from the possibility of having active code running on the
active nodes. If this active code is performing active QoS enforcement or
improvement (Protocol Enhancing Proxies (PEPs) [BKGM00] or Protocol Boosters
[FMSB98]), it needs access to local metering data. One example for a PEP is the
Adaptive Packetization and Loss Concealment (see section 3.4) method which

improves Internet voice transmission in the case of packet loss. A PEP needs access to
metering data for two reasons. Firstly, the PEP must decide when to become active. In
the case of no loss or very high loss rates, activation of AP/C does not improve the
voice quality but instead introduces additional delay and wastes CPU and memory
resources on the active node. Secondly, the PEP operation might be parameterized
through metrics measured. In the case of improving the quality on links with packet
loss, Forward Error Correction (FEC) can be used. To avoid wasting resources, the
amount of redundancy generated must depend on the current measured loss rate.

General requirements for a meter system are speed and efficiency. This means that
the effort for metering should be low compared to the effort of packet forwarding.
Active metering should have a minimal impact on the performance of the active node.
Therefore we propose native code modules as the most promising tradeoff between
flexibility and performance. The selection of programmable modules for a certain task
is specified in a rule set language. This approach also supports a heterogeneous
infrastructure assuming that we can provide native modules with the same function
for each device. In that sense the meter is active because it can be dynamically
extended and enhanced with new modules providing the needed functionality.

The design of the active meter maps to the P1520 architecture described in
[LDVS99]. For the L- Layer it was decided to use Linux NetFilter [Russ00]. Fig. 4
depicts the architecture with relation to the P1520 layers. The basis of the architecture
is the Linux kernel. The CCM interface separates the NetFilter code from the rest of
the kernel code. It is not a clear interface but rather consists of a number of function
calls. On top of the CCM interface is the NetFilter code. NetFilter is controlled via a
userspace tool called iptables. This tool represents the L- interface to the NetFilter
classification functionality. On top of the L- interface, the meter core consists mainly
of a flow table and a ruleset manager. The control interface allows the management of
the ruleset within the meter. Rules can be added, modified or deleted. For defining
rulesets a simple ruleset language has been defined. The data interface allows access
to the meter data. Based on the flow specification the metered data like byte and
packet counter or the current packet loss rate can be retrieved. The control interface
and the data interface together form the L+ meter interface. The active meter has been
implemented in C.

Linux Kernel

NetFilter Kernel Modules
CCM

L -

L +

iptables

Meter Core (Flow Table, Ruleset)

Meter Data
Interface

Meter Control
Interface

Fig. 4. Active meter module structure

The loss rate measurement functionality of the active meter can be exploited by
modules performing active QoS enhancements. In this paper we propose the Adaptive
Packetization and Concealment (AP/C) algorithm for improving voice transmission
over links with moderate loss rates. Since the GR2000 is not capable of metering on

flow level granularity, the active meter resides on the router controller. A small set of
rules is enforced in the GR2000’s hardware. Packets that match the rules are passed to
the router controller for metering purposes. Other packets are forwarded by the
GR2000 as usual. The router controller meters the packets passed by the GR2000 and
routes them back to the GR2000 via another network interface to avoid packet
looping. Active codes can access the meter module to set rules and retrieve metering
data via an open interface. For example a mobile agent can be used to set up or
change the meter rule set or to read data and transport it to another system.

3.4 Loss Concealment Module

AP/C (Adaptive Packetization / Concealment) exploits the speech properties to
influence the packet size at the sender and to conceal the packet loss at the receiver.
The novelty of AP/C is that it takes the phase of speech signals into account when the
data is packetized at the sender. AP/C assumes that most packet losses are isolated. In
AP/C, the receiver conceals the loss of a packet by filling the gap of the lost packet
with data samples from its adjacent packets. Regeneration of lost packets with sender-
supported pre-processing works reasonably well for voiced sounds thanks to their
quasi-stationary property. Regeneration of lost packets works less well for unvoiced
sounds due to their random nature. However, this is not necessarily critical because
unvoiced sounds are less important to the perceptual quality than voiced signals.
Since the phase of the speech signal is taken into account when audio data is
packetized, less discontinuities than for conventional concealment algorithms are
present in the reconstructed signal.

