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Abstract

In this paper, we propose a novel dictionary learning
method in the semi-supervised setting by dynamically
coupling graph and group structures. To this end, sam-
ples are represented by sparse codes inheriting their
graph structure while the labeled samples within the
same class are represented with group sparsity, sharing
the same atoms of the dictionary. Instead of statically
combining graph and group structures, we take advan-
tage of them in a mutually reinforcing way — in the
dictionary learning phase, we introduce the unlabeled
samples into groups by an entropy-based method and
then update the corresponding local graph, resulting in
a more structured and discriminative dictionary. We an-
alyze the relationship between the two structures and
prove the convergence of our proposed method. Focus-
ing on image classification task, we evaluate our ap-
proach on several datasets and obtain superior perfor-
mance compared with the state-of-the-art methods, es-
pecially in the case of only a few labeled samples and
limited dictionary size.

Introduction
Dictionary learning is the core of sparse representation mod-
els and helps to effectively reveal underlying structure in
the data. Take image classification as an example. Learn-
ing a dictionary to allow sparse representation of images
can capture high-level semantics of images. Generally, the
discriminative power of sparse coding is highly correlated
with the structure of dictionary, so several approaches have
been pursued for dictionary learning. Among them, group
sparsity (Bengio et al. 2009; Wang et al. 2011; Deng, Yin,
and Zhang 2013) and Laplacian graph (Gao et al. 2010;
Zheng et al. 2011; Long et al. 2013) are two popular regular-
ization methods for learning the structure of the dictionary.

Group sparsity. Models exploiting group sparsity aim to
encode samples with the same label using the same set of
atoms of the dictionary. Each subset of dictionary atoms
constructs a basis for the corresponding group. Compared
with previous works in (Mairal et al. 2008; Wright et al.
2009; Jiang, Lin, and Davis 2011), which learn disjoint

∗These two authors contribute equally.
Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

sub-dictionaries for representing different classes, the group
sparse model has a huge advantage for large-scale classifi-
cation problem — theoretically, the number of classes it can
handle increases exponentially with the size of dictionary.

Laplacian graph. Laplacian graph captures the geomet-
rical structure of the whole sample space by measuring the
similarity among samples regardless of their labels. This
method has been widely used in unsupervised learning, e.g.,
nonlinear dimension reduction, and semi-supervised learn-
ing, e.g., graph regularized sparse model (Gao et al. 2010;
Zheng et al. 2011). Especially in the semi-supervised case,
using graph-based label propagation algorithms (Goldberg
et al. 2011), we can add new labels to samples.

These two structure regularization methods are comple-
mentary in nature: On one hand, training group sparse repre-
sentation model relies on sufficient labeled samples, which
can be obtained by graph-based label propagation. On the
other hand, the group structure can introduce label infor-
mation into graph, which prevents samples from being ag-
gregated incorrectly. To our knowledge, there are few prior
works leveraging both in a clean unified fashion.

Our main contribution is a method for dictionary learn-
ing over semi-supervised data that uses dynamic group
and graph structures. We refer to these together as group-
graph structures. The learning algorithm is partitioned into
three phases: sparse coding, structure updating and dictio-
nary updating. First, we take the group and graph regu-
larization into account jointly for sparse coding. Second,
we allow the group and graph structures to reinforce each
other. An entropy-based label propagation strategy is pro-
posed to incorporate several unlabeled samples into groups.
These newly introduced samples are used to update their lo-
cal graphs. Third, the dictionary is learned via the revised
group-graph structures. We prove the convergence of the
proposed method, and study the configurations of critical pa-
rameters. The image classification experiments on a variety
of datasets show the superior performances of the proposed
method compared to the state-of-art methods, especially in
the case of a few labeled samples and limited dictionary size.

Proposed Model
The basic sparse representation model is shown as follows,

min
D,A
‖X−DA‖2F + λ‖A‖1, (1)
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where X is data matrix, whose columns are samples. D ∈
Rm×K is the dictionary we want to learn. A is the sparse
code obtained during training process. Here ‖ · ‖F is the
Frobenius norm of matrix. ‖A‖1 is the absolute sum of the
elements of A.

