
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 4, APRIL 2015 1315

Vector Sparse Representation of Color Image Using
Quaternion Matrix Analysis
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Abstract— Traditional sparse image models treat color image
pixel as a scalar, which represents color channels separately or
concatenate color channels as a monochrome image. In this paper,
we propose a vector sparse representation model for color
images using quaternion matrix analysis. As a new tool for
color image representation, its potential applications in several
image-processing tasks are presented, including color image
reconstruction, denoising, inpainting, and super-resolution. The
proposed model represents the color image as a quaternion
matrix, where a quaternion-based dictionary learning algorithm
is presented using the K-quaternion singular value decom-
position (QSVD) (generalized K-means clustering for QSVD)
method. It conducts the sparse basis selection in quaternion
space, which uniformly transforms the channel images to an
orthogonal color space. In this new color space, it is significant
that the inherent color structures can be completely preserved
during vector reconstruction. Moreover, the proposed sparse
model is more efficient comparing with the current sparse
models for image restoration tasks due to lower redundancy
between the atoms of different color channels. The experimental
results demonstrate that the proposed sparse image model avoids
the hue bias issue successfully and shows its potential as a
general and powerful tool in color image analysis and processing
domain.

Index Terms— Vector sparse representation, quaternion matrix
analysis, color image, dictionary learning, K-QSVD, image
restoration.
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I. INTRODUCTION

THE theory of sparse representation has been proven as
an effective model for image representation. Using an

overcomplete dictionary that contains a certain number of
prototype atoms as its elements, an image signal can be
represented as a sparse linear combination of these atoms.
The performance of sparse coding relies on the quality
of dictionary, which could be chosen as a pre-defined set
of bases, such as overcomplete wavelets, curvelets, con-
tourlets, short-time Fourier kernels, unions of bases or raw
samples [1], [2]. In recent years, the learning-based strategies
for designing dictionary are proposed to represent input signals
more sparsely [3]–[5]. Structured low-rank representations
for signal classification have attracted much attention of
researchers [6]–[8]. Compact and discriminative dictionary is
learned to include structure information based on the results
of a linear predictive classifier [9], [10]. Meanwhile, the new
concepts of block sparsity [11] and group sparsity [12], [13]
are defined to get more structural coefficients for different
classes. The study of sparse representation has led to many
applications in image processing and computer vision areas,
such as compression [14], denoising [15], inpainting [1], image
classification [16], object detection and recognition [9], [17].

However, there are very few works on the sparse represen-
tation model of multichannel signals, which are typically pre-
sented as color images. The sparse models in [1], [4], and [15]
have achieved the state-of-the-art performance on gray-scale
images. As for color images, they just treat RGB channels
as three independent “gray-scale” images and process them
in a monochrome way. These works completely ignore the
inter-relationship among the multiple channels, which is
likely to produce hue distortions in the reconstruction results.
To avoid color distortions, some works proposed to concate-
nate RGB channels to alleviate the hue distortion problem [18],
where a dictionary is trained to jointly represent the channels.
Unfortunately, the operation of concatenation still attains
unsatisfying results because of lacking explicit constraints on
the correlations among RGB channels. In fact, it is proved that
the use of concatenated channel should be restrictive since
it contains only a fraction of the unfold matrices which are
needed to completely represent a vector-sensor array [19].
Another strategy is using independent color channels rather
than RGB channels, e.g., YCbCr and YUV [20], [21] but its
application is limited in device-dependent image processing,
e.g., spectral interpolation or demosaicing [22].

Since a color image does not represent a scalar, but rather
a vector-valued function, it is natural to define a structure
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of the chromatic information as vector-valued. Vector-based
filtering methods for color images have been proposed in
the last two decades, which separated the processing of
multichannel signals into directional processing and magnitude
processing [23]. Based on vector order statistics, these
methods extend their applicability to the primitive color image
processing tasks such as color edge detection [24], median
filtering and denoising [25] and texture pattern extraction [26].
However, there is a lack of general model and technique for
color image analysis and processing.

Fortunately, hypercomplex algebra provides an elegant
mathematical tool to deal with vector signals, among which the
quaternion algebra was the first hypercomplex number system
to be discovered and the closest in its mathematical properties
to the familiar systems of the real and complex numbers [27].
Different from the monochromatic-based techniques, which
demonstrate only transference of known techniques from gray-
level images to color images, the quaternion-based methods
process multichannel information in a parallel way, which
mimics the human perception of a visual environment. In fact,
there have been several color image filtering methods based on
quaternion algebra, where a color image pixel is expressed as a
quaternion unit and consequently a color image is formulated
as a quaternion matrix. These methods explore new solutions
of classical problems, e.g., color image registration [28],
color image denoising [27], color image watermarking [29],
color image super-resolution [30], image colorization [31]
and color image segmentation [32], [33]. For example, global
and local windowed hypercomplex Fourier transforms (includ-
ing quaternion Gabor transform) are proposed to provide
spectral analysis of color images [34]–[36]. To achieve a
more compact spatially spectral analysis, more recently, some
researchers have investigated quaternion wavelets [37]–[39].
In these works, the basic concepts of vector operation, i.e.,
vector correlation/convolution [27], vector projection [40],
PCA and SVD analysis of vector-valued image are defined
using quaternion algebra [41], [42].

The current quaternion-based color image operations
provide a foundation of sparse subspace analysis of color
images, which we will explore in this paper. Specifically,
we develop a novel vector sparse representation model for
color images based on quaternion algebra. In our model,
the reconstruction of the color image blocks is conducted
as vector operations between the color atoms in the learned
quaternion dictionary and the sparse quaternion coefficients.
We propose the corresponding dictionary learning method
called K-QSVD (Generalized K-means clustering for Quater-
nion Singular Value Decomposition). K-QSVD conducts the
sparse basis selection during quaternion dictionary learning
step and computes the sparse coefficient vectors using QOMP
(quaternion orthogonal matching pursuit) method. In essence,
the quaternion dictionary uniformly transforms the channel
images to a subspace, where the redundancy between channels
is removed and consequently the inherent color structures can
be completely preserved during sparse reconstruction.

Differing from traditional separated and concatenated
monochrome models, which consider only a fraction of
the subspaces that are needed for completely representing

a vector-sensor array, the quaternion-based model can preserve
the whole information of a 3D vector array. Furthermore, com-
paring to the tensor-based model, the quaternion-based model
not only preserves the correlation among channels but also the
orthogonal property for the coefficients of different channels,
which achieves a structured representation. Experiments prove
that the proposed sparse model is more efficient comparing
to current sparse models for image restoration tasks.

