
A Step toward Realistic Performance Evaluation of High-Speed
TCP Variants

 Sangtae Ha, Yusung Kim, Long Le, Injong Rhee Lisong Xu
 Department of Computer Science Department of Computer Science and Engineering
 North Carolina State University University of Nebraska
 Raleigh, NC 27695 Lincoln, NE 68588

Abstract: This is a work-in-progress report on our work on
designing realistic evaluation suites for testing high-speed TCP
variants. In this work, we have created an experimental net-
work model that captures some of the complex characteristics
of propagation delays and background traffic [14, 15, 20]. We
use our network model to evaluate a large collection of recently
proposed TCPs for high-speed networks: BIC TCP, CUBIC,
FAST, HSTCP, H-TCP, and STCP. While we do not claim that
we have the most realistic experimental network model, we
believe that our work is a right step towards improving ex-
perimental methodologies for evaluating network protocols. In
this report, we show how protocols could behave differently
under the presence or absence of background traffic, and point
out the danger of drawing conclusions based on testing under
an isolated case of no background traffic.

1 Introduction
Congestion control is an important component of a transport
protocol in a packet-switched shared network. The conges-
tion control algorithm of the widely used transport protocol
TCP is responsible for detecting and reacting to overloads in
the Internet and has been the key to the Internet’s opera-
tional success. However, as link capacity grows and new
Internet applications with high-bandwidth demand emerge,
TCP performance is unsatisfactory, especially on high-
speed and long distance networks. The main reason for this
is the conservative behavior of TCP in adjusting its conges-
tion window that governs the senders’ transmission rates.

A number of solutions have been proposed to remedy the
aforementioned problem of TCP by changing the way in
which TCP adapts its congestion window: BIC TCP [1],
CUBIC [2], FAST [3], HSTCP [4], H-TCP [5], STCP [6],
TCP-Westwood [10], LTCP[27] and TCP-Africa [11].
These new protocols promise to improve TCP performance
on high-speed networks significantly and are hence usually
called TCPs for high-speed networks.

While the design of TCPs for high-speed networks has re-
ceived a considerable amount of interest, far less attention
has been paid to thorough evaluations of these protocols.
For example, Internet measurement studies showed complex
behaviors and characteristics of Internet traffic [14, 15, 20].
Unfortunately, existing evaluation work [8] did not capture
these behaviors in their testing environments. Since conges-

tion control algorithms are very sensitive to environmental
variables such as background traffic and propagation delays,
thorough performance evaluations of TCPs for high-speed
networks require creating realistic network environments
where these protocols are likely to be used.

There are many factors in constructing realistic network
testing environments. Most frequently used factors include
end-to-end characteristics such as (1) bottleneck bandwidth,
(2) round-trip times of protocol flows being observed, (3)
the network topology over the path that protocol flows of
interest travel through, and (4) queue size at the bottleneck
link. These factors are more or less statically captured in a
simulation and do not change over the course of the experi-
ment. What is missing in most of existing evaluation work
is the considerations of (1) what the protocol flows of inter-
est dynamically (i.e., in a time-varying manner) experience
in the middle of the network path, namely the dynamic sta-
tistical properties of background traffic over the intermedi-
ate links and (2) the impact of background traffic on the
statistical properties on a link. These dynamic characteris-
tics include “background” network traffic over both forward
and backward directions of these links. These are back-
ground traffic because they are not being measured at end
points and can still influence the behaviors of the protocol
flows being observed at the end points.

There are several reasons why background traffic is impor-
tant in protocol testing. First, network environments without
any randomness in packet arrivals and delays are highly
susceptible to the phase effect [25], a commonly observed
simulation artifact caused by extreme synchronization of the
network flows on the end-to-end path. A good mix of back-
ground traffic with diverse arrival patterns and delays re-
duce the likelihood of the phase effect. Second, a high de-
gree of statistical multiplexing is often assumed in protocol
design. For instance, the authors of HSTCP and STCP rely
on statistical multiplexing for faster convergence (so criti-
cizing these protocols for slow or no convergence under
environments without background traffic is unfair). Today’s
Internet contains a varying degree of multiplexing and it is
very unlikely that a production network does not contain
any mix of background traffic. Third, it enables a study on
the impact of the protocol flows on the “passing-through”
aggregate traffic. This passing-through traffic is not ob-

2

served at the end points of observation as they have differ-
ent end-points. These aggregate behaviors include queue
fluctuations at the bottleneck links, total link utilization
fluctuations, traffic distributions, and average response time
and throughputs (for short-lived web traffic).

