

Class

e Class: a definition of a kind of object
* Object: an instance of a class

— Contains instance variables (data) and methods

e Methods

— Methods that return a value
— Methods that return nothing

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Defining a Class

public class Student { Class Nname

public String name;

public int classYear;
public double GPA; Data
public String major;

N

(or attributes, or

N

/.. instance variables)
public String getMajor() {
return major;
}
public void increaseYear() {
classYear++;
}
}

THE UNIVERSITY
of NORTH CAROLINA

at CHAPEL HILL

Using a Class

public class Student { public class StudentTest {
public String name; public static void main(String[] args) {
public int classYear; Student jack = new Student();
public double GPA; jack.name = "Jack Smith";
public String major; jack.major = "Computer Science";
jack.classYear = 1;
/] ... jack.GPA = 3.5;
public String getMajor() { String m = jack.getMajor(); //
return major; System.out.println("Jack's major is " + m);
}
jack.increaseYear();
public void increaseYear() {
classYear++; System.out.println("Jack's class year is now
} " + jack.classYear);
}
}
}

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Instance Variable and Local Variable

* |nstance variables
— Declared in a class
— Confined to the class

* Can be used anywhere in the class that declares the variable,
including inside the class’ methods

 Local variables

— Declared in a method
— Confined to the method

e Can only be used inside the method that declares the variable

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Local Variable Example

?ublic class Student * classYear and name are
public String name; instance variables
public int classYear; . .
/... * can be used in any method in
public void printInfo() this class
{
String info = name + “: »” + classYear;
System.out Rrintln(info);
}
bli id i Yes . . .
public void increaseveac() * info is a local variable
lassyY ; 5
, e declared inside method
public void decreaseYear() p”ntlnfo()
{ . .
Classyear--: * can only be used inside
} method printinfo()

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Local Variable Example

public class Student
{

public String name;
public int classYear;

/] ...
public void printInfo()
{
String info = name + “: »” + classYear;
System.out.println(info);
}
public void increaseYear()
{
classYear++;
info = “My info string”; // ERROR!!!
}
oublic void decreaseye The compiler will not recognize
{

the variable info inside of
method increaseYear()

b z: v
h

classYear--;

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Local Variable Example

public class Student
{

public String name;
public int classYear;

/] ...
public void printInfo()
{
String info = name + “: »” + classYear;
System.out.println(info);
}
public void increaseYear()
{
classYear++;
String info = “My info string”; // OK
}
sublic void decreaseved Variable info in increaseYear method
{

not affected by variable info in
printinfo method in class Student

L s R R

classYear--;

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Local Variable Rule

e Usually, a variable is only accessible in its
surrounding brackets

public class Variable {

String a = "a";

public void f() {
String b = "b";
if (a.equals("b")) {

String ¢ = "c";

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Methods with Parameters

 Compute the square of this number
— 5
— 10
-7
* | could give you any number, and you could tell me
the square of it

 We can do the same thing with methods

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Methods with Parameters

 Parameters are used to hold the value that you pass
to the method

* Parameters can be used as (local) variables inside
the method

public int Squar‘ Parameters go inside

{
return number * number; the parentheses of
} method header

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Calling a Method with Parameters

public class Student
{

public String name;
public int classYear;

/] ..
public void setName(String studentName)
{
name = studentName;
}
public void setClassYear(int year)
{
classYear = year;
}

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Calling a Method with Parameters

public static void main(String[] args)

{
Student jack = new Student();
jack.setName(“Jack Smith”);
jack.setClassYear(3);

}

Parameters/
Arguments

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

Methods with Multiple Parameters

* Multiple parameters separated by commas
public double getTotal(double price, double tax)

{

return price + price * tax;
}
 When calling a method, the order, type, and
number of arguments must match parameters
specified in method heading

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Methods with Multiple Parameters

public class SalesComputer

{
public double getTotal(double price, double tax)
{
return price + price * tax;
}
/] ..