Since AP/C assumes that most packet losses are isolated, it does not obtain any
significant performance improvement compared to other techniques when the rate of
burst losses is high. We believe that this is the point where the active nodes’
capability of application-specific packet processing can be exploited to help
applications at end systems perform better. Since the burst loss rate of a data flow at a
network node is lower than at the receiver, the AP/C concealment algorithm works
more efficiently and more lost packets can be reconstructed when concealment is
performed within the network rather than just at end systems. We thus propose to
download and perform the AP/C concealment algorithm at certain active nodes where
the number of burst losses of a voice data stream is sufficiently low to regenerate the
lost packets. The regenerated audio stream is robust enough to tolerate further packet
losses so that the AP/C concealment algorithm can still take effect at another
downstream active node or at the receiver.

The idea of the active network application is demonstrated in Fig. 5. The AP/C
sender algorithm is performed to packetize audio data taking the phase of speech
signals into account. Along the data path, packet 2 and 4 are lost. Exploiting the
sender’s pre-processing, the AP/C concealment algorithm is applied at an active node
within the network to reconstruct these lost packets. Downstream of the active node,
another packet is lost (packet 3) which is easily reconstructed at the receiver. In this
scenario, active concealment reconstructs six lost “chunks” (a chunk is a logical unit
of speech identified by the AP/C sender algorithm; in Fig. 5 they are designated by

c21, c22, c31, c32, c41, and c42) and clearly outperforms the receiver concealment
[Sann98] which can only reconstruct at most two chunks (c21 and c42) due to the burst
loss accumulated along the end-to-end data path.

c41 c42c31 c32c21 c22c11 c12

c31 c32c11 c12

c41 c42c31 c32c21 c22c11 c12

c51 c52

c51 c52

c51 c52

c11 c12 c51 c52c41 c42c21 c22

c11 c12 c51 c52c41 c42c21 c22 c31 c32

Sender

Receiver

Active node

Lossy
network

Lossy
network

Fig. 5. Active concealment

Thanks to flexibility offered by active nodes, the plug-in module for concealment
can operate in a spectrum from the observer mode (only regenerate lost packets) to
the proxy mode (buffer or recover multiple packets and then forward them). Observer
mode consumes less CPU and memory resources of an active node but proxy mode is
more powerful.

Fig. 6. Active nodes in observer mode

In the observer mode, an active node buffers only the packet with the highest RTP
sequence number of a flow. When the gap in the RTP sequence number between a
new packet and the currently buffered packet is larger than one, the active node
assumes that a burst loss has occurred upstream. It throws away the old packet and

n-1

n-1nn+1n+2

n+1

n-1nn+2n+3

n-1

n+1

Time

Sender

Sender

Active node Active node

Active nodeActive node Receiver

Receiver

buffers the new one. The underlying assumption here is that out-of-order packets are
rare. An active node delays the current packet until the lost packet has been
reconstructed with AP/C to avoid reordering. The advantage is that downstream
active nodes can avoid duplicate concealment. Duplicate concealment would happen
if a single packet is lost and every active node along the path attempts to conceal the
lost packet when it sees the previous and the next packet. Fig. 6 shows a scenario with
two active network nodes in the observer mode. Since the lost packet is reconstructed
from its previous and next packet, it suffers an additional delay. This additional delay
is exactly the delay between two subsequent packets. The additional delay incurred by
packet regeneration is demonstrated in Fig. 7. Let d be this delay, n be the number of
times a packet can be regenerated, and D be the maximum playout budget1 of the
receiver. We have the constraint n*d ≤ D. Thus, the number of active nodes along the
path of a voice flow should be smaller than �D/d�. Otherwise, packets regenerated
more than �D/d� times are discarded by the receiver because they arrive later than
their playout time. Consider an interactive voice application of two users between
Chicago and Paris. Interactive voice application requires that one-way delay be
smaller than 250 ms. The distance between Chicago and Paris is 4142 miles which
translates into an approximates propagation delay of 4142 * 1600 / 300000000 ≈ 22
ms. Let the queueing delay be 35 ms, the maximum playout delay is D = 250 – 22 –
35 = 193 ms. Depending on speaker’s voice, an average AP/C packet size ranges from
80 to 160 samples [Sann98]. In this example, we choose a packet size of 120 samples
and obtain a packetization delay of 120 / 8000 = 0.015 s = 15 ms. Thus, the maximum
number of active nodes on a voice path between Chicago and Paris is �193/15� = 12.