Group Structure. Suppose that XL ∈ Rm×NL is a set
of NL labeled samples, which can be categorized into G
classes XL = [X1,X2, ...,XG]. The group sparse model
is shown as follows,

min
D,AL

∑G

g=1
{‖Xg −DAg‖2F + λ1‖Ag‖1,2}, (2)

where the coefficient matrix AL = [A1, ...,AG] ∈
RK×NL , and each Ag ∈ RK×Ng (

∑G
g=1Ng = NL). The

mixed l1/l2 norm ‖Ag‖1,2 =
∑K
k=1 ‖Ak

g‖2 is the group
sparsity regularization, where Ak

g is the k-th row of Ag .
It ensures samples within the same group are represented
by the same basis from dictionary. For expression conve-
nience, we further define group indicating matrices {Sg ∈
RNL×Ng}Gg=1 where each Sg is a binary matrix, indicating
which columns of AL belong to Ag for representing each
Xg , e.g., Ag = ALSg .

Graph Structure. Given X = [XL,XU] ∈ Rm×N that
contains both labeled samples and unlabeled ones, we con-
struct a graph G whose vertices are X. For any pair xi and
xj in X, if xi is among p-nearest neighbors of xj or vice
versa, the weight of edge wij = 1, otherwise, wij = 0. All
the weights formulate a weight matrix W ∈ RN×N . The
Laplacian graph matrix is Φ = diag(d1, ..., dN )−W, where
di =

∑N
j=1 wij . Then the graph-based sparse representation

model can be described as follows,

min
D,A
‖X−DA‖2F + λ1‖A‖1 + λ2Tr(AΦAT ), (3)

where the coefficient matrix A = [AL,AU]. The learned
dictionary ensures that the sparse codes preserve the local
similarity of samples.

The Relationship between The Two Structures
The group regularizer

∑G
g=1 ‖Ag‖1,2 in Eq. 2 ensures the

sparsity of coefficient matrix and constrains the location of
nonzero elements simultaneously. It actually can be inter-
preted as a graph regularizer with label-based metric. Ac-
cording to (Szlam, Gregor, and LeCun 2012; Tierney, Gao,
and Guo 2014), we can rewrite

∑G
g=1 ‖Ag‖1,2 as∑G

g=1
{‖Ag‖1 + γ

∑
i,j∈Cg

‖f(aLi )− f(aLj )‖2F } (4)

=‖AL‖1 + γTr(f(AL)ΦLf(AL)T ).

Here aLi denotes the column of AL. Cg indicates the indices
of samples belonging to the gth group. Function f(·) is ap-
plied to the elements of AL: f(a) = 1 if a 6= 0, otherwise
f(a) = 0. It projects coefficient matrix into the space of its
structure. ΦL ∈ RNL×NL is a block diagonal matrix, which
is a label-based Laplacian graph matrix:

ΦL = diag(Φ1, ...,ΦG), Φg(i, j) =

{
Ng, i = j,

−1, i 6= j.
(5)

ΦL corresponds to the union of G complete graphs - for
each labeled sample, all the rest having the same label are
its neighbors. From this view, the group sparsity is equiva-
lent to regularize the structure of coefficient matrix with a
label-based graph. Note that there are two differences be-
tween group sparsity with the Maximum Mean Discrepancy
(MMD) (Gretton et al. 2006) constraint: 1) group sparsity
is purely based on label information, it does not add em-
pirical assumption to the relationship between labeled and
unlabeled samples; 2) the label-based graph regularizes the
structure of coefficient matrix f(AL), rather than AL itself.

Learning with Mutually Reinforcing Group-Graph
Structures
As we mentioned before, the group structure fails to regu-
larize unlabeled ones, while the graph structure might incor-
rectly connect samples from different classes. A naive way
to tackle this thorny issue is combining these two structures
directly as follows,

min
A,D
‖X−DA‖2F + λ

G∑
g=1

‖ALSg‖1,2 + µTr(AΦAT ). (6)

Unfortunately, such a simple combination is often useless.
Group sparsity is still limited on labeled samples, which has
little influence on the graph structure of unlabeled samples.
The graph structure provides little information for group-
ing as well. In summary, we need to establish connections
between these two structures. To address this problem, we
propose the following sparse representation model with mu-
tually reinforcing group-graph structures.

min
A,D,Φ,{Sg}Gg=1

‖X−DA‖2F + λ1
∑N−NL

i=1
‖aUi ‖1 (7)

+λ2
∑G

g=1
‖ALSg‖1,2 + µTr(AΦAT ),

where aUi ∈ AU is the i-th unlabeled sample. The first term
in Eq. (7) measures the reconstruction error, the second en-
sures sparse representation for unlabeled samples, and the
group sparsity in the third term pursues the group sparse rep-
resentation for labeled samples. The last term is the graph
regularization for all sparse codes. The most significant dif-
ference between Eq. (6) and Eq. (7) is besides D and A, we
also update {Sg}Gg=1 and Φ in Eq. (7) to optimize the group
and graph structures. In other words, the group and graph
structures are updated during dictionary learning.