The remainder of this paper is organized as follows.
Section II introduces the basic concepts of quaternion algebra.
Based on these concepts, we conduct the subspace analysis of
color images using Quaternion Matrix Singular Value Decom-
position (QSVD) in a comparison with Singular Value Decom-
position (SVD) and Tensor-based SVD (T-SVD). Section III
proposes our quaternion-based sparse representation model.
The comparison with two typical sparse models of color
images is also provided. Section IV designs a K-QSVD
based dictionary learning method. Section V presents the
applications of the proposed model and the comparison with
the state-of-the-art methods. Finally, Section VI summarizes
our work.

II. THE BASIC CONCEPTS OF QUATERNION ALGEBRA

In this paper, scalar variables are defined using lowercase
letter, e.g., a ∈ R, scalar vectors using bold types, e.g., a,
and scalar matrices using bold capital letter, e.g., I. For the
quaternion system, a dot (above the variable) is used to denote
a quaternion variable, that is ȧ ∈ H. Accordingly, a quaternion
vector is denoted as ȧ and a quaternion matrix is indicated as İ.
In this section, we summarize the basic concepts of quaternion
algebra, where a more complete introduction of quaternion
algebra can be referred to [43].

A. Definition of Quaternion Algebra
Quaternion was first introduced by W. Hamilton [44]

in 1832. Let ȧ ∈ H be a quaternion, then

ȧ = a0 + a1i + a2 j + a3k, (1)

where al ∈ R, l = 0, 1, 2, 3, and the imaginary units i, j, k
obey the quaternion rules that i2 = j2 = k2 = i jk = −1.
As a vector entity, the quaternion is associative but non-
commutative and its algebra can simultaneously manipulate all
its four components. Let ȧ, ḃ ∈ H, λ ∈ R. Here we give some
fundamental algebraic operations used in our work briefly,
which follow the definition in [43], [45], and [46]. Readers
can find more details on quaternion algebra in the references.

1) Addition:

ȧ + ḃ = (a0 + b0) + (a1 + b1)i + (a2 + b2) j + (a3 + b3)k.

(2)

2) Multiplication:

λȧ = (λa0) + (λa1)i + (λa2) j + (λa3)k. (3)
ȧḃ = (a0b0 − a1b1 − a2b2 − a3b3)

+(a0b1 + a1b0 + a2b3 − a3b2)i
+(a0b2 − a1b3 + a2b0 + a3b1) j
+(a0b3 + a1b2 − a2b1 + a3b0)k. (4)
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We formulate ȧ and ḃ as the composite of a scalar part and
a vector part1 by writing ȧ = (a0, a1, a2, a3) = [S(ȧ), V (ȧ)],
where S(ȧ) = a0 and V (ȧ) = {a1, a2, a3}. Similarly,
ḃ = (b0, b1, b2, b3) = [S(ḃ), V (ḃ)]. Then we have,

S(ȧḃ) = S(ȧ)S(ḃ) − V (ȧ) ◦ V (ḃ) (5)

V (ȧḃ) = S(ȧ)V (ḃ) + S(ḃ)V (ȧ) + V (ȧ) ⊗ V (ḃ) (6)

Here ‘◦’ denotes dot product operator and ’⊗’ denotes cross
product operator of two vectors. The multiplication between
two pure quaternions, i.e., a0 = b0 = 0, is reduced to
S(ȧḃ) = −V (ȧ) ◦ V (ḃ) and V (ȧḃ) = V (ȧ) ⊗ V (ḃ).

3) Norm, Conjugation, Unity and Reciprocal:

‖ȧ‖ =
√

ȧȧ =
√

a2
0 + a2

1 + a2
2 + a2

3 (7)

where ȧ is the conjugate of ȧ and has the form of

ȧ = a0 − a1i − a2 j − a3k. (8)

ȧ is called a unit quaternion if its norm is 1. The reciprocal
of a quaternion is

ȧ−1 = ȧ

‖ȧ‖2 . (9)

4) Vector Representation of Quaternion: In this paper,
similar to the vector of real number, the vector of quaternion is
denoted as ȧ = [ȧ1, . . . , ȧN ]T ∈ H

N , where each element is a
quaternion. Furthermore, we can also define the inner product
of two quaternion vectors ȧ, ḃ as

< ȧ, ḃ > = ȧH ḃ =
N∑

n=1

ȧnḃn, (10)

which is still a quaternion. Here ȧH = [ȧ1, . . . , ȧN ] is the
conjugate transpose of ȧ. The norm of quaternion vector is
defined as

‖ȧ‖ =
√

< ȧ, ȧ > (11)

ȧ, ḃ are orthogonal if and only if < ȧ, ḃ > = 0̇. Similarly,
the matrix of quaternion is denoted as Ȧ = [ȧ1, . . . , ȧM ] ∈
H

N×M , ȧm ∈ H
N . Given Ȧ ∈ H

N×M and Ḃ = [ḃ1, . . . , ḃK ] ∈
H

N×K , their product Ċ = ȦH Ḃ, where each element of Ċ,
ċmk = < ȧm, ḃk >. The norm of matrix ‖Ċ‖ =

√
tr(ĊH Ċ),

where tr(·) is the trace of matrix. Following the notations of
real vector and matrix, we write ‖ȧ‖, ‖Ċ‖ as ‖ȧ‖2, ‖Ċ‖F in
the following sections.

1It should be note that the vector part of a quaternion is a bivector or
pseudovector [45]. In this paper, we simplified the use of bivector as vector
for two reasons: (1) We would like to emphasize that color images are
reconstructed as vector signals. (2) The reconstruction can be formulated as the
multiplication of the learned quaternion dictionary and the sparse coefficient
matrix, which is operated as element-wise quaternion multiplication.
In calculations, quaternion multiplication can be conducted as a series of
vector operations in vector space.

Fig. 1. Description of a 3D array using (a) complete unfold matrices,
(b) separated channel process and (c) concatenated channel process.

5) Cross Correlation: As for two images represented as
quaternion matrices İ1 ∈ H

M×N and İ2 ∈ H
M×N , their cross

correlation C(m, n) is defined as,

C(m, n) =
M−1∑

p=0

N−1∑

q=0

İ1(p, q)İ2(p − m, q − n), (12)

where (p, q) is the row and column index of İ1 and İ2.
The shift operation on İ2 is implemented cyclically using
modulo arithmetic [47]. If İ1 = İ2, the autocorrelation of these
two images is computed. If the mean value of each image is
subtracted first, the cross-covariance is obtained.

In order to recover classical matrix calculus rules, in this
paper, we choose the convention that matrices operate on the
left side, and variables operate on the right side.

B. Linear Subspace Analysis of Color Images Using
2D-Matrix Singular Value Decomposition (SVD)

Corresponding to the sparse representation of a group of
color image patches, we consider a collection of K samples
in the subspace analysis with each sample stacked into a long
vector with dimension of M N .