Fig. 7. Additional delay incurred by packet regeneration

In the proxy mode, an active node buffers more than one packet of a voice flow.
An active node can determine how long packets are buffered for the concealment
operation. The longer packets are buffered at an active node, the more memory is
consumed but the higher the chance of a successful reconstruction is. This trade-off is
similar to that of a receiver’ s playout buffer. When a loss gap of one packet is
detected, the lost packet is regenerated as described in the observer mode. Upon
detecting a burst loss larger than one packet, an active node requests its upstream
node to retransmit the lost packets. Fig. 8 illustrates a scenario where packets n and
n+1 are lost and retransmitted by an active node operating in proxy mode. Since the
proxy mode can cope with burst loss, it outperforms the observer mode. An active
node limits the number of voice packets kept in its buffer and replaces the old packets
by the new ones. An active node can also periodically send its upstream neighbor an

1 Playout budget is the maximum amount of time a packet can be kept in the receiver’s playout

buffer.

n-1n+2n+3 n+1 n

TimeSender

n-1n+2n+3 n+1 n

Receiver

d

d
Time

active packet acknowledging voice packets up to a certain RTP sequence number. An
acknowledgement does not mean that an active node has received and forwarded all
packets up to the specified RTP sequence number. It rather means that the active node
does not need those packets any more. This acknowledgement mechanism helps limit
the number of buffered packets at an active node. Let k be the maximum recoverable
burst loss and rtti be the roundtrip time between the ith active node and its upstream
neighbor (in the proxy mode, the sender also participates in the ARQ process and is
considered the 0th active node). We have the constraint

n*(k+1)*d + rtt1 + rtt2 + … + rttn = n*(k+1)*d + rtt ≤ D
where rtt is the roundtrip time between the sender and the receiver. This inequality

constraint presents a trade-off between the number of active node on the path of a
voice flow and the maximum burst loss we wish to recover. Similar to the example of
the observer mode, we have n*(k+1)*15 + (22+35)*2 ≤ 193. Thus, n*(k+1) ≤ �79/15�
= 5. If we have only one active node operating in proxy mode on a voice path
between Chicago and Paris, we can recover a burst loss up to four packets.

Fig. 8. Active nodes in proxy mode

Our approach is similar to Robust Multicast Audio (RMA) proposed by Banchs et.
al. in [BET98] but it acts in a reactive way upon detection of packet loss in audio data
streams. On the contrary to RMA transmitting redundant data on a per-link basis to
protect audio streams against packet loss in a proactive way, our approach simply
regenerates and injects the lost packets into audio streams and thus is more
bandwidth-efficient. Another advantage of our approach is that it does not break the
applications’ end-to-end semantics and does not have any further demand on the
number and location of active nodes performing the concealment algorithm2. RMA,
however, requires active nodes to be located at both ends of a link or a network to

2 Clearly, the number and location of active network nodes influence the performance

improvement. However, the applications’ functionality is not affected under any
circumstances.

n

n-1n+3n+4

n-1

n+2

n+1n+2

n

n-1n+4n+5

n-1

n+3

n+1n+2n+3 n+2

arq req

nn+1

n

n+3n+5n+6

n+1n+2n+3

n+4 nn+1

nn+1n+2 n-1n+4 n+3
ack n+3

Time

Sender Active node Active node Receiver

Sender Active node Active node Receiver

Sender Active node Active node Receiver

perform the FEC encode and decode operation. The concept of protocol boosters
[FMSB98], [MHMS98] is another similar approach to ours. However, in the case of
FEC which is presented in [MHMS98] this approach also requires at least two
instances of the same booster type within the network in order to perform the encode
and decode operation in a proactive way. On the contrary, our scheme is reactive and
only acts when necessary.