SalesComputer sc = new SalesComputer();

(14 2
L]

—deuble—total =—se-getTotal {1599);——
double total = sc.getTotal(19.99, 0.065);
int price 50;

Automatic typecasting

R AT < N

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Calling Methods from Methods

A method body can call another method

— Done the same way:
receiving object.method();

* If calling a method in the same class, do not need
receiving_object:
— method();

e Alternatively, use the this keyword (can be omitted)
— this.method();

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Calling Methods from Methods

public class Student
{
public String name;
public int classYear;
public void setName(String studentName)

{
name = studentName;
}
public void setClassYear(int year)
{
classYear = year;
}

public void setNameAndYear(String studentName, int year){
this.name = studentName; // or this.setName(studentName);
this.classYear = year; // or this.setClassYear(year);

=\ THE UNIVERSITY
of NORTH CAROLINA

M at CHAPEL HILL

public/private Modifier

* public void setMajor()
* publicint classYear;

e public: there is no restriction on how you can use
the method or instance variable

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

public/private Modifier

* private void setMajor()
e private int classYear;

e private: can not directly use the method or instance
variable’s name outside the class

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

public/private Modifier

public class Student
{

public int classYear;
private String major;
}
public class StudentTest{
public static void main(String[] args){

Student Jack = new student(); ey
jack.classYe§F = 1; ’

jack.major = “Computer Science”; // ERROR!!!

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

} : —
} Error!!l major is private

More about private

* Hides instance variables and methods inside the
class/object. The private variables and methods are
still there, holding data for the object.

* |nvisible to external users of the class

— Users cannot access private class members directly

* Information hiding

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Example: Rectangle

public class Rectangle
{
public int width;
public int height;
public int area;

public void setDimensions(
int newWidth,
int newHeight){
width = newWidth;
height = newHeight;
area = width * height;

public int getArea(){
return area;

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Rectangle box = new Rectangle();
box.setDimensions (10, 5);
System.out.println(box.getArea());

// Output: 50

box.width = 6;
System.out.println(“The rectangle
with edges ” + box.width + “
and ” + box.height + “ has area

size ” + box.getArea());

// Output: The rectangle with
edges 6 and 5 has area size 50

// Wrong answer!

Accessors and Mutators

e How do you access private instance variables?
e Accessor methods (a.k.a. get methods, getters)

— Allow you to look at data in private instance variables

 Mutator methods (a.k.a. set methods, setters)

— Allow you to change data in private instance variables

THE UNIVERSITY
of NORTH CAROLINA

at CHAPEL HILL

Example: Student

public class Student

{
private String name;
private int age;

public void setName(String studentName) {
name = studentName;

¥ I S
public void setAge(int studentAge) { MUtatOrS

age = studentAge;
} _
public String getName() { —_
return name;

}

public int getage() { SN\ cessors
return age;

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Example: Student

public class Student

{
private String name;
private int age;

public void setName(String studentName) {
name = studentName;

} ——
public void setAge(int studentAge) { MUtatOrS

if (studentAge > 9)
age = studentAge; _
else System.out.println(“The input for age should be positive™)

}
public String getName() {

return name;

by
public int getAge() { =l ACCessors

return age;

—_—

THE UNIVERSITY
of NORTH CAROLINA

at CHAPEL HILL

Private Methods

 Why make methods private?

* Helper methods that will only be used from inside a
class should be private
— External users have no need to call these methods

* Encapsulation

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Private Methods

public class RightTriangle {
private double side_a;
private double side_b;

private double square(double d) {
// some calculation
} // don’t want others to use - rounded for rounded output

private double sqrt(double d) {
// some complicated calculation
} // don’t want others to use - optimized for triangle only

public double getSideC() {
return this.sqrt(this.square(side_a) + this.square(side_b));

}

THE UNIVERSITY
of NORTH CAROLINA

at CHAPEL HILL

Example: Driving a Car

Accelerate with the accelerator pedal
 Decelerate with the brake pedal

Steer with the steering wheel
* Does not matter if:

