


Class

e Class: a definition of a kind of object
* Object: an instance of a class

— Contains instance variables (data) and methods

e Methods

— Methods that return a value
— Methods that return nothing
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Defining a Class

public class Student { Class Nname

public String name;

public int classYear;
public double GPA; Data
public String major;

N

(or attributes, or

N

/.. instance variables)
public String getMajor() {
return major;
}
public void increaseYear() {
classYear++;
}
}
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Using a Class

public class Student { public class StudentTest {
public String name; public static void main(String[] args) {
public int classYear; Student jack = new Student();
public double GPA; jack.name = "Jack Smith";
public String major; jack.major = "Computer Science";
jack.classYear = 1;
/] ... jack.GPA = 3.5;
public String getMajor() { String m = jack.getMajor(); //
return major; System.out.println("Jack's major is " + m);
}
jack.increaseYear();
public void increaseYear() {
classYear++; System.out.println("Jack's class year is now
} " + jack.classYear);
}
}
}
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Instance Variable and Local Variable

* |nstance variables
— Declared in a class
— Confined to the class

* Can be used anywhere in the class that declares the variable,
including inside the class’ methods

 Local variables

— Declared in a method
— Confined to the method

e Can only be used inside the method that declares the variable
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Local Variable Example

?ublic class Student * classYear and name are
public String name; instance variables
public int classYear; . .
/... * can be used in any method in
public void printInfo() this class
{
String info = name + “: »” + classYear;
System.out Rrintln(info);
}
bli id i Yes . . .
public void increaseveac() * info is a local variable
lassyY ; 5
, e declared inside method
public void decreaseYear() p”ntlnfo()
{ . .
Classyear--: * can only be used inside
} method printinfo()
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Local Variable Example

public class Student
{

public String name;
public int classYear;

/] ...
public void printInfo()
{
String info = name + “: »” + classYear;
System.out.println(info);
}
public void increaseYear()
{
classYear++;
info = “My info string”; // ERROR!!!
}
oublic void decreaseye The compiler will not recognize
{

the variable info inside of
method increaseYear()

b z: v
h

classYear--;
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Local Variable Example

public class Student
{

public String name;
public int classYear;

/] ...
public void printInfo()
{
String info = name + “: »” + classYear;
System.out.println(info);
}
public void increaseYear()
{
classYear++;
String info = “My info string”; // OK
}
sublic void decreaseved Variable info in increaseYear method
{

not affected by variable info in
printinfo method in class Student

L s R R

classYear--;
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Local Variable Rule

e Usually, a variable is only accessible in its
surrounding brackets

public class Variable {

String a = "a";

public void f() {
String b = "b";
if (a.equals("b")) {

String ¢ = "c";
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Methods with Parameters

 Compute the square of this number
— 5
— 10
-7
* | could give you any number, and you could tell me
the square of it

 We can do the same thing with methods
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Methods with Parameters

 Parameters are used to hold the value that you pass
to the method

* Parameters can be used as (local) variables inside
the method

public int Squar‘ Parameters go inside

{
return number * number; the parentheses of
} method header
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Calling a Method with Parameters

public class Student
{

public String name;
public int classYear;

/] ..
public void setName(String studentName)
{
name = studentName;
}
public void setClassYear(int year)
{
classYear = year;
}
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Calling a Method with Parameters

public static void main(String[] args)

{
Student jack = new Student();
jack.setName(“Jack Smith”);
jack.setClassYear(3);

}

Parameters/
Arguments
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Methods with Multiple Parameters

* Multiple parameters separated by commas
public double getTotal(double price, double tax)

{

return price + price * tax;
}
 When calling a method, the order, type, and
number of arguments must match parameters
specified in method heading
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Methods with Multiple Parameters

public class SalesComputer

{
public double getTotal(double price, double tax)
{
return price + price * tax;
}
/] ..

SalesComputer sc = new SalesComputer();

(14 2
L]

—deuble—total =—se-getTotal {1599 );——
double total = sc.getTotal(19.99, 0.065);
int price 50;

Automatic typecasting

R AT < N
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Calling Methods from Methods

A method body can call another method

— Done the same way:
receiving object.method();

* If calling a method in the same class, do not need
receiving_object:
— method();

e Alternatively, use the this keyword (can be omitted)
— this.method();
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Calling Methods from Methods

public class Student
{
public String name;
public int classYear;
public void setName(String studentName)

{
name = studentName;
}
public void setClassYear(int year)
{
classYear = year;
}

public void setNameAndYear(String studentName, int year){
this.name = studentName; // or this.setName(studentName);
this.classYear = year; // or this.setClassYear(year);
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public/private Modifier

* public void setMajor()
* publicint classYear;

e public: there is no restriction on how you can use
the method or instance variable
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public/private Modifier

* private void setMajor()
e private int classYear;

e private: can not directly use the method or instance
variable’s name outside the class

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL




public/private Modifier

public class Student
{

public int classYear;
private String major;
}
public class StudentTest{
public static void main(String[] args){

Student Jack = new student(); ey
jack.classYe§F = 1; ’

jack.major = “Computer Science”; // ERROR!!!
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More about private

* Hides instance variables and methods inside the
class/object. The private variables and methods are
still there, holding data for the object.