In this work, we have created an experimental network
model that captures some of the complex characteristics of
propagation delays and background traffic [14, 15, 20]. We
use our network model to evaluate a collection of recently
proposed TCPs for high-speed networks: BIC TCP, CUBIC,
FAST, HSTCP, H-TCP, and STCP. While we do not claim
that we have the most realistic experimental network model,
we believe that our work is a right step toward improving
experimental methodologies for evaluating network proto-
cols. Since we make no claim about the realism of our
background traffic mix, this report has a modest goal of
simply contrasting protocol behaviors observed from two
different environments created with and without background
traffic. Our future work will evolve into testing protocols
under more realistic background traffic. Our plan is to use
some of the existing traffic generators such as Tmix [24]
and Harpoon [23] that use real network traces as seeds for
generating synthetic network traffic, and create a standard
set of network testing environments where the network
community can test and compare protocol behaviors.

2 Related Work
Floyd proposed a framework for evaluating congestion con-
trol algorithms [13]. The framework includes a number of
metrics such as throughput, packet loss rates, delays, and
fairness as well as a range of network environments. Along
the same line, Wei et al. [12] proposed that the networking
community establish a TCP benchmark suite to leverage
comparative performance evaluations of TCP variants. The
benchmark includes various scenarios for realistic perform-
ance evaluations such as heavy-tail file size distributions
and ranges of propagation delays. The frameworks proposed

by Floyd and by Wei et al. illustrate the need for realistic
performance evaluations of new congestion control algo-
rithms and accentuate the motivation for our work and exist-
ing evaluation work that we briefly review below.

Bullot et al. compared the performance of TCP New Reno
with HSTCP, FAST, STCP, HSTCP-LP, H-TCP, and BIC
TCP on high-speed production networks [7]. They reported
that TCP New Reno gave low and unstable performance and
most TCPs for high-speed networks delivered significant
improvement over TCP Reno. Bullot et al.’s results are very
encouraging. Nevertheless, as their experiments were per-
formed over a real production network path, they did not
have any control over the background traffic on the network.
They only included UDP background traffic and did not
consider the impact of network environments created by
various mixes of background traffic on protocol behaviors.

Li et al. [8] performed experiments for STCP, HSTCP, BIC
TCP, FAST, and H-TCP in a lab network. They noted that
most protocols, especially FAST, STCP, HSTCP and BIC,
exhibit substantial unfairness and highlighted the good per-
formance of HTCP. Since Li et al. did not have any back-
ground traffic in their experiments, their results may be sub-
ject to the deficiencies we point out in the introduction.

3 Experimental Design
3.1 Testbed setup. The experimental network that we used
to perform experiments for TCPs for high-speed networks is
shown in Figure 1. At each edge of the network are four
machines that have identical hardware configurations. Two
machines are used as TCP senders and run iperf to simulate
high-performance applications that have the demand to
transmit a large amount of data to two other machines func-
tioning as TCP receivers on the other side of the network.
The TCP senders run a modified version of Linux 2.6.13
kernel that includes the implementations of new congestion
control algorithms for high-speed networks.

As pointed out by Li et al. [8], existing implementations of
various congestion control algorithms often make changes
to parts of the TCP stack that are not directly related to the
congestion control algorithm in order to improve their over-
all performance. To be fair to all congestion control algo-
rithms, we run a modified version of Linux 2.6.13 kernel
that separates the implementation of congestion control al-
gorithms from the standard TCP stack (with the exception
of FAST that has an implementation in Linux kernel 2.4
because FAST is not yet publicly available in Linux kernel
2.6). Further, we modified the SACK implementation to
remove inefficiencies of the standard SACK implementation.
Our improved SACK implementation is equally effective
for all congestion control algorithms.