4 Simulation Study for Active Concealment

In our simulation, we assume that there is only one active node in the path from the
sender to the receiver where intra-network regeneration of lost packets can be
performed. The logical network topology for our simulation is shown in Fig. 9 where
a lossy network can consist of multiple physical networks comprising several network
hops. We use the Bernoulli model to simulate the individual loss characteristics of the
networks. Objective quality measurements such as [ITU98] and [YKY99] are used to
evaluate the speech quality. These measurements employ mathematical models of the
human auditory system to estimate the perceptual distance between an original and a
distorted signal3. Thus, they yield results that correlate well and have a linear
relationship with the results of subjective tests. We apply the Enhanced Modified
Bark Spectral Distortion (EMBSD) method [YKY99] to estimate the perceptual
distortion between the original and the reconstructed signal. The higher the perceptual
distortion is, the worse the obtained speech signal at the receiver is. The MNB scheme
[ITU98], though showing high correlation with subjective testing, is not used because
it does not take into account speech segments with energy lower than certain
thresholds when speech distortion is estimated. In the MNB scheme, the replacement
of a lost speech segment by a silent segment does not lead to a degradation of quality,
because this segment is not taken into account when the perceptual distortion is
computed.

Sender ReceiverActive node

Lossy network 1 Lossy network 2

Fig. 9. Simulation topology

The structure of this section is organized as follows. In the first simulation step, we
use the same parameter sets for the lossy networks. We then compare the speech
quality obtained by the active loss concealment with two reference schemes. In the
second simulation step, we vary the parameter sets of the lossy networks and measure
the efficiency of the active loss concealment. The parameter sets are chosen in such a
way that the packet loss rate observed at the receiver is constant. This simulation step
is performed to determine to optimal location of the active node where the plug-in
module for the active concealment algorithm can be downloaded and performed.

3 We use a speech sample that consists of different male and female voices and has a length of

25 s.

4.1 Performance Comparison to Reference Schemes

In this simulation step, we compare the speech quality obtained by active loss
concealment with two reference schemes. In the first reference scheme, the sender
transmits voice packets with constant size and the receiver simply replaces data of a
lost packet by a silent segment with the same length. Each packet in this scheme
contains 125 speech samples, resulting in the same total number of packets as the
second reference scheme and the active loss concealment scheme. The second
reference scheme is the AP/C scheme applied only at end systems. Packets are sent
through two lossy network clouds and are dropped with the same packet drop
probability. The parameters used in this simulation step and the resulting packet loss
rate are shown in Table 1.

Packet drop probability 0.03 0.06 0.09 0.12
Packet loss rate 0.0592 0.1164 0.1720 0.2257

Table 1. Parameters and packet loss rate used in simulation for performance comparison

0

0.5

1

1.5

2

2.5

3

3.5

0.03 0.06 0.09 0.12
Packet drop probability per network

cloud

P
er

ce
p

tu
al

 d
is

to
rt

io
n Reference

scheme 1

Reference
scheme 2

Active
concealment

MOS

5

4

3

Fig. 10. Performance comparison to reference schemes (simulation step 1)

Fig. 10 shows the results of this simulation step, plotting the perceptual distortion

measured by EMBSD versus the network clouds’ packet drop probability. The MOS
(Mean Opinion Score) axis helps the reader to interpret the results in term of
subjective quality measurement. A MOS value of 5 indicates excellent speech quality
while a MOS value of 1 stands for an unacceptable quality. The results demonstrate
that the higher the packet drop probability is, the higher the perceptual distortion of
the schemes and thus the worse the speech quality is. AP/C performs better than
reference scheme 1 that replaces lost packets by silent segments, and the active loss
concealment obtains the best speech quality. When the network clouds’ packet drop
probability is low, the active loss concealment does not gain any significant
improvement compared to the AP/C scheme. This is because AP/C performs
sufficiently well when the network loss rate is low and the number of burst losses is
negligible. However, when the packet drop probability rises and the burst loss rate is
no longer negligible, the perceptual distortion obtained with AP/C increases
significantly and the active loss concealment achieves obvious improvement
compared to AP/C.

4.2 Optimal Active Network Node Location

In this simulation step, we vary the parameters of the lossy network clouds to
determine the optimal location of the active network node. This simulation step is
intended to help answering the following question: „Given that there are the same loss
characteristics along the data path, where is the most effective location to download
and perform the active concealment algorithm?“.

The packet loss rate p of a data path consisting of two network clouds with packet
drop probability p1 and p2 is given by)1()1(1 21 ppp −⋅−−= .