We can represent these K sample image patches as a real
3D-array I, i.e., I ∈ R

M N×d×K, where d = 3 means that three
color channels are involved as the common case. As shown
in Fig. 1(a), the definition of the unfolding matrices that
needed to completely visualize the rank of array I is [19],

I(1) = [a(1)
s,t ]3M N×K , where a(1)

s,t ∈ R, (13)

I(2) = [a(2)
s,t ]3K×M N , where a(2)

s,t ∈ R, (14)

I(3) = [a(3)
s,t ]K M N×3, where a(3)

s,t ∈ R. (15)

Derived from Tucker3 model of a N-dimensional array [48],
a 3D array rank is defined by the ranks of the three unfolding
matrices. Accordingly, the singular value decomposition of
array I is given by,

I = c ×1 U(1) ×2 U(2) ×3 U(3), (16)

where c is a core array, U(i) are the left eigen-matrices of the
unfolding matrices I(i), and operator ×n is the n-mode product
operator.
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As shown in Fig. 1(b), however traditional monochromatic
process treats this real 3D-array as three uncorrelated 2D real
matrices,

J(1) = [b(1)
(s,t)]M N×K, where b(1)

s,t ∈ R, (17)

J(2) = [b(2)
(s,t)]M N×K, where b(2)

s,t ∈ R, (18)

J(3) = [b(3)
(s,t)]M N×K, where b(3)

s,t ∈ R, (19)

The subspace analysis is obtained using independent SVD
decomposition for these three matrices. Consequently, the
order of array I is degenerated from 3 to 2, losing the interre-
lationship between channels. As for the concatenation process
shown in Fig. 1(c), it only considers I(1) for subspace analysis,
which contains fractional rank of the unfolding matrices
listed in (13-15).

C. Linear Subspace Analysis of Color Images Using
2D-Matrix Quaternion Singular Value
Decomposition (QSVD)

In this subsection, a color image pixel is encoded as a pure
quaternion unit, e.g., ȧ = r · i + g · j + b · k, where the
coefficients r, g, b of the imaginary parts are three color
channel values and the scalar part equals to 0. Then we can
rewrite the real 3D-array I as a 2D quaternion matrix İ,
i.e., İ ∈ H

M N×K with the color dimension d implied in
each quaternion element. As the extension of SVD from
real/complex domain to quaternion space, QSVD allows to
identify the embedded linear subspaces of quaternion matrix İ.

Using the Cayley-Dickson notation [42], we obtain
İ = A + B · j , where A, B ∈ C

M N×K are two complex matri-
ces. Then İ can be converted into an equivalent complex matrix

as Ic =
[

A B
−B A

]

2M N×2K
. Using the isomorphism between

H
M N×K and C

2M N×2K, the QSVD of İ can be obtained by
firstly applying the classical complex SVD algorithm to Ic.

We denote the singular values as �′, then get Ic = U�′VH,
where subscript ‘H ’ denotes Hermitian transpose
operator, U, V are two complex matrices and the columns
of U, V are composed of orthonormal eigenvectors of Ic · IH

c
and IH

c · Ic, respectively. The relation between the QSVD of
quaternion matrix İ and the SVD of its equivalent complex
matrix Ic is defined as follows,

� = rowodd(colodd(�′)), (20)

U̇ = colodd(U1) + colodd(−U2) · j, (21)

V̇ = colodd(V1) + colodd(−V2) · j, (22)

such that İ = U̇�V̇H, where

U =
[[U1]M N×2M N

[U2]M N×2M N

]

2M N×2M N
, V =

[[V1]K×2K

[V2]K×2K

]

2K×2K
,

and rowodd(P), colodd(P) extracts the odd rows and odd
columns of matrix P respectively. Since eigenvalues of equiv-
alent complex matrix Ic appear by conjugate pairs along
diagonal, and as Ic · IH

c is Hermitian, its eigenvalues are real
and appear in pairs along the diagonal. Consequently, the
singular values consisting of � are all real numbers. Based
on QSVD İ = U̇�V̇H , we can further define the inverse

Fig. 2. Comparison of SVD, T-SVD and QSVD in data approximation.
(a) Image patch dataset. (b) Plots of information distributions of SVD,
T-SVD and QSVD. (c) Plots of rank-α approximation errors of SVD, T-SVD
and QSVD.

of quaternion matrix as İ−1 = V̇�−1U̇H , where �−1 is the
inverse of � (If � is not a full rank matrix, �−1 is obtained
by computing the reciprocal of non-zero elements of �).

D. The Rank-α Approximation of Color Images-QSVD
v.s. SVD and Tensor-SVD

Before we provide the sparse representation model,
it is informative to compare the performance of QSVD
in data approximation with SVD and Tensor-based
SVD (T-SVD) [49]. Since the distribution of the singular
values implies information distribution of basis, we design an
experiment to compare the distribution of singular values for
three methods.2 The input data consists of 100 color image
patches with the size of 8 × 8 pixels. These patches are
randomly selected from 10 images shown in Fig. 2(a). For
the standard SVD of monochromatic image, we first reshape
each image patch from one channel into a 64×1 vector
of real numbers. These color channels are concatenated to
form a 192 × 1 vector of real numbers. With 100 image
patches, the input matrix is then 192 × 100 dimensional. For
T-SVD, the input matrix is 64 × 100 × 3 dimensional.
For QSVD, each image patch is reshaped as a
64 × 1 quaternion vector. With 100 image patches, the
input matrix for QSVD is 64 × 100 dimensional. The
information distributions (normalized singular values) of
these image patches obtained by the three methods are
illustrated in Fig. 2(b) by logarithmic scale, where x-axis
is the rank related to each singular value and y-axis is the
normalized singular value. On one hand, we can observe
that the singular value obtained by QSVD decreases much
faster than that of SVD, indicating more information is

2The singular values obtained by T-SVD are represented as a tensor, whose
three frontal slices are diagonal matrices. The diagonal elements of the slices
(matrices) in the same location formulate a singular value vector, and the
singular value of T-SVD in this paper is the L2-norm of the singular value
vector.



XU et al.: VECTOR SPARSE REPRESENTATION OF COLOR IMAGE 1319

contained in the tight basis of U̇ and V̇. On the other hand,
QSVD presents nearly the same performance as T-SVD,
showing its strong potential in representing 3D arrays without
information loss. For a more direct comparison of the best
rank-α approximation, Fig. 2(c) provides three reconstruction
error distributions with the eigenvectors related to the
top α ranks, where x-axis is the order of the rank and y-axis
is the normalized reconstruction error (The Frobenius norm
of reconstruction residual image divides the Frobenius norm
of original image). In terms of minimizing the distance in
arbitrary unitarily invariant norms, T-SVD is proven to be the
optimal in the usual SVD-based reconstruction. Similar to
the former experiments, we observe that QSVD consistently
provides a more accurate approximation than SVD using the
reconstructed matrix of the same rank, and achieves the same
performance as T-SVD.

