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ABSTRACT

In this paper, we propose a quaternion-based sparse rep-
resentation model for color images and its corresponding
dictionary learning algorithm. Differing from traditional s-
parse image models, which represent RGB channels separate-
ly or process RGB channels as a concatenated real vector,
the proposed model describes the color image as a quater-
nion vector matrix, where each color pixel is encoded as a
quaternion unit and thus the inter-relationship among RGB
channels is well preserved. Correspondingly, we propose a
quaternion-based dictionary learning algorithm using a so-
called K-QSVD method. It conducts the sparse basis selec-
tion in quaternion vector space, providing a kind of vectorial
representation for the inherent color structures rather than a
scalar representation via current sparse image models. The
proposed sparse model is validated in the applications of col-
or image denoising and inpainting. The experimental results
demonstrate that our sparse image model avoids the hue bias
phenomenon successfully and shows its potential as a power-
ful tool in color image analysis and processing domain.

Index Terms— Quaternion, sparse representation, color
images, denoising, inpainting, dictionary learning

1. INTRODUCTION

The theory of sparse representation has been proven as an ef-
fective model of image signal. Using a specific dictionary
that contains a certain amount of atoms as its columns, we
can represent an image signal as a sparse linear combination
of these atoms. The dictionary can be pre-defined as a basis
or frame, e.g, wavelets, curvelets, or a combination of sev-
eral bases [1]. In recent years, the learning-based strategies
for designing dictionary are proposed [2, 3]. The study of
sparse representation has led to many applications in image
processing and computer vision realm, such as compression
[4], denoising [5], inpainting [1, 3], image classification [6]
and object recognition [7].
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There exists a range of empirical evidence for the signifi-
cant impacts of sparse representation methods, however, few
works discuss about the sparse representation model of col-
or image. The works in [1, 3, 5] have achieved the state-
of-the-art performance on gray-scale images. As for color
images, they just treat RGB channels as three independent
“gray-scale” images and process them in a monochrome way.
It totally ignores the inter-relationship among the three chan-
nels, which is likely to produce hue distortions in the recon-
struction results. Some works proposed to concatenate RGB
channels to alleviate the hue distortion problem [8], where a
dictionary that can jointly represent the channels is trained.
However, the lack of explicit constraints on the correlations
among RGB channels limits its development.

In this paper, we provide a view of expressing color im-
ages using quaternion-based sparse representation, where a
color pixel is encoded as a quaternion unit and processed as
vectors. In contrast, current sparse models consider a color
pixel as a scalar quantity, losing the inter-relationship among
the color channels during reconstruction. The use of quater-
nion in image processing has been proposed and studied in
[9, 10, 11]. These works show the successful extension in col-
or image filtering, cross-correlation, and compression, prov-
ing the advantages of quaternion-based model in describing
color signals. However, the reason for these success is lack
of investigation. The main contributions of our work exist in
establishing a quaternion-based sparse representation model
for color images and proposing the corresponding dictionary
training method. Moreover, we give an interpretation for the
effectiveness of the proposed model — the linear correlations
among RGB channels are preserved consistently during dic-
tionary training process. It is also validated in the experimen-
tal results of color image processing tasks of denoising and
inpainting.

The rest of this paper is organized as follows. Section 2
introduces the quaternion-based sparse representation model.
Section 3 shows the training method of the quaternion-based
dictionary. Section 4 gives the experimental results for col-
or image reconstruction, denoising and inpainting. Finally, it
concludes in section 5 that the proposed sparse image mod-
el is a powerful tool in color image analysis and processing
domain.



2. QUATERNION-BASED SPARSE
REPRESENTATION MODEL FOR COLOR IMAGES

Given a color image I, we denote the vector form of a patch
in each channel as yc ∈ Rn, where n is the dimension of
the vector, while c = r, g, b represents the RGB channels re-
spectively. As aforementioned, current sparse models of color
image are to deal with each single channel independently with
possibly different dictionaries, which can be written as

yc = Dcαc, c = r, g, b (1)

where Dc is the dictionary, and αc is the coefficient vector
which is assumed to be sparse. This monochrome process-
ing strategy, however, fails to capture the inter-relationship
among the RGB color channels.