TCP Sender 1

TCP Sender 2

TCP Receiver 1

TCP Receiver 2

Short and Long-lived
Traffic Generator 1

Short and Long-lived
Traffic Generator 2

Short and Long-lived
Traffic Generator 3

Short and Long-lived
Traffic Generator 4

Dummynet
Router 1

(Drop Tail)

Bottleneck Link

Dummynet
Router 2

(Delay Generator)

Bottleneck
Point

RTT for Background Traffic

Figure 1: Experimental network setup.

3

At the core of the network are two FreeBSD 5.2.1 machines
running dummynet software [21]. These machines are tuned
to be capable of forwarding traffic close to 1 Gbps. The
dummynet software is used in the first router to control the
bandwidth and buffer size of the bottleneck link. The band-

width of the bottleneck link is configured to be 400 Mbps.
Unless mentioned otherwise, the buffer size of the bottle-
neck link is fixed to the maximum of 2 Mbytes. While vari-
ous rules of thumb recommend that the buffer size be pro-
portional to the bandwidth delay product (BDP), we test the

(a) Without background traffic (a) With the same RTT for the two flows

(b) With background traffic (b) RTT for one flow is set to 162 ms and RTT of the
other flow is varied between 16 ms and 164 ms.

Figure 2. Link utilization with one TCP SACK and
one TCP variant flow. Both flows have same RTTs.

Figure 3. Link utilization with two flows of a high-
speed TCP variant and background traffic

(a) Without background traffic (a) Without background traffic

(b) With background traffic (b) With background traffic

Figure 4. Stability Figure 5. Packet loss rate

4

protocols under a smaller router buffer size than BDP which
is a likely trend in high-speed routers. This trend is in line
with recent research results showing that the buffer size of a
bottleneck link with a high degree of multiplexing of TCP
connections can be much less than the bandwidth delay
product [16, 17].

3.2 Model for propagation delays. An extension of
dummynet is used in the second router to assign per-flow
delays to background traffic flows (long-lived and short-
lived). This configuration gives all packets from a flow the
same amount of delay that is randomly sampled from a dis-
tribution obtained from a measurement study [14]. This al-
lowed us to obtain results as if our experiments would have

(a) Without background traffic (a) Without background traffic

(b) With background traffic (b) With background traffic

Figure 6. RTT Fairness. Figure 7. TCP Friendliness.

(a) Without background traffic (a) Without background traffic

(b) With background traffic (b) With background traffic

Figure 8. Intra-protocol Fairness. Figure 9. Convergence.

5

been performed on an actual wide-area network where dif-
ferent flows passing through a router experience different
amount of delays.

3.3 Models for background traffic. Since high-speed vari-
ants of TCP are unlikely to run alone in dedicated networks,
we need to generate background traffic to make our results
realistic as in real-world scenarios. Two types of flows are
used to generate background traffic: long-lived and short-
lived. The long-lived flows are generated by iperf and used
to simulate regular long-lived TCP flows such as ftp. The
amount of traffic generated by these flows is controlled by
the number of iperf connections. Short-lived flows are used
to simulate web sessions and are generated using Lognormal
(Body) and Pareto (Tail) distribution for their file sizes [12,
15, 20]. The inter-arrival between two successive short-lived
flows follows an exponential distribution and is used to con-
trol the amount of short-lived flows [12, 20]. The chosen
distributions of file sizes and inter-arrival times are consid-
ered representative of Internet traffic characteristics [12, 20].
Further, we also generate reverse traffic consisting of both
short-lived and long-lived flows to achieve the effects of
ACK compression and to reduce the phase effect [22].

Each experiment with high-speed variants of TCP is run for
1200 seconds. The long-lived and short-lived background
flows start at time 0. We have two high-speed TCP flows in
each experiment. The first flow starts at 30 seconds and the
second flow starts at 130 seconds. We took measurements
after the first 135 seconds to eliminate the start-up phase.