The Learning Algorithm
The optimization of Eq. (7) is challenging, which involves
non-convex optimization (D and A) and dynamic program-
ming ({Sg}Gg=1 and Φ). In this paper, we propose an effec-
tive algorithm, dividing the problem into the following three
subproblems and solving them iteratively.
• Sparse coding: Fix D, {Sg}Gg=1 and Φ, optimize A.

• Structure updating: According to A, update {Sg}Gg=1
and Φ alternatively by entropy based label propagation.
• Dictionary updating: Given A, optimize D.
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Joint Group-Graph Sparse Coding
In sparse coding phase, we aim to obtain A with fixed D,
{Sg}Gg=1 and Φ. Solving Eq. (7) directly is time-consuming,
so similar to (Tropp, Gilbert, and Strauss 2006; Szlam, Gre-
gor, and LeCun 2012) we replace the mixed l1,2 norm in
Eq. (7) with l0,∞ norm, and impose sparsity constraints ex-
plicitly. The optimization problem is rewritten as

min
A
‖X−DA‖2F + µTr(AΦAT ). (8)

s.t. ‖Ag‖0,∞ ≤ C, g = 1, ..., G.

‖aUi ‖0 ≤ C, aUi ∈ AU.

where ‖Ag‖0,∞ counts the number of rows having nonzero
elements in Ag , and ‖aUi ‖0 counts the number of nonzero
elements in aUi , both of which are bounded by C. We solve
this problem by introducing an auxiliary variable Z to ap-
proximate A. Then, Eq. (8) can be expressed as follows,

min
A,Z
‖X−DA‖2F + µTr(ZΦZT ) + β‖A− Z‖2F , (9)

s.t. ‖Ag‖0,∞ ≤ C, g = 1, ..., G,

‖aUi ‖0 ≤ C, aUi ∈ AU,

which can be solved by splitting into two parts and optimiz-
ing A,Z alternatively.

[A-part]: We fix Z to optimize A by

min
A
‖X−DA‖2F + β‖Z−A‖2F , (10)

s.t. ‖Ag‖0,∞ ≤ C, g = 1, ..., G,

‖aUi ‖0 ≤ C, aUi ∈ AU ,

whose objective function can be rewritten as
minA ‖

(
X√
βZ

)
−
(

D√
βI

)
A‖2F . We view each aUi as a

“group” with only one member so that Eq. (10) becomes
a group sparse coding problem, which can be efficiently
solved using simultaneous orthogonal matching pursuit
(S-OMP) (Tropp, Gilbert, and Strauss 2006).

[Z-part]: We approximate Z with the fixed A,

min
Z
β‖Z−A‖2F + µTr(ZΦZT ). (11)

Here, Z can be efficiently computed using gradient descent,
whose update equation is

Zt+1 = Zt + ν[Zt(µΦ + βI)− βA], (12)

where Zt is the t-th estimation, and ν is the step size of the
gradient descent. With the progressively increased weight β
in each iteration, we can finally reach the optimal A.

Group-Graph Structure Updates
The sparse codes computed above accomplish two important
works: 1) the bases {Dg}Gg=1, which are used for represent-
ing groups {Xg}Gg=1, have been adaptively chosen accord-
ing to non-zero positions of {Ag}Gg=1; 2) the local similarity
of samples X has been inherited by sparse codes. In con-
trast to other dictionary learning methods that update dic-
tionary directly after sparse coding, we propose an updat-
ing method for improving both group structure {Sg}Gg=1 and

Figure 1: (a) Before updating, the labeled samples XL are
outlined with different colors, and the unlabeled samples are
linked to them by graph. (b) The unlabeled samples XU are
projected onto the bases for computing the reconstruction
errors, and are sorted according to entropy values. (c) The
unlabeled samples with high confidence are introduced into
groups, and their nearby graphs are updated.

graph structure Φ — propagating labels to several unlabeled
samples and updating graph accordingly.

Group Update. For each xUi ∈ XU, we have calculated
its coefficient vector aUi in the sparse coding phase. For iden-
tifying its label, we can follow the reconstruction-based cri-
teria in (Wright et al. 2009; Yang, Zhang, and Feng 2011) by
extracting the coefficients aUi,g from aUi that are associated
with basis Dg

1 and calculate its reconstruction error,

ErrUi,g = ‖xUi −Dga
U
i,g‖22. (13)

After computing the errors on each basis, it is natural to
identify its label as Id(xUi ) = ming ErrUi,g . However, this
strategy risks propagating labels incorrectly for the samples
around decision boundary of two groups, whose reconstruc-
tion errors might be comparable.