A moderate improvement is to process the concatenation
of the three channels [8]. The corresponding representation
model can be expressed as
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The model in (2) adds a constraint on the coefficient—the co-
efficient vector should not only be sparse but also be shared
by each channel. As a result, the correlations among channels
are implied in the structure of dictionary. However, the result-
s in [8] show that the dictionary [DT
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K-SVD tends to be monochromatic. In other words, the inter-
relationship among color channels are not well preserved in
each atom during training process.

The linear correlations among RGB channels are consid-
ered in [12, 13], which is proven to be useful in demosaicing
[13] and color constancy [12]. This assumption suggests the
sparse model for color image be

yc = [Dr,Dg,Db]αc, c = r, g, b. (3)

In such case, the final representation result is a combination
of atoms from three dictionaries. Rather than simply increas-
ing the dictionary dimension in model (1), this model implies
that the three channels should be in a linear correlation. How-
ever, the difficulty of combining linear correlation constraint
with the sparse model arises during training dictionary — get-
ting Dr,Dg,Db respectively is a clustering task [14], which
depends on the distributions of nonzero coefficients of train-
ing samples. Introducing the clustering algorithm into sparse
model would severely increase the complexity .

According to the analysis above, the implicit constraints
of the color channels are not sufficient for the sparse mod-
el of color image. It is necessary to impose some explicit
constraints on the sparse model for preserving color channel-
s’ correlation, especially during the dictionary training phase.
Inspired by the theory of quaternion algebra, we find that the
quaternion-based sparse model can provide us a series of con-
straints on the dictionaries and coefficients, well preserving
the interrelationship among RGB channels.

The quaternion vector form of the patch of color image
is denoted as ẏ = 0 + yri + ygj + ybk. Here ẏ ∈ Hn
(H denotes the quaternion field), is a n-dimension quaternion
vector, and each component has 4 parts, i.e., one real part and
three imaginary parts. Pure quaternions are used to represent
the red, green and blue channels[11], with the real part set to
be zero 1. Consequently, the dictionary and the corresponding
coefficient can be represented as Ḋ = 0 + Dri + Dgj +
Dbk and α̇ = α0 + α1i + α2j + α3k, respectively. So, the
quaternion-based sparse representation model can be written
as

min
α̇
‖α̇‖0, s.t. ẏ = Ḋα̇, (4)

where Ḋ ∈ Hn×K is the quaternion dictionary, consisting of
K pure quaternion atoms. And α̇ ∈ HK is a sparse quater-
nion vector. The objective function ‖α̇‖0 counts the num-
ber of nonzero components in the quaternion vector. Note all
the algebra operations are under quaternion system, and some
rules are listed in the supplementary file.

Besides the sparsity of coefficient vector, the main advan-
tage of the model in (4) is highlighted in the fact that the co-
efficient vector obeys the following constraints,

0 = −Drα1 −Dgα2 −Dbα3,
yr = Drα0 +Dgα3 −Dbα2,
yg = −Drα3 +Dgα0 +Dbα1,
yb = Drα2 −Dgα1 +Dbα0.

(5)

The equations above enforce explicit constraints on the
correlations among RGB channels — each yc is correlat-
ed linearly with three channel dictionaries and the coeffi-
cients should be in the null space of [Dr,Dg,Db]. By train-
ing the quaternion dictionary Ḋ in a proper way, the inter-
relationship of the three channels for color patches yc can be
well preserved.