The comparison results prove that the channel-by-channel
process and the concatenation process lose the interrelation-
ship of color channels while the vector-based process i.e.,
quaternion-based and tensor-based processes, can completely
preserve the interrelationship of color channels, achieving
better approximation of color images. It should be noted that
although QSVD seems to be equivalent to T-SVD in the
analytic experiments of SVD-based reconstruction, its superi-
ority arises when combining with sparse representation model.
In the next two sections, we will show that with the help of
QSVD, we can obtain a structured sparse representation model
and an effective dictionary learning algorithm for color images.

III. QUATERNION-BASED SPARSE REPRESENTATION

MODEL FOR COLOR IMAGES

Current image sparse representation mainly focuses on
patch processing. Given a color image I and its overlapped
image patches, we stack all the pixels of one patch in each
channel and denote the generated scalar vector as yc ∈ R

n ,
where n is the dimension of the patch vector, the subscript
c = r, g, b represents the RGB channels respectively.
As aforementioned, current sparse models of color image deal
with each single channel independently with possibly different
dictionaries, which can be denoted as

yc = Dcac, c = r, g, b, (23)

where Dc is the dictionary with K atoms, i.e., Dc ∈ R
n×K

and ac is the sparse coefficient vector, ac ∈ R
K .

This monochromatic model, however, fails to capture the
interrelationship among the three color channels.

A moderate improvement is to process the concatenation
of the three channels [18]. The corresponding representation
model can be expressed as

[yT
r , yT

g , yT
b ]T = [DT

r , DT
g , DT

b ]T a. (24)

The concatenation model in (24) adds a constraint on the
coefficient so that the coefficient vector a (a ∈ R

K ) should
not only be sparse but also be shared by each channel. It pays
much emphasis on the spatial structure preservation at the cost
of color fidelity.

Another strategy is tensor-based sparse model. Here, each
patch is represented by a tensor y ∈ R

n×1×3, which is equal to

the product of dictionary tensor D ∈ R
n×K×3 and coefficient

tensor a ∈ R
K×1×3 as

y = D × a. (25)

Differing from the methods above, in this paper we propose
a quaternion-based sparse representation model. Applying
the pure quaternion form, we denote the vector form of one
RGB color image patch as ẏ = 0 + yr i + yg j + ybk, ẏ ∈ H

n .
Accordingly, the dictionary and the corresponding coefficient
are represented as Ḋ = Ds + Dr i + Dg j + Dbk and ȧ = a0 +
a1i +a2 j +a3k respectively. Then, we propose the quaternion-
based sparse representation model as

minȧ‖ȧ‖0, s.t. ẏ = Ḋȧ, (26)

where Ḋ ∈ H
n×K is a quaternion dictionary consisting of

K pure quaternion atoms, ȧ ∈ H
K is a sparse quaternion

coefficient vector corresponding to the input data ẏ ∈ H
n ,

with its components a0, a1, a2 and a3 ∈ R
K. The objective

function ‖ȧ‖0 counts the number of nonzero components in
the quaternion coefficient vector.

These four color image representation models can be unified
as a more generalized one,

[0, yr , yg, yb] = [Ds, Dr , Dg, Db ]̃a. (27)

The monochromatic model in (23) and the concatenation
model in (24) can be considered as a special case when we
obtain coefficient vector from a particular set

ã = [[0, 0, 0, 0]T , [0, aT
r , 0, 0]T ,

[0, 0, aT
g , 0]T , [0, 0, 0, aT

b ]T ], (28)

where ã ∈ R
4K×4. The only difference is the concatenation

model adds a constraint to (28) with ar = ag = ab. In (28), the
coefficient vector of three color channels is orthogonal to each
other. Although this property leads to a structured coefficient
matrix (the columns of coefficient matrix are orthogonal),
it implies that the interrelationship between the channels must
be encoded in the dictionary. However, in the monochromatic
model, dictionaries are learned independently, providing no
assurance of channel correlation in the reconstruction. In the
concatenation model, Elad et al. [18] introduced an extra
strong constraint to guarantee that the reconstructed patch will
maintain the average color of the original one, which tends
to contain many gray or low chrominance atoms. In other
words, the interrelationship among color channels is not well
preserved in each atom during the training process.

On the other hand, rewriting the tensor-based model (25),
we have

yr = Dr a1 + Dga3 + Dba2, (29)

yg = Dr a2 + Dga1 + Dba3, (30)

yb = Dr a3 + Dga2 + Dba1, (31)

Here Ds = 0, which is ignored. Then we formulate (29-31)
into the form of (27) to obtain

ã = [as ar ag ab] =

⎡

⎢
⎢
⎣

0 0 0 0
0 a1 a3 a2
0 a2 a1 a3
0 a3 a2 a1

⎤

⎥
⎥
⎦. (32)
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In this model, we also obtain a structured coefficient
matrix, which preserves the correlation among color channels.
However, in this model, the coefficient vectors of three color
channels are no longer orthogonal to each other.

According to the analysis above, we can find that the
monochromatic model and the concatenation model guarantee
the orthogonal property of coefficient matrix while lose
the correlation among color channels. On the contrary, the
tensor-based model preserves the correlation while loses
the orthogonal property. Differing from these competitors,
the proposed quaternion-based sparse model in (26) can be
expanded as follows,

0 = Dsa0 − Dr a1 − Dga2 − Dba3, (33)

yr = Dsa1 + Dr a0 + Dga3 − Dba2, (34)

yg = Dsa2 − Dr a3 + Dga0 + Dba1, (35)

yb = Dsa3 + Dr a2 − Dga1 + Dba0, (36)

Then we formulate (33-36) into the form of (27) to obtain

ã = [as ar ag ab] =
⎡

⎢
⎣

a0 a1 a2 a3
−a1 a0 −a3 a2
−a2 a3 a0 −a1
−a3 −a2 a1 a0

⎤

⎥
⎦. (37)

Compared with the other three models, the advantages of
quaternion-based sparse model in (26) for color image can
be summarized as follows:

• The coefficient matrix preserves both the correlation
among channels and the orthogonal property. Rather
than selecting atoms from three independent channel
dictionaries, each color channel is correlated linearly
with four channel dictionaries. By training the quaternion
dictionary Ḋ in a proper way, the interrelationship of the
three channels for color patches ẏ can be well preserved.