— You have a 4-cylinder engine or a 6-cylinder engine

— Especially, you don’t have to control how many valves
shall be on at each second in order to drive a car

You still drive the same way

THE UNIVERSITY
of NORTH CAROLINA

at CHAPEL HILL

Encapsulation

* The interface is the same
 The underlying implementation may be different

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

Encapsulation in Classes

* Aclass interface tells programmers all they need to
know to use the class in a program

 The implementation of a class consists of the
private elements of the class definition

— private instance variables and constants
— private methods

— bodies of public methods

THE UNIVERSITY
of NORTH CAROLINA

at CHAPEL HILL

Example: Two Rectangle Classes

{

public class Rectangle

private int width;
private int height;
private int area;

public void setDimensions(
int newWidth,
int newHeight)

{
width = newWidth;
height = newHeight;
area = width * height;
}

public int getArea()
{

}

return area;

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

public class Rectangle

{

private int width;
private int height;

public void setDimensions(
int newWidth,
int newHeight)

width = newWidth;
height = newHeight;
}

public int getArea()

{
return width * height;

Well Encapsulation

* Imagine a wall between (other) programmers and
(your) implementation

— It’s called interface

Implementation:

Private instance variables

Interface:

Private constants
Private Methods
Bodies of all methods

Comments
Headings of public methods
Public defined constants

Method definitions

THE UNIVERSITY
of NORTH CAROLINA

at CHAPEL HILL

Programmer
—

Guidelines When You Define a Class

 Comments before class definition (this is your
header)

* |nstance variables are private

* Provide public accessor and mutator methods
 Comments before methods

 Make helping methods private

o [**/for user-interface comments and // for
implementation comments

THE UNIVERSITY
of NORTH CAROLINA

at CHAPEL HILL

Initialization of Instance Variables

* You can declare default values for instance variables

public class Rectangle
{ Rectangle box = new Rectangle();

public int width = 1; System.out.println(box.getArea());
public int height = 1;
public int area = 1;
public void setDimensions(
int newWidth,
int newHeight){
width = newWidth;
height = newHeight;
area = width * height;

// Output: 1

}
public int getArea(){

return area;

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Select Proper Instance Variables

public class Rectangle public class Rectangle
{ {
pr‘ivate int width; prlivate int width;
e e e
public void setDimensions(public void setDimensions(
int newWidth,

int newWidth, - a
int newHeight){ int newHeight){

width = newNidth; width = newWidth;
height = newHeight; height = newHeight;
area = width * height; }
} public void setWidth(
public void setWidth(int newWidth){
int newWidth){ width = newWidth;
width = newWidth; }

area = width * height; public void setHeight(

} int newHei
L : ght){
public void setHeight(height = newHeight;

int newHeight){

height = newHeight; } L.

area = width * height; public int getArea(){
} return width * height;
public int getArea(){ // MUCH SHORTER AND LESS

return area; // POSSIBILITY OF MAKING MISTAKES
} }

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

	幻灯片编号 1
	Class
	Defining a Class
	Using a Class
	Instance Variable and Local Variable
	Local Variable Example
	Local Variable Example
	Local Variable Example
	Local Variable Rule
	Methods with Parameters
	Methods with Parameters
	Calling a Method with Parameters
	Calling a Method with Parameters
	Methods with Multiple Parameters
	Methods with Multiple Parameters
	Calling Methods from Methods
	Calling Methods from Methods
	public/private Modifier
	public/private Modifier
	public/private Modifier
	More about private
	Example: Rectangle
	Accessors and Mutators
	Example: Student
	Example: Student
	Private Methods
	Private Methods
	Example: Driving a Car
	Encapsulation
	Encapsulation in Classes
	Example: Two Rectangle Classes
	Well Encapsulation
	Guidelines When You Define a Class
	Initialization of Instance Variables
	Select Proper Instance Variables