4 Experimental Results
We performed a suite of experiments where propagation
delays for the two high-speed TCP flows were set to 16, 42,
82, 162, and 324 ms to simulate different network scenarios.
Note that while the propagation delays for high-speed TCP
flows were set to these values, propagation delays for back-
ground traffic were randomly sampled from a realistic
model for propagation delays [14] as described in section 3.
We simulated scenarios where the two high-speed TCP
flows either experienced the same or different propagation
delays. Further, we performed experiments with and without
background traffic to contrast experimental results and pro-
tocol behaviors between these scenarios. The high-speed
variants of TCP are evaluated based on the following prop-
erties: fairness, convergence time, RTT fairness, TCP
friendliness, link utilization, stability of throughput, and
packet loss rates.

4.1 Utilization. We measure the utilization ratio of the
bottleneck link capacity. We found that the utilization ratio
shows high sensitivity to the queue size of the bottleneck
router, the characteristics of background traffic and the be-
havior of protocols being tested.

Figure 2a shows experimental results where we run one
high-speed TCP flow together with one flow of TCP-SACK.

In each experiment, both flows have the same RTT. We
vary the RTTs from 16 to 324 ms. The buffer size of the
bottleneck router is fixed to 2 Mbytes. With a RTT of 324
ms, this buffer size amounts to roughly 12% of bandwidth
and delay product (BDP) of the network. All protocols drop
their utilization below 65% in the 324ms RTT run. This is
because the window size (cwnd) and its fluctuations of the
high speed TCP flow (except for TCP-SACK) are too large
to be accommodated by such buffer. With 324 ms RTT, the
maximum window size of high-speed flows is larger than
10,000 packets (around 20 Mbytes).

As we added background traffic (both short and long lived
flows) to the same experiments, the utilization ratio im-
proved dramatically. Figure 2b shows the utilization results
of the same experiments as in Figure 2a but with back-
ground traffic. The utilization ratio with a RTT of 324 milli-
seconds improved up to 90-95% for HSTCP, CUBIC, BIC,
FAST and TCP-SACK. This change in utilization confirms
the recent work by Appenzeller et al. [16] that high statisti-
cal multiplexing in the bottleneck link (i.e., high random-
ness) permits use of small buffers. Note that there is enough
background traffic to consume all the link capacity even
without high speed TCP flows. These background flows are
generated by TCP and their transmission rates are elastic to
the amount of traffic in the network to the extent limited by
the maximum allowed by 64KB receiver buffer size.

Even with background traffic, the utilization of HTCP,
FAST and STCP with RTTs of 160 and 324 milliseconds is
significantly lower than that of other protocols. We conjec-
ture that this problem is related to the inherent protocol be-
havior of HTCP in the way that HTCP ties its window re-
duction to the estimated buffer size of the network. For
STCP, it is being simply too aggressive. For FAST, its be-
havior becomes less predictable with presence of back-
ground traffic due to noise in RTT estimation. Detailed ex-
aminations of these protocol behaviors are available in [26].

The previous experiments investigated protocol behaviors of
high-speed TCP variants when they competed with a TCP-
SACK flow (with and without background traffic). Below
we study protocol behaviors when two flows of a high-
speed TCP variant competed with each other (the two flows
experienced either the same RTT or different RTTs). Fig-
ures 3a and 3b show two different types of experiments, all
with background traffic: (1) two flows of a TCP variant with
the same RTT and (2) two flows of a TCP variant, but the
RTT of one flow is set to 162 ms and the RTT of the other
flow is varied from 16 to 162 ms.

Experiments in Figures 3a and 3b are conducted with two
flows of the same TCP variant. But the difference lies in the
RTT values of each flow. When flows have the same RTT,
their average transmission rate is approximately the same (if
they ensure intra-protocol fairness) and also lower than

6

when they have different RTTs in which case one flow
tends to have a higher transmission rate than the other. We
observe that the utilization of HTCP is generally lower than
that of the other protocols. Note that the experiments inject
enough background traffic to consume the entire network
capacity even without high speed flows. In the second ex-
periment (Figure 3b), HTCP shows lower utilization even
with small RTTs. This suggests that HTCP may also have
lower utilization when it competes with heterogeneous traf-
fic of different RTTs. More details about the dynamic pro-
tocol behaviors are provided in our technical report [26].