Inspired by (Zhang, Jiang, and Davis 2013), we propose
an entropy-based label propagation method for reducing the
risk. Let PUi,g be the probability of xUi being in group g. In
our work, we compute it as follows,

PUi,g =
(ErrUi,g + ε)−1∑G
c=1(ErrUi,c + ε)−1

, (14)

where the positive parameter ε helps avoiding zero denomi-
nator. Then the uncertainty of label identification for xUi can
be quantified using the entropy of {PUi,g}Gg=1,

EUi = −
∑G

g=1
PUi,g log PUi,g. (15)

The lower entropy indicates that we can label xUi correctly
with higher certainty. So, we sort the unlabeled samples in
ascending entropy values, and incorporate top α% into their
predicted groups. Accordingly, the group indicating matri-
ces {Sg}Gg=1 are updated.

Graph Update. Given the new group structure, we then
update graph structure accordingly. The newly labeled sam-
ple should enlarge the inter-group distance and shrink the

1aU
i,g is a vector whose elements are those in aU

i corresponding
to columns of Dg .
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intra-group distance simultaneously. Therefore, we cut off
its connections to other groups and preserve its neighbors
from the same group. As a result, we obtain a revised Lapla-
cian graph matrix Φ, which will be used to regularize sparse
codes in the next iteration and assist to update group struc-
ture implicitly. Compared with the Maximum Mean Dis-
crepancy (MMD) regularization in (Long et al. 2013), our
strategy is more flexible because the graph structure is up-
dated during learning process. Even if the initial labeled
samples are insufficient, after adding new labels in the fol-
lowing iterations, the influence of label information on graph
structure will become more and more significant.

Fig. 1 gives an example for illustrating the updates. Us-
ing our approach, we learn a dictionary from Caltech101
dataset (Fei-Fei, Fergus, and Perona 2007). Fig. 1 shows the
group-graph structures of images belonging to 3 classes. We
can find that after updating structures, some unlabeled sam-
ples are labeled into groups and the inter-group connection
is deleted. The label information is enhanced and the mis-
takes in the graph are corrected. With the help of the updates
above, the graph and group structures reinforce mutually.

Dictionary Update
Given coefficient matrix A and samples X, we can update
dictionary D by solving the following optimization problem,

min
D
‖X−DA‖2F , (16)

s.t. ‖dk‖2 ≤ 1, k = 1, ...,K.

This has been well studied by previous works (Lee et al.
2006; Zheng et al. 2011), thus we omit the technical op-
timization details here. It should be mentioned that the
remaining unlabeled samples are still used for dictionary
learning, which serve as replenishing the structures of dic-
tionary (Raina et al. 2007).

Convergence Analysis of the Algorithm
The three phases above are performed till the convergence
of dictionary learning, so the feasibility of our algorithm de-
pends on its convergence. As we mentioned before, the orig-
inal problem Eq. (7) is composed of sparse coding, structure
updating and dictionary updating. Because we decompose
sparse coding problem Eq. (9) into two convex optimiza-
tion problems Eq. (10) and Eq. (11), the convergence of
sparse coding phase is guaranteed. Similarly, the dictionary
updating is achieved by solving convex optimization prob-
lem Eq. (16). So, for demonstrating the convergence of our
learning algorithm, we just need to prove that the structure
updating decreases objective value monotonically.

Proposition 1 Given A and D, the updates of group struc-
ture {Sg}Gg=1 and graph structure Φ reduce objective value
in Eq. (7) monotonically.

Proof Without loss of generality, we consider the case
where one unlabeled sample xUi is labeled. We add it into the
g-th group and cut its edges to the samples in other groups.
The sparse code of xUi is aUi ∈ RK , whose element is aUk .
The sparse codes corresponding to the original g-th group is
Ag = [akn] ∈ RK×Ng .

Group update. In Eq. (7), the group related term is
changed from λ1‖aUi ‖1 + λ2‖Ag‖1,2 to λ2‖[Ag,a

U
i ]‖1,2.

Here we assume λ1 = λ2 = λ2. Then, according to Jensen’s
inequality, we have

‖[Ag,a
U
i ]‖1,2 − (‖aU

i ‖1 + ‖Ag‖1,2)

=

K∑
k=1

√√√√(aUk )
2 +

Ng∑
n=1

a2kn −

 K∑
k=1

|aUk |+
K∑

k=1

√√√√ Ng∑
n=1

a2kn


=

K∑
k=1


√√√√(aUk )

2 +

Ng∑
n=1

a2kn −

√
(aUk )

2 +

√√√√ Ng∑
n=1

a2kn




≤0.