• It imposes explicit linear correlation among the four
channel dictionaries as shown in (33). The coefficients
[a0,−a1,−a2,−a3] is the null space of [Ds, Dr , Dg, Db].
Therefore the correlation among channel dictionaries is
described by a0, a1, a2 and a3. Such correlations among
color channels have been proven to be useful in color
constancy [50].

Consequently, the four channel dictionaries uniformly trans-
form yr , yg and yb into an orthogonal color space. In this color
space, it is significant that the inherent color structure can be
completely preserved during image channel reconstruction.

IV. QUATERNION-BASED DICTIONARY TRAINING

A. Single Dictionary Training

The single quaternion-based dictionary training process is
an extension of the model in (26), in which both the dictionary
and coefficients are unknown variables. This process can be
formulated as

{̂̇D, ̂̇A} = argminḊ,Ȧ‖Ẏ − ḊȦ‖2
F + λ‖Ȧ‖0, (38)

where Ẏ = {ẏi , 1 ≤ i ≤ N} is the set of the sample
image patches and Ẏ ∈ H

n×N , Ḋ = {ḋi , 1 ≤ i ≤ K } is
the quaternion-based dictionary composed of K atoms and
Ḋ ∈ H

n×K , Ȧ = {ȧi , 1 ≤ i ≤ N} is the coefficient

TABLE I

QUATERNION ORTHOGONAL MATCHING PURSUIT

matrix which is supposed to be sparse, Ȧ ∈ H
K×N and

‖Ȧ‖0 = ∑N
i=1 ‖ȧi‖0 counts the nonzero entries of the columns

of Ȧ. To achieve the optimized dictionary, we propose a
training algorithm as the counterpart of K-SVD [18], [21]
in the quaternion form, which we call K-QSVD (Generalized
K-means clustering for Quaternion Singular Value Decompo-
sition). It is separated into two steps, i.e., sparse coding stage
and dictionary updating stage.

During the sparse coding stage, a sparse coefficient matrix
Ȧ is to be solved given a fixed Ḋ in (38). Methods like
matching pursuit (MP) [51], basis pursuit (BP) [52] and so
on are suitable for this sparse coding problem. In this paper,
we choose the orthogonal matching pursuit (OMP) [53]
algorithm for quaternion extension in consideration of its
high efficiency, to design the QOMP (quaternion orthogonal
matching pursuit) algorithm. The QOMP algorithm solves the
problem of decomposing signal ẏ ∈ H

n on a quaternion
dictionary Ḋ ∈ H

n×K such that,

ȧ = argminȧ‖ẏ − Ḋȧ‖2
2, s.t. ‖ȧ‖0 ≤ L, (39)

where ȧ ∈ H
K is the sparse coefficient vector and ‖ȧ‖0 ≤ L

is the stoping criteria. It alleviates the NP-hard l0-norm
sparse coding problem by specifying the maximum number of
non-zero coefficients per signal.

The implementation details of QOMP for each patch are
given in Table I.

1) We initialize the residual ε̇(0) = ẏ as the input patch ẏ
itself, and the atom set Ṡ as an empty set.

2) At the j -th iteration, QOMP selects the atom that pro-
duces the largest projection onto current residual. First,
we compute the correlation between current residual
and each atom ḋm from the atom pool Ḋ \ Ṡ( j−1), i.e.,
C( j )

m = < ḋm, ε̇( j−1) >. Then we add the atom which
achieves the highest correlation value into atom set Ṡ( j ).

3) We compute coefficients by ȧ( j ) =
((Ṡ( j ))H Ṡ( j ))−1(Ṡ( j ))H ẏ = (Ṡ( j ))†ẏ, where the
superscript † denotes the quaternionic pseudoinverse
operation. ((Ṡ( j ))H Ṡ( j ))−1 is calculated as follows: we
first compute the QSVD of (Ṡ( j ))H Ṡ( j ), then replace
all nonzero singular values by their reciprocals.

4) We refine the residual signal as ε̇( j ) = ẏ − Ṡ( j )ȧ( j ).
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TABLE II

QUATERNION-BASED DICTIONARY LEARNING USING K-QSVD METHOD

Once we obtain sparse coefficient for every patch ẏi , the
sparse coefficient matrix Ȧ is generated as the columns
of ȧi , 1 ≤ i ≤ N .

Obviously, QOMP is an extension of traditional OMP,
which replaces real number by quaternion. At each step, the
reconstruction residual is reduced. Because it has the same
framework with OMP, QOMP is still a greedy algorithm —
the more nonzero coefficients we obtain, the smaller recon-
struction residual we have. In other words, the reconstruction
residual converges monotonously with the increase of iteration
number j . Similar to OMP, we set a upper bound of iteration
number, which achieve the trade-off between the reconstruc-
tion residual and the sparsity of coefficient vector.

Given the sparse coding solution, the quaternion-based
dictionary Ḋ can be trained. Different from traditional ways
which fix the coefficient matrix during dictionary learning,
K-QSVD is highly efficient due to its ability to update
coefficient simultaneously. For each atom ḋk and the corre-
sponding coefficients Ȧk - the k-th row of Ȧ, we update both
of them by decomposing the remaining representation error
Ėk = Ẏ−∑

j �=k ḋ j Ȧ j using QSVD. In section II, we observe
that the first basis of QSVD contains more information than
that of SVD for color images. This indicates that the update
of atoms and their corresponding coefficients can be more
efficient using K-QSVD. The details of K-QSVD algorithm
is shown in Table II.

B. Further Analysis

Because K-QSVD uses the same framework of traditional
K-SVD [15], [54], [55], its convergence is also similar to that
of K-SVD. In each iteration, the K-QSVD consists of sparse
coding phase and dictionary learning phase. In the sparse
coding phase, we fix dictionary and obtain sparse codes by
QOMP, which is the quaternion version of traditional OMP.
Like OMP, our QOMP algorithm is a greedy algorithm — the
more nonzero coefficients we select, the smaller reconstruction
residual we have. In other words, the reconstruction residual

Fig. 3. The reconstruction error ‖Ẏ − ḊȦ‖F with respect to the number of
iteration of K-QSVD.

reduces with respect to the number of iteration (the nonzero
coefficients we obtain). In the dictionary learning phase, we
fix current sparse codes and optimize dictionary as K-SVD
does: for each atom, its updating ensures that the energy of
the previous residual error matrix to be reduced. Although this
process is heuristic, its performance is satisfying in practice.3

In fact, we further verify the convergence of our K-QSVD
algorithm in the following analytic experiment, observing the
rapid reduction of the reconstruction error. Specifically, given
10000 color image patches, the size of which is 8×8, we train
a dictionary Ḋ ∈ H

64×256 by our K-QSVD algorithm. The
reconstruction error ‖Ẏ − ḊȦ‖F with respect to the number
of iteration is shown in Fig. 3. We note that the reconstruction
error converges quickly after 4 iterations.