The result of this simulation step is presented in Fig. 11 using EMBSD to compute
the perceptual distortion of the obtained speech signal at the receiver. It shows that the
optimal location to download and perform the active concealment algorithm is where
the packet loss rate from the sender to that location is equal to the packet loss rate
from there to the receiver (p1 = p2). If on one hand the packet loss rate from the
sender to the location of the active node is too high (p1 >> p2), the active concealment
algorithm cannot exploit its advantage in terms of the location as compared to
concealment just at the receiver. On the other hand, if the packet loss rate from the
active node to the receiver is too high (p1 << p2), the concealment algorithm at the
active node is idle most of the time, because the majority of losses happen at
subsequent network nodes. This effect is increasingly important when the packet loss
rate (and thus the packet drop probability) increases, leading to a higher number of
burst losses which causes the “conventional” concealment algorithm to fail.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

0 p/4 p/2 3p/4 p

p1

P
er

ce
p

tu
al

 d
is

to
rt

io
n

p=0.03

p=0.06

p=0.09

p=0.12

p=0.15

Fig. 11. Optimal active network node location (simulation step 2)

5 Prototype Implementation

We have set up a testbed for the purposes of demonstration, experimenting, and
implementing applications that can exploit the advantages of active networks

technologies. The heart of the testbed are three GR2000 routers provided by Hitachi.
These three high-speed routers satisfactorily fulfil the requirements for large
bandwidth of novel applications and also provide primitives for QoS and filtering.
Each of these routers is connected to a PC router controller that controls the GR2000
via the interface described in section 3. The software of our architecture runs on the
router controller. Metering is also performed on the router controller because the
current version of the GR2000 has no flow based metering capabilities. Our testbed is
shown in Fig. 12.

In the following we describe a scenario of DiffServ service creation, deployment,
enforcement and measurement which we have realized within the testbed. The
scenario comprises the following features:

• application of active concealment for voice flows when the packet loss rate is low
(a threshold of 10% is used in our current testbed)

• creation and deployment of state to DiffServ core routers realizing a Per-Domain
Behaviour (PDB)

• creation and deployment of per-flow state in DiffServ edge routers to map a flow
to a DiffServ Code Point (DSCP)

• flow remarking and enforcement of the DiffServ Per-Hop Behavior (PHB) using
the automated router configuration and measurement (active meter)

When foreground traffic (i.e. in this case it is voice traffic) is transmitted, the
measurement system at the core router detects the foreground flow. However it is not
able to decode the upper layer protocol (RTP). Therefore the corresponding meter
module is requested and uploaded from the network management system. Then
measurement data on the flow is collected. When a Per-Domain Behaviour (PDB) is
created at the management station, it can be deployed by having mobile agents travel
to core routers to perform the necessary configuration for the respective PHBs. When
the packet loss rate is lower than 10%, no reservation of bandwidth is necessary and
active concealment is applied to regenerate lost packets as described in section 3.4.
When congestion is about to occur, it can be detected since the packet loss rate and
routers’ queue length (among other values) are measured at the routers and
periodically conveyed to the network management system. Collected information at
the management system can help to detect the location of congestion early and take
the most appropriate measures. Upon detection of congestion, mobile agents can carry
a filter to edge routers to remark the foreground traffic flow to a certain DSCP.
According to the deployed PHB, the core router now gives preference to packets
carrying this DSCP. Another possibility is to have mobile agents only configure the
routers at the congestion location to serve foreground traffic with higher priority.
Thus, partial QoS enforcement can be combined with active concealment. The voice
quality now remains high independent of the congestion situation in the network.
Note that it is possible to apply the filter (as well as the core routers’ configuration)
only temporarily in our architecture. This allows us to deploy an agent that can
configure the router and become inactive for specified time interval. After that the
agent becomes active again, deletes the filter, and terminates or moves to another
network node.