Graph update. The Laplacian graph matrix Φ =
diag(d1, ..., dN ) −W, where W = [wij ] is the 0-1 weight
matrix defined before and di =

∑N
j=1 wij . Suppose that

originally xUi is connected with a sample xj not in the g-th
group (wij = 1). After adding xUi into the g-th group, wij
is set to be 0, so the new Laplacian graph can be written as
Φnew = Φ + ∆Φ. Here ∆Φ = [δrc] has only four nonzero
elements: δii = δjj = −1, δij = δij = 1. Obviously, ∆Φ is
negative-semidefinte, so

Tr(AΦnewAT )− Tr(AΦAT ) = Tr(A∆ΦAT ) ≤ 0.

In summary, after updating the group and graph struc-
tures, the objective value decreases monotonically. �

Classification
After computing AL for both given labeled samples and
propagated ones, we train a linear SVM classifier by fol-
lowing the method in (Zheng et al. 2011). When a testing
sample xt ∈ Rm comes, we first search its p-nearest neigh-
bors, denoted as X̃ ∈ Rm×p, from samples X. The corre-
sponding coefficients of X̃ are found in A, which is denoted
as Ã. Then, the sparse codes of xt is computed by solving
the follows,

min
at

‖xt −Dat‖22 + µ‖(at1
T − Ã)‖2F , (17)

s.t. ‖at‖0 ≤ C.

where 1 is a vector whose elements are all 1’s. This problem
can be solved effectively by many sparse coding algorithms.
Taking at as the input of SVM, we obtain its category. This
method ensures that the feature of sample is robust to the
small change of sample.

Related Work
Previous dictionary learning methods, like KSVD (Aharon,
Elad, and Bruckstein 2006), aim to reconstruct data with
high accuracy. Focusing on classification problem, we re-
quire the dictionary to be not only representative but also
discriminative. Mairal et al first proposed a discriminative

2In following experiments, we set λ1 = λ2 indeed.
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Table 1: Classification results for various numbers of labeled samples per class.
Extended YaleB UIUC-Sports Scene15 Caltech101

#Label 5 10 20 32 10 20 45 70 10 30 50 100 5 15 20 30
ScSPM - - - - 67.8 73.2 79.6 82.7 65.3 72.1 73.8 80.3 - 67.0 - 73.2
LLC 67.7 80.1 88.5 94.7 - - - - 64.1 72.4 73.0 80.6 51.2 65.4 67.7 73.4
DKSVD - 76.1 92.0 94.0 - 73.6 77.9 81.7 - 68.4 71.9 79.1 49.6 65.1 68.6 73.0
LCKSVD - 74.5 92.4 94.2 - 73.4 77.6 82.9 - 70.3 73.1 79.7 54.0 67.7 70.5 73.6
GroupSC 64.7 81.2 92.4 94.2 - - - - - - - - 52.0 65.8 67.9 72.7
SelfSC 72.3 83.7 90.3 93.6 68.9 73.5 77.9 81.0 59.7 69.5 70.8 76.8 53.5 64.9 66.3 68.8
TSC 73.2 84.1 91.6 94.5 70.1 74.0 78.9 82.9 63.4 71.9 72.7 80.0 55.2 66.9 68.2 70.6
Ours 80.5 89.7 93.5 96.1 74.3 76.7 81.1 83.3 67.8 73.3 74.1 80.8 62.9 70.3 71.1 74.2

KSVD in (Mairal et al. 2008), which introduced a label-
related penalty function in the framework of KSVD. Fol-
lowing this way, many variants of KSVD appear, such as
DKSVD (Zhang and Li 2010) and LCKSVD (Jiang, Lin,
and Davis 2011). More recently, several methods combine
sparse coding with transfer learning (Huang et al. 2013;
Al-Shedivat et al. 2014), which ensure the learned dictio-
nary to be more suitable for testing data. For learning more
compact dictionary, group sparse representation is proposed
in (Bengio et al. 2009; Gao et al. 2010; Chi et al. 2013).