4.2 Stability. We measure the stability of a protocol by the
coefficient of variance (CoV) that was also used in [3]. We
take samples of transmission rates of the protocol flows at
periodic intervals. Each sample is the arithmetic average of
the transmission rate during that interval. We are interested
in the stability (or instability) that high-speed protocol flows
induce to the entire network traffic. Thus, here we measure
the total throughput at the bottleneck router instead of the
transmission of a protocol. We compute the average CoV of
the average values of the total throughput at the bottleneck
router measured at every 10-second interval (we also have
results for other time intervals in [26]). We measure CoV
after the first 200 seconds in each run of 1200 seconds.

Figure 4a shows the average CoV of the various protocol
flows when two flows of a high-speed TCP variant run with
the same RTT. No background traffic is added. In our ex-
periment, 0.1 CoV indicates high instability. We can see
HTCP, STCP and TCP-SACK cause high fluctuations in the
bottleneck router capacity usage. Figure 4b shows the same
metric of the runs with the same setup as the above but with
background traffic. We observe that the CoVs of all the pro-
tocols have reduced and conclude that as we add more
background traffic, the stability of protocols gets improved.
But HTCP still shows very high CoV values. FAST also
shows gradually increasing CoV values as RTT increases.

4.3 Packet loss rate. In this section, we examine packet
loss observed at the bottleneck router as high-speed TCP
flows compete for the bottleneck capacity. We measure the
total packet loss at the bottleneck link and do not distinguish
flows that experience packet losses. Like the stability meas-
urement, this performance metric also measures the impact
of high-speed TCP flows on the background traffic.

The packet loss rate of various protocols is plotted in Figure
5a. In this experiment, we do not add any background traffic
and only two flows of the same TCP variant protocol with
the same RTT run at the same time. We observe that HTCP
has much higher packet loss rates than the other protocols in
the runs with RTTs 80ms and longer. STCP also shows high
packet loss rates as RTTs increase. This is because STCP
sees the effect of small buffer sizes with high RTTs. FAST
shows the least packet loss ratio among all the protocols.

Figure 5b shows the results with background traffic. We see
packet loss rates for most protocols slightly increase. But
STCP has a lower loss rate with 324ms RTT. We conjecture
that this is because the randomness in the network improves
the stability and robustness of STCP (and all protocols as
well). HTCP still induces significantly more packet losses
even with background traffic than the other flows.

4.4 RTT Fairness. We measure the fairness in sharing the
bottleneck bandwidth among competing flows that have
different RTTs. There are several notions of “RTT fairness” .
One notion is to achieve the equal bandwidth sharing where
the two competing flows may share the same bottleneck
bandwidth even if they have different RTTs. This property
may not be always desirable because long RTT flows tend
to use more resources than short RTT flows since they are
likely to travel through more routers over a longer path.
Another notion is to have bandwidth shares inversely pro-
portional to the RTT ratios. This proportional fairness
makes more sense in terms of the overall end-to-end re-
source usage. Although there is no commonly accepted no-
tion of RTT-fairness, it is clear that the bandwidth share
ratio should be within some reasonable bound so that no
flows are being starved because they travel a longer distance.
Note that RTT-fairness is highly correlated with the amount
of randomness in packet losses (or in other words, the
amount of loss synchronization) [1]. In more random envi-
ronments, protocols tend to have better RTT-fairness.

Figure 6a shows the RTT fairness of various protocols with-
out any background traffic. Two flows are tested; we fix the
RTT of one flow to 162ms and vary the other flow from
16ms to 162ms. FAST has the best fairness index and
achieves the equal RTT fairness among the two FAST flows
regardless of their RTTs. CUBIC has RTT fairness linearly
proportional to the inverse of the RTT ratio (i.e., the short
RTT flow having proportionally more bandwidth share than
the long RTT flow). So its RTT fairness is slightly lower
than FAST. As discussed above, we question whether this
equal sharing property of FAST regardless of delays is de-
sirable. HTCP and HSTCP have similar RTT fairness.
BIC’s RTT fairness is lower than HSTCP but higher than
STCP. This behavior is expected as explained in [1]. BIC is
known to follow the same RTT fairness as TCP-SACK un-
der a very large BDP network [1]. In the current testing en-
vironment, BIC’s RTT fairness is targeted to be in between
those of TCP and STCP. The argument is that in a network
of this size, there will be enough multiplexing so RTT un-
fairness would not be so severe. We also found that HTCP
allows the long RTT flow to have more bandwidth share.