Compared with traditional OMP and K-SVD, the proposed
QOMP and K-QSVD algorithms have higher computational
complexity. According to the definitions in Section II.A,
the quaternion addition operation requires 4 floating-point
operations (FLOPs) and the quaternion multiplication opera-
tion requires 28 FLOPs (16 floating-point multiplications and
12 floating-point additions). Furthermore, focusing on color
image representation, the real part of quaternion is set to
be 0, so the quaternion addition and multiplication require
3 FLOPs and 14 FLOPs (9 floating-point multiplications and
5 floating-point additions). Suppose that we have N samples
corresponding to color patches, whose dimension is 3×D. The
dictionary size is 3D× K for the real dictionary (or D× K for
the quaternion dictionary), where K is the number of atoms.
The sparsity constraint is 3L for the sparse code of each color
channel (or L for the quaternion sparse code). As a result,
according to [56], the complexity of OMP is O(3L N(3D)3)
and the complexity of QOMP is O(L N( 14D

3 )3). Similarly, the
complexity of K-SVD is O(3L N(3D)3) and the complexity
of K-QSVD is O(L N( 14D

3 )3) as well.4 In other words,

3Actually, K-SVD applies the same alternative optimization strategy, which
has been proven to be useful and widely used in many practical applications.

4Because both OMP (QOMP) and K-SVD (K-QSVD) spend most of time
computing the SVD of matrix in each iteration, their computational costs are
comparable, which are in the same order of magnitude. In the worst case, the
complexity of SVD is about O((3D)3) for the real dictionary and O(( 14D

3 )3)
for the quaternion dictionary.
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Fig. 4. Dictionaries with 256 atoms learned on a generic database of animal
images. Each block is scaled and shifted to the range [0, 255] for each
channel. (a) Concatenation sparse model. (b) Quaternion-based sparse model.
(c) K-SVD learned dictionary. (d) K-QSVD learned dictionary.

the computational complexity of learning the quaternion sparse
model is about 3.7 times that of learning the real sparse model.
In terms of memory cost, the memory usage for learning the
quaternion sparse model is 1.33 times that for learning the
real sparse model because we need to store the real part of
quaternion. Fortunately, because most of quaternions in the
algorithm have zero real parts, the increase of memory cost
for our algorithms can be ignored.

It should be noted that the benefits obtained by the high
computational complexity is obvious. Fig. 4 shows the results
of dictionary training methods using the concatenation sparse
model (24) and the quaternion-based sparse model (26), where
the corresponding trained dictionaries are demonstrated for
comparison. Given RGB color images, the four channel dictio-
naries are linearly correlated, as shown in (33). Consequently,
we can constrain the color atoms in the quaternion dictio-
nary as triplets so that a color image is reconstructed using
only the three dictionaries Dr , Dg and Db while enforcing
Ds = 0. We observe that the learned dictionary from K-SVD
algorithm using the concatenation sparse model tends to be
monochromatic. As mentioned in [18], the atoms generated by
K-SVD are not rich enough to represent the diversity of colors,
since K-SVD emphasizes the basic spatial structures of con-
catenated channel images. In contrast, the learned quaternion
dictionary has more color which captures the interrelationship
between color channels as well as the spatial coherence better.
In Section V, the proposed quaternion dictionary training
process is directly used in image reconstruction and extended
to image restoration, which achieves better color fidelity with
fewer iterations.

C. Joint Dictionary Training

In image restoration problem, it is beneficial to have
two dictionaries that capture some linear relationship between

Fig. 5. Examples of training images for color image reconstruction.

Fig. 6. Comparison of K-QSVD sparse model and K-SVD sparse model for
color image reconstruction - PSNR values vs. sparse parameter L.

the original image and the damaged image. Motivated by the
assumption of the similarity of sparse representation between
low- and high-resolution image patches over their own dictio-
naries [20], [57], we propose a joint dictionary training method
for the proposed quaternion-based sparse model.

Let F1 and F2 be two linear filters (projection matrix) for
image sample patches Ẏ1 and Ẏ2, they are both obtained by
linear filtering of the same sample patches Ẏ. We seek a
sparse representation for each patch of F1Ẏ1, and then use
the coefficients of this representation to generate the sparse
representation of F2Ẏ2. First, we use K-QSVD method to
solve sparse coding problem of (40) and obtain Ḋ1, Ȧ.

{̂̇D1,
̂̇A} = minḊ1,Ȧ‖F1Ẏ1 − Ḋ1Ȧ‖2

F + λ1‖Ȧ‖0. (40)

Then we enforce the shared sparse coding constraint on (41),

̂̇D2 = minḊ2
‖F2Ẏ2 − Ḋ2

̂̇A‖2
F . (41)

and calculate dictionary Ḋ2 as

̂̇D2 = (F2Ẏ2)
̂̇A

†
. (42)

In some applications, F2 is set as an identity matrix.
In these cases, we learn joint dictionaries Ḋ2 and Ḋ1 from
samples, which encode the linear relationship between the non-
corrupted image Ẏ2 and the damaged image Ẏ1, so that we
could recover the original image from Ḋ2 and sparse coding
of the damaged image.

V. APPLICATIONS TO IMAGE PROCESSING

AND EXPERIMENTAL RESULTS

For validation of the proposed quaternion-based sparse
representation model, we apply it to natural color image
processing, such as reconstruction, denoising, inpainting and
super-resolution.
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Fig. 7. Columns from left to right: Original image, noisy image with σ = 25, K-SVD denoising results [15], improved K-SVD denoising results [18],
and the proposed K-QSVD denoising results.

TABLE III

PSNR(dB)/SSIM VALUES OF DIFFERENT DENOISING METHODS. EACH CASE IS COMPRISED OF THREE PARTS: THE TOP RESULTS ARE

BASED ON MODEL (24) [15], THE MIDDLE ONES ARE OBTAINED BY ITS IMPROVED VERSION WITH THE CONSTRAINT

OF UNCHANGED AVERAGE COLOR [18], AND THE BOTTOM ONES ARE OUR RESULTS

USING QUATERNION-BASED COLOR IMAGE SPARSE MODEL

A. Color Image Reconstruction
We first compare the proposed sparse model with the model

in (24) for color image reconstruction. The dataset for training
consists of 50,000 image sample patches of size 8×8, which
are randomly selected from a wide variety of animal images
with different scenes. Some of them are shown in Fig. 5.
Then we train the dictionaries using K-SVD and K-QSVD
separately on the same training samples. In order to keep
a reasonable computational complexity, both dictionaries are
relatively small with 256 atoms. To provide comparison of our
K-QSVD sparse model and Elad’s K-SVD sparse model [18],

we randomly pick 20 images and concatenate them as a full
image for reconstruction.