3. QUATERNION-BASED DICTIONARY TRAINING

The quaternion-based dictionary training process is an exten-
sion of the model in (4), in which both the dictionary and
coefficients are unknown variables. This process can be for-
mulated as

{ ˆ̇A, ˆ̇D} = argmin
Ḋ
‖Ẏ − ḊȦ‖2 + λ‖Ȧ‖0, (6)

where Ẏn×N = {ẏi, 1 ≤ i ≤ N} is the set of the
sample image patches, Ḋn×K = {ḋi, 1 ≤ i ≤ K} is
the quaternion-based dictionary composed of K atoms, and
ȦK×N = {α̇i, 1 ≤ i ≤ N} is the coefficient matrix which is
supposed to be sparse. To achieve the optimized dictionary,

1Note the imaginary units i, j, k obey the quaternion rules that i2 = j2 =
k2 = −1 and i · j = −j · i = k, j · k = −k · j = i, k · i = −i · k = j.



we propose a training algorithm using the counterpart of K-
SVD [3] in the quaternion algebra, which we call K-QSVD. It
separates the training process into two steps, i.e, sparse cod-
ing stage and dictionary updating stage.

During the sparse coding stage, a sparse coefficient ma-
trix Ȧ is to be solved given the fixed Ḋ in (6). Methods like
matching pursuit (MP) [15], basis pursuit (BP) [16] and so
on are suitable for this sparse coding problem. In this paper,
we choose the orthogonal matching pursuit (OMP) [17] al-
gorithm for quaternion extension, i.e, QOMP, because of its
high efficiency. It can alleviate the complexity of solving the
l0-norm sparse coding problem by specifying the maximum
number of non-zero coefficients per signal.

Given the sparse coding solution, the quaternion-based
dictionary Ḋ can be trained. Different from traditional ways
which fix the coefficient matrix during dictionary updating,
K-QSVD is highly efficient due to its simultaneous change
in the coefficient values. For each atom ḋk and the coeffi-
cients corresponding to it, Ȧk—the kth row in Ȧ, we update
both of them by decomposing the remaining expression error
Ėk using QSVD (Quaternion Singular Value Decomposition),
where Ėk = Ẏ−

∑
j 6=k ḋjȦ

j . Here, we do not linger the de-
tails and only show the scheme of K-QSVD in Table 1. Note
QSVD is more adaptable to color image than SVD, thus the
update of each atom and its corresponding coefficient row can
be more efficient in quaternion system. The advantages and
details of QSVD are given in our supplementary file.

Figure 1 shows the dictionary training methods depicted
in the model (2) and the quaternion-based model (4), as well
as their corresponding trained dictionaries. Compared with
our quaternion-based dictionary, the generated one by K-SVD
algorithm appears monochromatic. As mentioned in [8], the
dictionary trained by K-SVD is not rich enough to represent
the diversity of colors, thus it tends to become gray so that
it can at least well describe the basic spatial structures of the
images. In contrast, the trained quaternion-based dictionary is
rather colorful, which is competent in preserving the channel
correlations, as well as the spatial coherency.

4. APPLICATIONS TO IMAGE PROCESSING AND
EXPERIMENTAL RESULTS

For validation, we extend the quaternion-based sparse repre-
sentation into real color image applications, such as recon-
struction, denoising and inpainting.

4.1. Color Image Reconstruction

As for the sparse model in [8], the authors treat the concatena-
tion of RGB channels as a single vector, then perform K-SVD
to train the dictionary for reconstruction. Here, we compare it
with the quaternion-based sparse model. The two models are
shown in Figure 1(a).

Table 1. Quaternion-based dictionary learning

1. Initialization: Construct the training color data Ẏ = {ẏi, 1 ≤
i ≤ N}, and initialize the dictionary matrix Ḋ = {ḋi, 1 ≤ i ≤
K}, where each atom ḋi ∈ Hn and block patch ẏi ∈ Hn.
2. Repeat J times:
1) Sparse Coding Stage: Use QOMP to compute the coefficient
matrix Ȧ = {α̇i, 1 ≤ i ≤ N}, where each coefficient column
α̇i ∈ HK .
2) Codebook update Stage: Update each dictionary atom ḋk in
ḊJ through (i)-(iii) steps.
(i) Find the set of patches that use atom ḋk, the index ωk = {i|1 6
i 6 N, Ȧ(k, i) 6= 0}, where Ȧ(k, i) indicates the entry at k-th
row and i-th column of the coefficient matrix Ȧ.
(ii) Compute the error Ėk = Ẏ −

∑
j 6=k ḋjȦ

j and select the
columns corresponding to ωk to form ĖR

k = Ėkωk for QSVD:

ĖR
k = U̇ΛrV̇

H .