Figure 6b shows the same metric as in Figure 6a but with
background traffic. In this experiment, we expect more
asynchrony in packet losses. In the test, we found that back-
ground traffic has the biggest impact on FAST while in gen-
eral, most protocols improve their fairness compared to the

7

cases without background traffic. As suggested earlier,
BIC’s fairness has been improved substantially close to
TCP-SACK as we add background traffic.

4.5 TCP Friendliness. We measure how TCP-friendly
the high-speed protocols are by running experiments with
one high-speed flow and one regular TCP flow with the
same RTT over the same bottleneck link. These experiments
were performed with and without background traffic. We
measured TCP friendliness by Jain’s fairness index [18]
using the throughput of the high-speed flow and of the regu-
lar TCP flow. Jain’s fairness index is a normalized number
between 0 and 1 (1 being the greatest fairness). Jain’s fair-
ness indices for various high speed TCP variants are shown
in Figure 7a and 7b as we vary the RTTs from 16 to 324 ms.

We observe that HTCP has the best TCP-friendliness in
very low RTT networks (where TCP-friendliness is impor-
tant because TCP-SACK does not have much performance
problem in these networks) with or without background
traffic. However, as RTT increases beyond 16ms, HTCP’s
fairness to TCP drops rapidly in both cases. In general, we
note that all TCP variants (except FAST) improved their
TCP friendliness when background traffic is added to the
experiments. This is mostly because of two reasons. First,
increased background traffic takes away bandwidth from
high speed TCP variants so they become less aggressive as
their average window sizes become less than without back-
ground traffic. The other reason is that with background
traffic, randomness in packet losses increases. As we can
see that HSTCP, CUBIC, and BIC improve their TCP fair-
ness indices considerably with background traffic, back-
ground traffic breaks loss synchronization and allows flows
to adapt their transmission rates more asynchronously.

We conducted the same experiments on a 100-Mbps bottle-
neck link and observed that the phenomenon mentioned
above also occurs more vividly in a smaller bandwidth net-
work (most notably with HSTCP, CUBIC and BIC). We
observe that FAST shows the best TCP friendliness in high
RTT networks. This is not necessarily desirable in such net-
works because TCP-SACK is too conservative in high BDP
networks. In addition, the TCP friendliness of FAST has
been affected the most by the presence of background traffic.
Details of these results can be found in our report [26].

4.6 Intra-protocol Fairness. We measure the intra-
protocol fairness of protocols by performing experiments
with two flows of a high-speed protocol with the same RTT.
These two flows’ throughput is used as input to compute
Jain’s fairness index. These experiments are conducted
when RTTs are varied between 16 and 324 milliseconds.
Figure 8a and 8b show intra-protocol fairness of protocols
with and without background traffic.

Without background traffic, HSTCP, TCP-SACK and STCP
show lower fairness indices than the other protocols. How-

ever, as we add background traffic, we find that all the pro-
tocols (except FAST) show very good fairness. The reason
for this result could be that since FAST is delay-based,
background traffic introduced more dynamics and fluctua-
tions in the bottleneck queue and made it more difficult for
FAST flows to estimate their fair shares of bandwidth based
on delay information. We also observe that HSTCP ob-
tained a higher fairness index in the presence of background
traffic (as noted by its author, HSTCP relies on statistical
multiplexing for faster convergence).

4.7 Convergence. Figure 9a and 9b show the convergence
time of two high-speed protocol flows with and without
background traffic that are started at different times. The
convergence time is defined to be the elapsed time when the
timed average throughput of the second flow reaches 80%
of the first flow (recall from section 2 that the two flows are
started at 30 and 130 seconds). The average throughput is
obtained at one-second intervals. The convergence time
shown in Figure 9a and 9b allows us to discuss quantita-
tively the dynamic behaviors of protocols that we already
qualitatively pointed out above.