We first compute the PSNR(dB) values over different sparse
parameter L for both models. As shown in Fig. 6, the
quaternion-based sparse model is able to present higher PSNR
values than the model in (24) with the same sparse parameter.
The advantage becomes even greater with the increasing
number of atoms used.

We further compare the number of atoms to be used
under the same PSNR. From Fig. 6, we compute the ratio of
sparsity L with the PSNR value ranging from 28dB to 34dB,
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and get the average ratio to be 2.56, which means that we
only need about 1/3 number of atoms for the quaternion-based
model than that in (24) for achieving a similar reconstruction
performance with a reasonable sparse parameter. Moreover,
an interesting phenomenon is observed that the advantage of
K-QSVD becomes even more obvious when more atoms are
allowed to be used. This is due to the lower intra-redundancy
between the channel components of each atom and the
lower inter-redundancy between each pair of atoms in the
quaternion-based dictionary. As mentioned in Section IV,
the K-QSVD trained dictionary is able to present more colorful
structures, which indicates lower intra-redundancy between
the channel components of each atom. Then we compute the
average correlation among atoms using 1

K (K−1)/2

∑
i �= j < di ,

d j > for K-SVD and K-QSVD trained dictionaries and get
0.70 and 0.41 respectively, which indicates lower
inter-redundancy of the proposed K-QSVD sparse model.

B. Color Image Denoising

Another common application of sparse representation is

denoising. Let Ẋ ∈ H

√
N×√

N be a clean image, with noisy
version:

Ẏ = Ẋ + ẇ, (43)

where ẇ is the white Gaussian noise in quaternion form with
a spatially uniform deviation σ . We assume all patches of size√

n × √
n in the clear image Ẋ admit sparse representations.

The denoising problem can be formulated as the minimiza-
tion of the following objective function:

{ ˆ̇D, ˆ̇ai j ,
ˆ̇X} = minḊ,ȧi j ,Ẋ{λ ∥

∥Ẋ − Ẏ
∥
∥2

2 (44)

+
∑

i, j

μi j
∥
∥ȧi j

∥
∥

0 +
∑

i, j

∥
∥Ḋȧi j − Rij Ẋ

∥
∥2

2}, (45)

where ̂̇X is the estimation of Ẋ, and the dictionary ̂̇D of
size n × K is the estimation of the optimal dictionary which
leads to the sparsest representation of the recovered image
patches. The indices [i, j ] mark the location of patches, thus
Ri, j is the operator extracting the

√
n × √

n square patch at
coordinates [i, j ] from Ẋ, and the vector ̂̇ai j of size K × 1 is
the coefficient vectors for the patch at index [i, j ]. The first
term in (44) enforces the likelihood that demands proximity
between Ẋ and Ẏ. The second and the third terms impose the
image prior, assuming each quaternion patch can be sparsely
represented without noise over dictionary ̂̇D.

The solution to (44) is an extension of [15], with all
algebra operations in quaternion system, where the key part
for suppressing noise falls on the QOMP implementation,

minȧi j ‖ȧi j ‖0, s.t. ‖Ḋȧi j − Rij Ẋ‖2
2 ≤ n(Cσ)2, (46)

which stops searching the best candidate atom once the
approximation reaches the sphere of radius

√
n(Cσ)2 in each

patch’s quaternion space.
Fig. 7 shows the comparison of several denoising methods

based on sparse representation. The K-SVD denoising algo-
rithm based on the model in (24) [15] tends to introduce color
bias and blurring effects (third column). The fourth column

Fig. 8. The workflow of color image inpainting using quaternion-based sparse
model. (a) extract non-corrupted pixels. (b) prune the quaternion dictionary
corresponding to non-corrupted pixels. (c) reconstruct the original blocks
according to the projections of non-corrupted pixels.

shows the results of the improved OMP method where an
additional regularization term is added to ensure the average
value of each channel remains unchanged during sparse repre-
sentation [18]. It reduces some hue bias, but still loses channel
interrelationship. As shown in Fig. 7, the color distortions
appear in the tree and pedestrian parts, and the blurring effects
can be seen in the “gray” sky. In contrast, the proposed
quaternion-based method (last column) can present colors with
better fidelity after denoising. Table III summaries the PSNR
and SSIM results where the proposed method mostly has the
highest values, which further verify the advantages of the
quaternion-based model.

C. Color Image Inpainting

Image inpainting refers to filling the missing information in
an image. Limited by the patch size, the learning-based method
can only handle small holes. In this paper, we focus on filling
missing areas within the order of 30 pixels. We randomly
choose one full image which is damaged by randomly deleting
a fraction r of the pixels, usually r ∈ [0.2, 0.9]. Our goal is to
re-fill them. Fig. 8 shows the workflow of the proposed color
image inpainting:

(a) We only consider the projections of non-corrupted pixels
onto dictionary in the QOMP algorithm.

(b) The coefficient vector for each patch ṗ can be estimated
only on the non-corrupted pixels ẋp using the pruned
dictionary Ḋp by selecting corresponding rows of Ḋ.

(c) The computed coefficient vector ȧp can be shared with
those missing pixels, considering its validity for the
whole complete patch block ṗ. Therefore, the recon-
structed block ˆ̇x is obtained as ˆ̇x = Ḋȧp.

Fig. 9 shows the comparison of inpainting performance
using the model in (24) and the proposed quaternion-based
model in (26), with the computed PSNR values. It can be
observed that higher quality image restoration with fewer
artifacts is obtained using the proposed model.
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Fig. 9. Visual comparisons and PSNR(dB) results of K-SVD method [18] and the quaternion-based sparse model on image inpainting. (a) Ground truth.
(b) Damaged (70% missing). (c) K-SVD [18] (31.488). (d) K-QSVD (32.379). (e) Ground truth. (f) Damaged (70% missing). (g) K-SVD [18] (19.749).
(h) K-QSVD (22.100). (i) Ground truth. (j) Damaged (70% missing). (k) K-SVD [18] (25.621). (l) K-QSVD (26.227).

TABLE IV

MORE PSNR(dB)/SSIM VALUES OF 3X SUPER-RESOLUTION RESULTS USING DIFFERENT ALGORITHMS

It should be noted that in [31], another vector sparse
representation model is proposed for color image inpainting
as well. However, that model requires a channel (gray or color)
to be available in advance for estimating the missing channels.
In other words, what it does is colorization rather than inpaint-
ing. Differing from [31], our method can recover missing
pixels whose values of all channels are missing. From this
view, our method is superior to that model in image inpainting.