Sparse-based classifier can also be learned in a semi-
supervised way (Zhang et al. 2011). Self-taught learning
methods (Raina et al. 2007; Lee et al. 2009) teach dic-
tionary to learn abundant structures from unlabeled sam-
ples, and produce sparse codes for labeled samples. Lapla-
cianSC (Gao et al. 2010), GraphSC (Zheng et al. 2011)
and TSC (Lim, Torralba, and Salakhutdinov 2011) exploited
Laplacian graph matrix to characterize sample similarity for
sparse codes, achieving promising classification results. The
basic idea is capturing the geometrical information (graph
structure) of samples for regularizing model. These semi-
supervised learning methods rely on using sparse codes of
labeled samples to train classifier, e.g., SVM, Logistic re-
gression, so they are still unable to cope with extremely
few labels. What is worse, the graph structures in (Gao et
al. 2010; Zheng et al. 2011; Lim, Torralba, and Salakhutdi-
nov 2011) are constructed without label information, which
might provide sparse codes with wrong local constraints. In
(Long et al. 2013), the label-based Maximum Mean Dis-
crepancy (MMD) (Gretton et al. 2006) constraint is com-
bined with Laplacian graph. However, such a combina-
tion is statical. Without label propagation (Goldberg et al.
2011), the influence of label is limited. Recently, an online
semi-supervised dictionary learning method is proposed in
(Zhang, Jiang, and Davis 2013). It designs a label propaga-
tion method in the learning phase, but it does not take group
structure into consideration.

Experiments
Experiments on Various Datasets
We compare the proposed method to prior sparsity-based
methods, including ScSPM (Yang et al. 2009), LLC (Wang
et al. 2010), DKSVD (Zhang and Li 2010), LCKSVD
(Jiang, Lin, and Davis 2011), GroupSC (Bengio et al.
2009), SelfSC(Raina et al. 2007) and TSC(Long et al.

2013). Note that we artificially partition the data into two
sets, and do not use the labels for one set in order to simulate
the semi-supervised setting, i.e., SelfSC, TSC and ours. Fol-
lowing the configuration in (Jiang, Lin, and Davis 2011), we
evaluate our method on four datasets: 1) Extended YaleB
(Georghiades, Kriegman, and Belhurneur 1998) contains
2414 frontal face images of 38 persons. We randomly select
5, 10, 20 and 32 samples per category as labeled samples,
and another 32 samples as testing samples. The rest sam-
ples are used as unlabeled ones. The dictionary size is set
to be K = 380 for all methods. 2) UIUC-sports (Li and
Fei-Fei 2007) consists of 8 sport event categories with 137
to 250 images in each. We randomly select 10, 20, 45 and
70 images for labeling, and another 60 images for testing,
while the left ones are used as unlabeled samples. The dic-
tionary size is set to beK = 160 for all methods. 3) Scene15
(Lazebnik, Schmid, and Ponce 2006) contains 15 categories
and 4,485 images in all, 200 to 400 images per category. We
randomly select 10, 30, 50 and 100 images per class for la-
beling and another 100 images for testing. The remaining
images are used as unlabeled ones. The dictionary size is
set to be K = 450 for all methods. 4) Caltech101 (Fei-Fei,
Fergus, and Perona 2007) contains 9144 images from 102
classes, i.e., 101 object classes and a ’background’ class.
Like (Lazebnik, Schmid, and Ponce 2006), we randomly
pick up 5, 15, 20 and 30 labeled samples per category and
test on up to 50 images per class. The remaining unlabeled
samples are used for semi-supervised learning. According to
the number of labeled samples, we set dictionary size K to
be 500, 800, 1000 and 1500 respectively for all methods.

Other parameters are given as follows: Like (Zheng et al.
2011), the number of neighbors for each sample is set to be
p = 2 in the graph construction; the percentage α for label
propagation is set to be 10; the sparsity C are set according
to the datasets — C = 20 for Extended YaleB, Scene15 and
Caltech101, and C = 25 for UIUC-Sports; the graph weight
µ is set to be 0.2 for Extended YaleB and Caltech101, and
0.5 for UIUC-Sports and Scene15. The rationality of these
configurations will be analyzed in the next subsection.

The classification results3 listed in Table 1 demonstrate
that our method can achieve much higher classification ac-
curacy than others, especially when merely few labeled sam-
ples are provided. Furthermore, we plot the performance

3All the classification accuracies reported in this paper are the
averaged results of 5 repeated experiments.
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(a) Extended YaleB (b) UIUC-sports

(c) Scene15 (d) Caltech101

Figure 2: Classification accuracy with different dictionary
sizes. The numbers of labeled samples used in the test are
32 labeled samples/class for Extended YaleB, 70 labeled
samples/class for UIUC-sports and Scene15, and 30 labeled
samples/class for Caltech101.

curves of the methods w.r.t different dictionary sizes in
Fig. 2. The experimental results show that even when the
dictionary sizes are very limited, i.e., 114 for Extended
YaleB, 40 for UIUC-sports, 45 for Scene15 and 204 for
Caltech 101, the classification accuracies of our method are
still above 90%, 80%, 74% and 70% respectively, which are
much higher than those obtained by its competitors. These
results prove that our method is superior to its competitors
in the case of limited dictionary size.