CUBIC and BIC show up to 150 second convergence time
when running without background traffic. Under 300ms
RTT, their convergence times reduce. This is because the
small buffer size (of 2MB) allows the second flow to per-
turb the network significantly, when it goes into slow start,
to force the first flow to drop its bandwidth share quickly.
This case can be seen from STCP – because STCP is very
aggressive, the second flow always forces the first flow to
come down quickly. Thus STCP shows fairly short conver-
gence times with high RTTs. (However, in most cases,
STCP does not show good convergence beyond 80% with
no background traffic.) On the other hand, HSTCP shows
very slow convergence time and also in most case, their
convergence beyond 80% is not possible. As can be seen in
Figure 9b, HSTCP reduces its convergence time considera-
bly when running with background traffic. Further, STCP
also showed improved convergence behavior with back-
ground traffic. On the other hand, FAST increased their
convergence time noticeably in the presence of background
traffic. With low RTTs, FAST flows do not converge. The
other protocols showed a rather short convergence time both
with and without background traffic.

While the convergence time sheds some light on the dy-
namic behavior of the protocols, it does not give the com-
plete view on the convergence behavior of the protocols.
For example, although the convergence time measures the
time that the second high-speed flow takes until it reaches
80% throughput of the first flow, it does not provide any
information about the dynamic behavior of these flows after
that. Another metric that can be used to investigate the dy-
namic behavior of protocols is the average fairness index
over different time scales. Results for this performance met-
ric is reported in our technical report due to space limitation

8

[26]. We only note here that most protocols improved their
convergence behavior in the presence of background traffic.

5 Conclusions
We presented results of an evaluation study of a collection
of high-speed TCP variants. Due to space limitation, we can
only report a subset of our results here and encourage read-
ers to read our technical report [26]. We used different met-
rics such as fairness, convergence time, packet loss rates,
link utilization, RTT fairness, TCP friendliness, and stability
of throughput to evaluate these protocols. It is known that
background traffic may affect the protocol behavior, but
little is known “how” it is going to affect the behavior. Our
study sheds some light on the problem. Further study will
show more interesting properties with background traffic.

We do not declare any winner in our evaluation but simply
show contrasting results and protocol behaviors when ex-
periments were conducted with and without background
traffic. Our results demonstrated that different conclusions
can be drawn when protocol evaluations were conducted
with and without background traffic. Thus, evaluating a new
protocol without background traffic can be dangerous and a
thorough evaluation needs to look at a variety of testing
scenarios to make a valid observation about the behavior of
a protocol. While we do not claim that our models for traffic
and propagation delays are the most realistic, we believe
that evaluations of a new protocol without background traf-
fic are likely unrealistic. We propose that evaluations of a
new protocol should use diverse scenarios that involve
many different models for traffic and propagation delays.

Further, we also conclude that high-speed protocols have
rather complex behaviors and a thorough evaluation of these
protocols need to investigate all aspects of their behaviors. It
appears that there will probably be no “perfect” high-speed
protocol that would be a clear winner in all different (and
sometimes conflicting) aspects of protocol behaviors.

6 References
[1] L. Xu, K. Harfoush, and I. Rhee, “Binary Increase Congestion

Control for Fast Long-Distance Networks” , INFOCOM 2004.

[2] Injong Rhee and Lisong Xu, “CUBIC: A New TCP-Friendly
High-Speed TCP Variant” , PFLDnet 2005.

[3] C. Jin, D. X. Wei and S. H. Low, “FAST TCP: motivation,
architecture, algorithms, performance”, INFOCOM 2004.

[4] Sally Floyd, “HighSpeed TCP for Large Congestion Win-
dows”, IETF RFC 3649, December 2003.

[5] Douglas Leith and Robert Shorten, “H-TCP Protocol for
High-Speed Long Distance Networks” , PFLDnet 2004.

[6] T. Kelly, “Scalable TCP: Improving Performance on High-
speed Wide Area Networks” , ACM CCR, April 2003.