* |nvisible to external users of the class

— Users cannot access private class members directly

* Information hiding

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL




Example: Rectangle

public class Rectangle
{
public int width;
public int height;
public int area;

public void setDimensions(
int newWidth,
int newHeight){
width = newWidth;
height = newHeight;
area = width * height;

public int getArea(){
return area;
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Rectangle box = new Rectangle();
box.setDimensions (10, 5);
System.out.println(box.getArea());

// Output: 50

box.width = 6;
System.out.println(“The rectangle
with edges ” + box.width + “
and ” + box.height + “ has area

size ” + box.getArea());

// Output: The rectangle with
edges 6 and 5 has area size 50

// Wrong answer!




Accessors and Mutators

e How do you access private instance variables?
e Accessor methods (a.k.a. get methods, getters)

— Allow you to look at data in private instance variables

 Mutator methods (a.k.a. set methods, setters)

— Allow you to change data in private instance variables
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Example: Student

public class Student

{
private String name;
private int age;

public void setName(String studentName) {
name = studentName;

¥ I S
public void setAge(int studentAge) { MUtatOrS

age = studentAge;
} _
public String getName() { —_
return name;

}

public int getage() { SN\ cessors
return age;
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Example: Student

public class Student

{
private String name;
private int age;

public void setName(String studentName) {
name = studentName;

} ——
public void setAge(int studentAge) { MUtatOrS

if (studentAge > 9)
age = studentAge; _
else System.out.println(“The input for age should be positive™)

}
public String getName() {

return name;

by
public int getAge() { =l ACCessors

return age;

—_—
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Private Methods

 Why make methods private?

* Helper methods that will only be used from inside a
class should be private
— External users have no need to call these methods

* Encapsulation
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Private Methods

public class RightTriangle {
private double side_a;
private double side_b;

private double square(double d) {
// some calculation
} // don’t want others to use - rounded for rounded output

private double sqrt(double d) {
// some complicated calculation
} // don’t want others to use - optimized for triangle only

public double getSideC() {
return this.sqrt(this.square(side_a) + this.square(side_b));

}
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Example: Driving a Car

Accelerate with the accelerator pedal
 Decelerate with the brake pedal

Steer with the steering wheel
* Does not matter if:

— You have a 4-cylinder engine or a 6-cylinder engine

— Especially, you don’t have to control how many valves
shall be on at each second in order to drive a car

You still drive the same way
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Encapsulation

* The interface is the same
 The underlying implementation may be different
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Encapsulation in Classes

* Aclass interface tells programmers all they need to
know to use the class in a program

 The implementation of a class consists of the
private elements of the class definition

— private instance variables and constants
— private methods

— bodies of public methods

THE UNIVERSITY
of NORTH CAROLINA

at CHAPEL HILL




Example: Two Rectangle Classes

{

public class Rectangle

private int width;
private int height;
private int area;

public void setDimensions(
int newWidth,
int newHeight)

{
width = newWidth;
height = newHeight;
area = width * height;
}

public int getArea()
{

}

return area;
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public class Rectangle

{

private int width;
private int height;

public void setDimensions(
int newWidth,
int newHeight)

width = newWidth;
height = newHeight;
}

public int getArea()

{
return width * height;




Well Encapsulation

* Imagine a wall between (other) programmers and
(your) implementation

— It’s called interface

Implementation:

Private instance variables

Interface:

Private constants
Private Methods
Bodies of all methods

Comments
Headings of public methods
Public defined constants

Method definitions
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Guidelines When You Define a Class

 Comments before class definition (this is your
header)

* |nstance variables are private

* Provide public accessor and mutator methods
 Comments before methods

 Make helping methods private

o [**/for user-interface comments and // for
implementation comments
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Initialization of Instance Variables

* You can declare default values for instance variables

public class Rectangle
{ Rectangle box = new Rectangle();

public int width = 1; System.out.println(box.getArea());
public int height = 1;
public int area = 1;
public void setDimensions(
int newWidth,
int newHeight){
width = newWidth;
height = newHeight;
area = width * height;

// Output: 1

}
public int getArea(){

return area;
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Select Proper Instance Variables

public class Rectangle public class Rectangle
{ {
pr‘ivate int width; prlivate int width;
e e e
public void setDimensions( public void setDimensions(
int newWidth,

int newWidth, - a
int newHeight){ int newHeight){

width = newNidth; width = newWidth;
height = newHeight; height = newHeight;
area = width * height; }
} public void setWidth(
public void setWidth( int newWidth){
int newWidth){ width = newWidth;
width = newWidth; }

area = width * height; public void setHeight(

} int newHei
L : ght){
public void setHeight( height = newHeight;

int newHeight){

height = newHeight; } L.

area = width * height; public int getArea(){
} return width * height;
public int getArea(){ // MUCH SHORTER AND LESS

return area; // POSSIBILITY OF MAKING MISTAKES
} }
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