(iii) Update ḋk as the first column vector of U̇, and set its corre-
sponding nonzero coefficient α̇k

R = ωT
k α̇

k to be the multiplication
of the first column of V̇H and Λr(1, 1).

(a) Illustration for two types of sparse model

(b) K-SVD learned dictionary (c) K-QSVD learned dictionary

Fig. 1. Dictionaries with 256 atoms learned on a generic database
of animal images. Each block is presented scaled and shifted to the
[0,255] range per channel.

We firstly collect the training data as a set of 20000 ex-
amples taken from a database, whose size is 8*8 pixels and
contents are similar to the represented image patches. Then
we train the dictionaries using K-SVD and K-QSVD sepa-
rately on the same training samples. In order to keep a rea-
sonable computational complexity, both dictionaries consist
of 256 atoms which are not particularly large. In the cod-
ing stage, we set the sparsity parameter L in OMP/QOMP for



both methods, where L denotes the maximum number of non-
zero coefficients allowed for representing each image block.
Considering each coefficient column in our case is a quater-
nion vector that contains 4 × 256 real numbers, we fairly set
the ratio to be 1:4 so that both ways use the same amount of
non-zero real numbers.

Figure 2 gives some reconstructed images. It shows that
the quaternion-based reconstruction presents more accurate
color structures than model (2). Especially in the color junc-
tion parts, some hue distortions and artifacts would occur in
the concatenation-based reconstruction due to lack of color
variation in the monochromatic dictionary. In contrast, the
quaternion-based dictionary is more competent in capturing
the color structures, thus provides more accurate reconstruc-
tion.

(a) Reconstruction using model (2) (b) Reconstruction using our method

Fig. 2. Reconstruction using K-SVD and K-QSVD learned dictio-
naries. (a) 24 atoms to represent each RGB-concatenated block. (b)
6 atoms to represent each quaternion block.

4.2. Color Image Denoising

Another common application of sparse representation is de-
noising. Let Ẋ0 be a clean image written in quaternion col-
umn of length N (=

√
N ×
√
N), then its noisy version could

be:
Ẏ = Ẋ0 + ẇ, (7)

where ẇ is the white Gaussian noise in quaternion form with
a spatially uniform deviation σ. We assume that all patches of
size
√
n ×
√
n in the clean image Ẋ0 admit sparse represen-

tations. The denoising problem by quaternion-based sparse
model can lead to the following energy minimization prob-

lem:

{ˆ̇αij , ˆ̇D, ˆ̇X} = argmin
Ḋ,α̇ij ,Ẋ

λ
∥∥∥Ẋ− Ẏ

∥∥∥2
2

+
∑
i,j

µij ‖α̇ij‖0 +
∑
i,j

∥∥∥Ḋα̇ij −RijḊ∥∥∥2
2
, (8)

where ˆ̇X is the estimation of Ẋ0, and the dictionary ˆ̇D of
size n×K is the estimation of the optimal dictionary which
leads to the sparsest representation of the recovered image
patches. The indices [i, j] mark the location of the patch in
the image, thusRij of size n×N is an operator extracting the
square

√
n×
√
n patch of coordinates [i, j] from the image Ẋ,

and the vectors ˆ̇αij of size K × 1 are the coefficient vectors
for each patch. The first term in (8) enforces the likelihood
that demands a proximity between Ẋ and Ẏ. The second
and the third terms impose the image prior, assuming each
quaternion patch can be sparsely represented without noise
over ˆ̇D. The solution of (8) can be found in [5], with all the
algebra operations specified in quaternion system. During the
implementation, the QOMP refers to,