D. Single Color Image Super-Resolution
Single image super-resolution refers to the process of

obtaining higher-resolution (HR) images ẊH from one lower-
resolution (LR) image ẊL . Current image super-resolution
methods can be divided into three categories: interpolation-
based methods, reconstruction-based methods and example-
based methods. Among interpolation-based algorithms,
bi-linear and bi-cubic are most commonly used but tend
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Fig. 10. 3X super-resolution results of leaf (110 × 144) with PSNR(dB) and SSIM. (a) Input. (b) Bi-cubic (31.96/0.891). (c) Shan [58] (32.09/0.888).
(d) Yang [20] (31.96/0.888). (e) Zeyede [57] (31.96/0.890). (f) OnlineQ (32.40/0.895). (g) Proposed (32.94/0.910).

Fig. 11. 3X super-resolution results of birds (233 × 114) with PSNR(dB) and SSIM. (a) Input. (b) Bi-cubic (27.18/0.845). (c) Shan [58] (27.86/0.851).
(d) Yang [20] (28.01/0.860). (e) Zeyede [57] (28.08/0.871). (f) OnlineQ (27.86/0.863). (g) Proposed (28.58/0.879).

Fig. 12. 3X super-resolution results of flower (167×121) with PSNR(dB) and SSIM. (a) Input. (b) Bi-cubic (24.45/0.757). (c) Shan [58] (24.61/0.756).
(d) Yang [20] (24.65/0.766). (e) Zeyede [57] (24.63/0.761). (f) OnlineQ (26.02/0.796). (g) Proposed (24.71/0.768).

Fig. 13. 3X super-resolution results of monarch (256×171) with PSNR(dB) and SSIM. (a) Input. (b) Bi-cubic (27.44/0.899). (c) Shan [58] (28.10/0.907).
(d) Yang [20] (28.24/0.907). (e) Zeyede [57] (28.11/0.908). (f) OnlineQ (29.07/0.917). (g) Proposed (28.09/0.909).

to produce blurry and jaggy artifacts. Reconstruction-based
methods require the consistency of up-sampled image with
the input LR image, where the HR-to-LR degradation process
is reversed by various kinds of edge prior models [57]–[59].

More recent researches have focused on the third type,
i.e., example-based methods, which reconstruct the high-
frequency band of LR image using the provided example
database. The works in [60] and [61] exploited the raw patch
information from database, whereas our approach finds the
sparse representation of the example database, similar to the
approach in [57].

We use the general patch samples Ẋ = {ẊL, ẊH } to learn
a joint dictionary in (40) and (42), where ẊL and ẊH are
obtained by linear low-pass and high-pass filtering of the
same image dataset. Dictionary Ḋ1 is for representing the
low-resolution ones in the example dataset, which is denoted
as F1ẊL ; and dictionary Ḋ2 is for representing the residual
high-frequency bands, which is denoted as F2ẊH and F2 = I.

The linear filter F1 is used to extract discriminant features
of the low-frequency band ẊL . Instead of filtering on lumi-
nance channel plane alone, we extract dominant features from
RGB channels respectively, using four 1D high-pass filters
[−1, 0, 1], [−1, 0, 1]T , [1, 0,−2, 0, 1] and [1, 0,−2, 0, 1]T

in each channel and then grouping three filtered channels
in quaternion form. The concatenation of four high-pass
filtered images gives us the final feature representation of
low-resolution patch ẊL , and can be embedded into the joint
dictionary training procedure of (40) and (41),

{̂̇D1,
̂̇A} = minḊ1,Ȧ‖F1ẊL − Ḋ1Ȧ‖2

F + λ1‖Ȧ‖0, (47)

Ḋ2 = minḊ2
‖F2ẊH − Ḋ2

̂̇A‖2
F . (48)

We obtain Ḋ1 using K-QSVD method in Table II and calculate
Ḋ2 = ẊH · (Ȧ)†. By sharing the same sparse coefficient Ȧ
and using jointly trained dictionaries Ḋ1 and Ḋ2, the sparse
representation of low-frequency patches can be applied to
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its high-frequency ones. Finally, the output HR image is
generated by adding ẊL and sparsely reconstructed ẊH . One
advantage of quaternion-based sparse model is that it can boost
the discriminative power of features as all channel descriptors
are now taken into consideration in a vector space, thus
improving the prediction accuracy. Besides, the quaternion-
based reconstruction is able to present more accurate color
structures as mentioned above.

We compare the proposed SR method with other
state-of-the-art algorithms on some commonly-used SR testing
images. Several representative works are selected from the
three SR categories, such as Bi-cubic, deconvolution-based
SR [58] and two typical example-based methods using sparse
model [20], [57]. Moreover, to further substantiate the
advantages of quaternion-based dictionary learning, we also
reformulate the online dictionary learning process [3] under
quaternion algebra. We call it “OnlineQ” in the experiments,
whose implementation details are in [30].

The parameters are set as suggested in these works.
We evaluate our experiment using both objective quality
metrics and subjective visual quality with the upscaling factor
of 3. In Table IV, we compute the PSNR and SSIM values on
twelve common images. It is observed that the two quaternion-
based SR algorithms obtain better performance than the
state-of-art works on the global objective evaluations.
Especially in the parts with significant inter-channel changes,
the two proposed SR algorithms are able to synthesize
sharper edges and yield fewer artifacts, which can be seen
in Fig. 10-13. It further demonstrates the advantages of
quaternion-based sparse model in color feature extraction and
color image reconstruction. Meanwhile, it shows the potential
of incorporating quaternion system into any sparse model,
as well as dictionary learning algorithm for addressing color
image problems.

VI. CONCLUSION

In this paper, we propose a novel sparse model for color
image using quaternion matrix analysis. It formulates a
color pixel as a vector unit instead of a scalar quantity and
consequently overcomes the lack of accuracy describing
inter-relationship among color channels. The experiments of
reconstruction, denoising, inpainting, and super-resolution
on natural color images prove its advantages in effectively
accounting for both luminance and chrominance geometry in
images.

Currently, the usage of the real part of quaternion seems
insufficient: for three-channel color space, the real part
is simply set to be zero. We believe that the physically
meaningful real part will further help us capture color
information. In the future, we will further explore the
potential extension of quaternion sparse model to four-
channel color space, e.g. CMYK, in which the real part may
corresponds to the black channel. Additionally, from the
view of algorithm our K-QSVD algorithm does not guarantee
global convergence. Recently, a dictionary learning algorithm
based on proximal method is proposed in [62], which achieves
global convergence. Inspired by this strategy, we plan to
further improve our learning algorithm in the future work.
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