Influences of Other Factors
Besides the number of labeled samples and the dictionary
size, there are several other important factors in our method.
Firstly, we analyze the effect of the mutually reinforc-
ing group-graph structure on classification results on Cal-
tech101 in Table 2, where the number of unlabeled data be-
ing propagated and the propagation error rate are also listed.
Compared with the method using static group-graph struc-
ture, our method achieves improvements on classification
accuracy. The more samples we label rightly, the more im-
provements on classification accuracy we obtain.

Table 2: Effect of the dynamic group-graph structure.
#Label 5 10 15 20 25

Static structure(%) 60.5 66.3 69.7 70.7 72.8
Dynamic structure(%) 62.9 67.3 70.3 71.1 72.9
# sample propagated 368 276 188 102 42

Propagation error rate(%) 16.6 13.0 8.0 6.9 4.8

Secondly, we analyze the performance in terms of differ-
ent number of unlabeled samples in our algorithm. The ac-

curacy curves are plotted in Fig. 3, which show the learned
dictionary can be more effective in discriminating between
categories with more unlabeled samples provided.

(a) Scene15 (b) Caltech101

Figure 3: Influences of unlabeled samples on classification
accuracy.

We also run our method with varying weight of graph
regularization µ. Theoretically, large µ tends to enhance the
similarity among the sparse codes of local samples. We plot
the classification accuracies w.r.t different values of µ in
Fig. 4(a) using full datasets. It is observed that our approach
can be robust with its range from 0.1 to 0.5. We then in-
vestigate the effect of α on our algorithm using Extended
YaleB dataset. Fig. 4(b) shows the performance of our algo-
rithm w.r.t the percentage (α%) of unlabeled samples used
for propagation during each iteration. It can be observed that
small α might produce little effect on our method, as the
number of newly labeled samples is too small to enhance the
group structure. On the contrary, if we use large α, some un-
labeled samples with low certainty will be introduced with
high risks, in which case, the incorrectly labeled samples
might produce negative effect on structure update.

(a) µ (b) α

Figure 4: Influences of parameter configurations on classifi-
cation accuracy.

Conclusion
In this paper, we propose a dictionary learning algorithm
with mutually reinforcing group-graph structure and demon-
strate its convergence. During dictionary learning, the group
and graph structures update via label propagation and graph
modification for learning a more discriminative and ro-
bust dictionary. Based on theoretical analysis and experi-
ments on various datasets, we prove the superiority of our
method. Currently, some errors appear during label propa-
gation, which degrade the benefits of dynamically updating
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the structure (see Table 2). Future work will address reduc-
ing errors during propagation.

Acknowledgement: This work is supported in part by
NSF grant DMS-1317424, and NSFC-61129001/F010403,
61025005.

References
Aharon, M.; Elad, M.; and Bruckstein, A. 2006. The k-svd:
An algorithm for designing of overcomplete dictionaries for
sparse representations. Signal Processing, IEEE Transac-
tions on 54(11):4311–4322.
Al-Shedivat, M.; Wang, J. J.-Y.; Alzahrani, M.; Huang, J. Z.;
and Gao, X. 2014. Supervised transfer sparse coding. In
AAAI.
Bengio, S.; Pereira, F.; Singer, Y.; and Strelow, D. 2009.
Group sparse coding. In NIPS, 82–89.
Chi, Y.-T.; Ali, M.; Rajwade, A.; and Ho, J. 2013. Block and
group regularized sparse modeling for dictionary learning.
In CVPR, 377–382. IEEE.
Deng, W.; Yin, W.; and Zhang, Y. 2013. Group sparse op-
timization by alternating direction method. In SPIE Optical
Engineering+ Applications, 88580R–88580R. International
Society for Optics and Photonics.
Fei-Fei, L.; Fergus, R.; and Perona, P. 2007. Learning gen-
erative visual models from few training examples: An incre-
mental bayesian approach tested on 101 object categories.
Computer Vision and Image Understanding 106(1):59–70.
Gao, S.; Tsang, I. W.; Chia, L.-T.; and Zhao, P. 2010. Lo-
cal features are not lonely–laplacian sparse coding for image
classification. In CVPR, 3555–3561. IEEE.
Georghiades, A. S.; Kriegman, D. J.; and Belhurneur, P.
1998. Illumination cones for recognition under variable
lighting: Faces. In CVPR, 52–58. IEEE.
Goldberg, A. B.; Zhu, X.; Furger, A.; and Xu, J.-M. 2011.
Oasis: Online active semi-supervised learning. In AAAI.
Gretton, A.; Borgwardt, K. M.; Rasch, M.; Schölkopf, B.;
and Smola, A. J. 2006. A kernel method for the two-sample-
problem. In NIPS, 513–520.
Huang, J.; Nie, F.; Huang, H.; and Ding, C. H. 2013. Super-
vised and projected sparse coding for image classification.
In AAAI.
Jiang, Z.; Lin, Z.; and Davis, L. S. 2011. Learning a dis-
criminative dictionary for sparse coding via label consistent
k-svd. In CVPR, 1697–1704. IEEE.
Lazebnik, S.; Schmid, C.; and Ponce, J. 2006. Beyond bags
of features: Spatial pyramid matching for recognizing natu-
ral scene categories. In CVPR, volume 2, 2169–2178. IEEE.
Lee, H.; Battle, A.; Raina, R.; and Ng, A. Y. 2006. Efficient
sparse coding algorithms. In NIPS, 801–808.
Lee, H.; Raina, R.; Teichman, A.; and Ng, A. Y. 2009. Expo-
nential family sparse coding with application to self-taught
learning. In IJCAI, volume 9, 1113–1119.
Li, L.-J., and Fei-Fei, L. 2007. What, where and who? clas-
sifying events by scene and object recognition. In ICCV.
IEEE.