α̇ij = argmin
α̇ij

‖α̇ij‖0 s.t
∥∥∥Ḋα̇ij −RijḊ∥∥∥2

2
≤ n(Cσ)2,

which stops when the approximation reaches the sphere of ra-
dius

√
n(Cσ)2 in each patch’s quaternion space. Empirically,

C is set to be 2.8 and λ to be 0.037.
Figure 3 gives the comparison of several denoising meth-

ods based on sparse representation. One is the method in [5]
by applying the K-SVD denoising algorithm based on mod-
el (2), which might introduce color bias and washing effec-
t. Later, an improved work [8] proposes to revise the OMP
by adding a regularization so that the average value of each
channel remains unchanged before and after sparse represen-
tation. This attempt does reduce some hue bias, but still lose
the inter-relationship among channels; Moreover, such revi-
sion breaks the hypothesis of OMP that noise is in a sphere
structure. It is noted in Figure 3, for both the two methods,
color distortions appear in the tree and pedestrian parts, and
the washing effects arise in the ”gray” sky. In contrast, the
quaternion-based method can present more true colors after
denoising. Some PSNR and SSIM results are shown in Ta-
ble 2. These quantitative evaluation results further prove the
advantages of our method.

4.3. Color Image Inpainting and Denoising Pepper Noise

Image inpainting refers to filling the missing information
in an image. Limited to the patch size, the learning-based
method can only handle small missing holes. Thus, we tem-
porarily focus on filling missing pixels like [3] [8] does. We
choose one random full face image which is not used for train-
ing, and randomly delete a fraction r of the pixels, usually
r ∈ {0.2, 0.9}. Our goal is to re-fill them.



Fig. 3. Columns from left to right: Original image, the image with noise of σ = 25, K-SVD denoising result [5], improved K-SVD
denoising result [8], our K-QSVD denoising result.

Table 2. PSNR/SSIM values of different denoising methods. Each
case is comprised of three parts: The top results are based on model
(2) [5], the middle ones are obtained by its improved version [8], and
the bottom ones are our results.

σ barn Athens blueeye bee

15
30.83/0.83 31.80/0.91 34.07/0.91 33.40/0.90
30.79/0.82 32.33/0.91 34.30/0.92 33.42/0.91
30.91/0.84 32.40/0.93 34.42/0.92 33.47/0.91

25
27.25/0.67 27.73/0.82 30.24/0.83 27.84/0.80
27.30/0.65 28.14/0.80 30.47/0.83 28.12/0.83
27.34/0.67 28.26/0.83 30.69/0.84 28.24/0.81

The coefficient matrix for each corrupted patch can be es-
timated only on the non-corrupted pixels using the pruned
dictionary, which is generated by deleting the rows corre-
sponding to those missing pixels in each patch. This co-
efficient matrix can be computed by OMP/QOMP, which is
same as the one over the full dictionary for the reconstructed
patch. The filling results of model (2) and our quaternion-
based model are shown in Figure 4(a), with the mean recon-
struction errors (RMS) provided. It can be observed that high-
er quality recovery with fewer artifacts is obtained using the
quaternion-based method.

Such idea can also be extended to denoise salt and pepper
noise. We can treat every noised pixel as a corrupted quater-
nion, with some imaginary parts being 0 or 255. Now for each
block, the temporary dictionary is set by deleting the imagi-
nary rows corresponding to those corrupted imaginary parts,
and the rest procedures remain the same. Figure 4(b) shows
that the method using model (2) makes the child face partially
yellow. In comparison, our quaternion-based method has no
such hue bias.

For images of size 256 × 256, the average time of de-
noising by K-SVD and the proposed method is 210s and
1500s, respectively. The average time of inpainting is 230s
and 1440s respectively. (The test platform is MATLAB on
Intel Core-i3 CPU with 4GB memory.) As each patch can
be processed in a parallel way, the computation time can be
significantly reduced using GPU execution.

5. CONCLUSION

In this paper, we address color image problems using the
quaternion-based sparse representation, which treats the col-
or pixel as a vector unit instead of a scalar quantity and thus
overcomes the inaccuracy of describing color images and the
lack of dictionary diversity. The experiments of reconstruc-
tion, denoising and inpainting on real color images prove its
advantages in characterizing color structures and preserving
the interrelationship among color channels. We would con-
sider more extensive applications in the future work to show
its potential as a powerful tool in color image classification
and recognition realm.
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