The above scenario of automatic QoS deployment demonstrates the importance of
the decentralised control of routers. This is achieved by having mobile agents move

from hop to hop to configure the routers. The decentralised control of core routers
allows for simple autonomous PDB deployment. The decentralised control of edge
routers allows for simple autonomous enforcement of temporary Service Level
Specifications (SLSs). Due to the agent-based approach, the system has a high fault
tolerance in case links from the central network management system to nodes are
temporarily down or congested. Furthermore the scenario shows how our
architecture’s open interfaces can be used to set up a QoS configuration in an active
network. Our DiffServ scenario demonstrates the main benefits from the active
network technology: the autonomous time-dependent management of QoS by active
components.

Receive
r

GR 2000 router

Sender

Data
path

Legend
Signalingpath

Network Management
System

Controller PC

Active Network

Traffic generator

Controller PC

EDGE Router CORE Router 1

DiffServ domain

Controller PC

CORE Router 2

Fig. 12. Testbed configuration

6 Conclusion and Future Work

In this paper we presented a novel three-level active node architecture which consists
of a fixed, a programmable and an active part. Our active node architecture achieves
both flexibility and high performance that are the core requirements for a dynamic
network infrastructure. Our prototype implementation bases on Hitachi high-speed
routers GR2000. However, the flexibility of our network node architecture enables
easy plug-in of other high-speed routers. The programmable part currently consists of
a Diffserv and a meter module. The QoS module for DiffServ as part of our three-level
active node architecture allows for interoperability with standard QoS control
mechanisms, which is essential for the acceptance of the new active network
technology. The standard interfaces allow the control of networks by traditional QoS
control as well as by components dynamically deployed by active networks. We have

specified and implemented a Differentiated Services module that allows to abstract
from a particular network device and to use DiffServ semantics to program the device.
The meter module uses native code modules that can be dynamically loaded to extend
the meter functionality. This allows for high flexibility and extensibility as well as
performance. A generic ruleset language is used for specifying meter rules and
corresponding modules independently from the architecture of the network elements.
Mobile agents can be used for the transport of rulesets to the meter devices or for
reading meter data and transport them to other systems. Other plug-in modules are
being designed and implemented.

Another plug-in module for reactive concealment of voice streams is currently
being implemented. With this module we design a new active network application for
voice over IP that exploits the flexibility of active networks to perform application-
specific packet processing. Simulation results have demonstrated that significant
speech quality improvements can be achieved compared to pure end-to-end
application-level algorithms. An unoptimized software implementation of the active
loss concealment reconstructs a lost packet with an average execution time overhead
of 220 µs on a PC with a Pentium III 500 MHz CPU and 128 Mbytes RAM. Since the
active node only performs packet regeneration for a small portion of packets of voice
streams, the average consumption of node resources is reasonably low. The more
complex encoding can be done at the sending end system that usually has sufficient
processing power because the bandwidth overhead due to encoding is very low.
Together with active metering this approach allows for automatic QoS improvement
for voice transmission in an active network environment.

Additional future work includes the investigation of active network applications
where a number of active nodes can be placed along the data path to download and
perform the active loss concealment algorithm. Besides, it is very interesting to
attempt to answer the question how well and how many times active loss concealment
can be performed in a recursive way. Furthermore, since both application-level
Forward Error Correction and application-specific packet processing incur additional
consumption of network resources, we plan to compare these two approaches. The
result of this comparison might enable an optimal combination of the two approaches
to obtain further improvement of speech quality. A further step is to implement plug-
in modules for audio compression and Forward Error Correction. An integration of
these modules in the existing programmable level allows significant flexibility and
efficient coordination with other implemented modules.

References

[AMZ95] E. Amer, S. McCanne, and H. Zhang. An Application Level Video
Gateway. Proceedings of ACM Multimedia 95, San Francisco, CA,
November 1995.

[BANG] Hitachi, GMD Fokus. Broadband Active Network Generation (BANG),
http://www.fokus.gmd.de/research/cc/glone/projects/bang/, September
2000.

[BBC98] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An
Architecture for Differentiated Services. IETF RFC 2475, December
1998.

[BET98] A. Banchs, W. Effelsberg, C. Tschudin, and V. Turau. Multicasting
Multimedia Streams with Active Networks. In Proceedings IEEE Local
Computer Network Conference LCN 98, Boston, MA, Oct 11-14, 1998,
pp. 150-159.

[BCZ97] S. Bhattacharjee, K. L. Calvert, and E. W. Zegura. An Architecture for
Active Networking. High Performance Networking (HPN 97), White
Plains, NY, April 1997.