[7] H. Bullot, R. L. Cottrell, and R. Hughes-Jones, “Evaluation of
Advanced TCP Stacks on Fast Long-Distance Production
Networks” , PFLDnet 2004.

[8] Y. Li, D. Leith, and R. Shorten, “Experimental Evaluation of
TCP Protocols for High-Speed Networks” , Technial report,
Hamilton Institute, 2005.

[9] C. Jin, D. Wei, S. Low, G. Buhrmaster, J. Bunn, D. Choe, R.
L. A. Cottrell, J. C. Doyle, W. Feng, O. Martin, H. Newman,
F. Paganini, S. Ravot, S. Singh, “FAST TCP: From Theory to
Experiments” , IEEE Network, January/February 2005.

[10] R. Wang, K. Yamada, M. Yahya Sanadidi, and M. Gerla,
“TCP with sender-side intelligence to handle dynamic, large,
leaky pipes” , IEEE Journal on Selected Areas in Communica-
tions, 23(2):235-248, 2005.

[11] R. King, R. Riedi, and R. Baraniuk, “Evaluating and Improv-
ing TCP-Africa: an Adaptive and Fair Rapid Increase Rule for
Scalable TCP”, PFLDnet 2005.

[12] David X. Wei, P. Cao, and Steven H. Low, “Time for a TCP
Benchmark Suite?” , Technical report, 08/2005, available at
www.cs.caltech.edu/~weixl/research/technicals/benchmark/su
mmary.ps .

[13] S. Floyd, Metrics for the Evaluation of Congestion Control
Mechanisms, August 2005, Internet draft, draft-irtf-tmrg-
metrics-00.txt .

[14] Jay Aikat, Jasleen Kaur, F. Donelson Smith, and Kevin Jeffay,
“Variability in TCP Roundtrip Times” , ACM IMC 2003.

[15] Paul Barford and Mark Crovella, “Generating Representative
Web Workloads for Network and Server Performance Evalua-
tion” , ACM SIGMETRICS 1998.

[16] G. Appenzeller, I. Keslassy, and N. Mckeown, “Sizing router
buffers” , in Proceeding of ACM SIGCOMM’04.

[17] D. Barman, G. Smaragdakis, and I. Matta, “The Effect of
Router Buffer Size on HighSpeed TCP Performance”, IEEE
Globecom 2004.

[18] D. Chiu and R. Jain. “Analysis of the Increase/Decrease Algo-
rithms for Congestion Avoidance in Computer Networks.”
Journal of Computer Networks and ISDN, 17(1):1–14, 1989.

[19] E. Altman, K. Avrachenkov, B.J. Prabhu, “Fairness in MIMD
congestion control algorithms”, IEEE INFOCOM, 2005.

[20] S. Floyd and V. Paxson, “Difficulties in Simulating the Inter-
net” , ACM/IEEE Transactions on Networking, August 2001.

[21] Luigi Rizzo, “Dummynet: A simple approach to the evalua-
tion of network protocols” , ACM CCR, January 1997.

[22] L. Zhang, S. Shenker, and D. Clark, “Observations on the
Dynamics of a Congestion Control Algorithm: the Effects of
Two-Way Traffic” , SIGCOMM 1991.

[23] J. Sommers, P. Barford, and H. Kim, “Harpoon: A Flow-
Level Traffic Generator for Router and Network Tests” , ex-
tended abstract, ACM SIGMETRICS 2004.

[24] F. Hernández-Campos, F. D. Smith, and K. Jeffay, “Generat-
ing Realistic TCP Workloads” , in Proceedings of CMG 2004.

[25] S. Floyd and E. Kohler, “ Internet Research Needs Better
Models” , HotNets-I, October 2002.

[26] S. Ha, Y. Kim, L. Le, I. Rhee, and L. Xu, “A Step toward
Realistic Evaluation of High-Speed TCP Protocols”,
http://www.csc.ncsu.edu/faculty/rhee/export/bitcp/asteppaper.
htm .

[27] S. Bhandarkar, S. Jain and A. L. N. Reddy, “Improving TCP
Performance in High Bandwidth High RTT Links Using Lay-
ered Congestion Control, PFLDNet 2005.