Lim, J. J.; Torralba, A.; and Salakhutdinov, R. 2011. Trans-
fer learning by borrowing examples for multiclass object de-
tection. In NIPS, 118–126.
Long, M.; Ding, G.; Wang, J.; Sun, J.; Guo, Y.; and Yu, P. S.
2013. Transfer sparse coding for robust image representa-
tion. In CVPR, 407–414. IEEE.
Mairal, J.; Bach, F.; Ponce, J.; Sapiro, G.; and Zisserman, A.
2008. Discriminative learned dictionaries for local image
analysis. In CVPR. IEEE.
Raina, R.; Battle, A.; Lee, H.; Packer, B.; and Ng, A. Y.
2007. Self-taught learning: transfer learning from unlabeled
data. In ICML, 759–766. ACM.
Szlam, A.; Gregor, K.; and LeCun, Y. 2012. Fast approxima-
tions to structured sparse coding and applications to object
classification. In ECCV. Springer. 200–213.
Tierney, S.; Gao, J.; and Guo, Y. 2014. Subspace clustering
for sequential data. In CVPR, 1019–1026.
Tropp, J. A.; Gilbert, A. C.; and Strauss, M. J. 2006.
Algorithms for simultaneous sparse approximation. part i:
Greedy pursuit. Signal Processing 86(3):572–588.
Wang, J.; Yang, J.; Yu, K.; Lv, F.; Huang, T.; and Gong, Y.
2010. Locality-constrained linear coding for image classifi-
cation. In CVPR, 3360–3367. IEEE.
Wang, F.; Lee, N.; Sun, J.; Hu, J.; and Ebadollahi, S. 2011.
Automatic group sparse coding. In AAAI.
Wright, J.; Yang, A. Y.; Ganesh, A.; Sastry, S. S.; and Ma,
Y. 2009. Robust face recognition via sparse representation.
Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on 31(2):210–227.
Yang, J.; Yu, K.; Gong, Y.; and Huang, T. 2009. Linear spa-
tial pyramid matching using sparse coding for image classi-
fication. In CVPR, 1794–1801. IEEE.
Yang, M.; Zhang, D.; and Feng, X. 2011. Fisher discrimina-
tion dictionary learning for sparse representation. In ICCV,
543–550. IEEE.
Zhang, Q., and Li, B. 2010. Discriminative k-svd for dic-
tionary learning in face recognition. In CVPR, 2691–2698.
IEEE.
Zhang, X.; Yu, Y.; White, M.; Huang, R.; and Schuurmans,
D. 2011. Convex sparse coding, subspace learning, and
semi-supervised extensions. In AAAI.
Zhang, G.; Jiang, Z.; and Davis, L. S. 2013. Online semi-
supervised discriminative dictionary learning for sparse rep-
resentation. In ACCV. Springer. 259–273.
Zheng, M.; Bu, J.; Chen, C.; Wang, C.; Zhang, L.; Qiu, G.;
and Cai, D. 2011. Graph regularized sparse coding for im-
age representation. Image Processing, IEEE Transactions
on 20(5):1327–1336.

3107