[BKGM00] J. Border, M. Kojo, Jim Griner, G. Montenegro. Performance Enhancing
Proxies, IETF Internet Draft <draft-ietf-pilc-pep-02.txt>, March 2000.

[BVKV00] J. Bitwas, J. Vicente, M. Kounavis, D. Villela, M. Lerner, S. Yoshizawa
and S. Denazis. Proposal for IP L-Interface Architecture, Draft IEEE
P1520, January 2000.

[CKVV99] A. T. Campbell, M. E. Kounavis, J. Vicente, D. Villela, K. Miki, and H.
De Meer. A Survey of Programmable Networks, ACM SIGCOMM
Computer Communication Review, Vol. 29 No. 2 pg. 7-24, April 1999.

[FAIN] Hitachi, GMD, UCL, ETH Zürich et. al., FAIN - Future Active IP
Networks, IST project, http://www.ist-fain.org/, work in progress.

[FMSB98] D. C. Feldmeier, A. J. McAuley, J.M. Smith, D. S. Bakin, W. S. Marcus,
T. M. Raleigh. Protocol Boosters, IEEE JSAC, April 1998.

[GPLD00] A. Galis, B. Plattner, E. Moeller, J. Laarhuis, S. Denazis, C. Klein, J.
Serrat, G. T. Karetsos, C. Todd. A Flexible IP Active Networks
Architecture, IWAN 2000 Conference, October 2000.

[GS85] J. Gruber and L. Strawczynski. Subjective Effects of Variable Delay and
Speech Clipping in Dynamically Managed Voice Systems. IEEE
Transactions on Communications, Vol. COM-33(8), August 1985.

[ITU98] Objective Quality Measurement of Telephone-Band (300-3400 Hz)
Speech Codecs. ITU-T Recommendation P.861, February 1998.

[KCD00] R. Keller, S. Choi, D. Decasper, M. Dasen , G. Fankhauser, B. Plattner.
An Active Router Architecture for Multicast Video Distribution.
Proceedings IEEE Infocom 2000, Tel Aviv, Israel, March 2000.

[LDVS99] P. Lin, S. Denazis, J. Vicente, M. Suzuki, J. P. Redlich, F. Cuervo, J.
Biswas, W. Weiguo, K. Miki, J. Gutierrez. Programming Interfaces for IP
Routers and Switches, an Architectural Framework Document, IEEE
P1520/TS/IP-003, June 1999.

 [LSCH00] L. Le, H. Sanneck, G. Carle, and T. Hoshi. Active Concealment for
Internet Speech Transmission, IWAN 2000 Conference, October 2000.

[MHMS98] W. S. Marcus, I. Hadzic, A. J. McAuley, and J. M. Smith. Protocol
Boosters: Applying Programmability to Network Infrastructure, IEEE
Communications Magazine, vol. 36, no. 10, pp. 79--83, Oct. 1998.

[P1520] Proposed IEEE Standard for Application Programming Interfaces for
Networks, http://www.ieee-pin.org

[RBWYK00] M. Raguparan, J. Biswas, W. Weiguo, S. Yoshizawa, A. Karlcut,
"L+ Interface for Routers that Supports Differentiated Services", IEEE
P1520/TS/IP-012, January 2000.

[RFC2063] N. Brownlee, C. Mills, G. Ruth: „Traffic Flow Measurement:
Architecture” , RFC2063, January 1997.

[Russ00] P. Russel: “Linux 2.4 Packet Filtering HOWTO”,
http://netfilter.samba.org/unreliable-guides/packet-filtering-
HOWTO.html, May 2000.

[Sann98] H. Sanneck. Adaptive Loss Concealment for Internet Telephony
Applications. Proceedings INET 98, Geneva/Switzerland, July 1998.

 [TSS97] D. Tennenhouse, J. Smith, D. Sincoskie, D. Wetherall, G. Minden. A
Survey of Active Network Research. IEEE Communications, January
1997.

 [YKY99] W. Yang, K. R. Krishnamachari, and R. Yantorno. Improvement of the
MBSD by Scaling Noise Masking Threshold and Correlation Analysis
with MOS Difference instead of MOS. IEEE Speech Coding Workshop,
1999.

