
March 19, 2013

COMP 110-003
Introduction to Programming
Midterm Solutions

Haohan Li
TR 11:00 – 12:15, SN 011
Spring 2013

Announcement

• The deadline for Lab 5 is extended to Sunday,
March 24th

• The final project – Program 4 will be online soon,
hopefully in this week

Midterm Exam

• Total points on the last page

• Points for each part at the beginning of each part

• Points for each question near the question

Overall Grade

• Average: 71

• Distribution:
– Higher than 90: 7

– Between 80 and 90: 9

– Between 70 and 80: 6

– Between 60 and 70: 5

– Between 50 and 60: 7

– Below 50: 8

The Objective of the Exam

• You have to summarize: what part to improve?

• The final exam will be in the same form
– Will be a little easier, but more questions are expected

• It will take 3 hours!

– Prepare yourself for the final exam
• The midterm is only 10% of the whole course

• The final is 25% of the whole course

• Please talk to me if you feel that the grade is not
reflecting your effort
– There may be something wrong in your learning style

Key Skills

• How to solve a problem in general
– Write pseudocode for your algorithm!

• You get points for pseudocode

• How to express the solutions in Java
– Especially, without the help of textbook, lecture notes,

past assignments, and Eclipse

Question 1-4

• Easy questions (shouldn’t lose points)
– Nothing special

– Just read the solutions

Question 5

• Easy question
– bestFriend and FIFTYSEVEN57 are fine

– 7daysAWeek starts with a number

– hello! and TOTAL&COST include special characters
• Remember that ! and && have meanings

– private, do and new are keywords in Java

Question 6

• Mid-level question

• double var1 = 10 / 3;
– The answer is 3

– The right side is an integer, because 10 and 3 are both int

• int var2 = (int) (2.5 * 2.6);
– The answer is 6

– 2.5*2.6 = 6.5. Then 6.5 is converted to integer

Question 6

• boolean var3 = !(3 > 3);
– True

– 3>3 is false. The negative will be true

• boolean var4 = (121 % 11 == 0) || (5 == 5);
– True

– 121 % 11 is 0. You can decide it’s true because 5 == 5.

• int var5 = 11 % 3;
– 11 = 3*3 +2. The answer is 2.

Question 7

• Easy question

• double accountBalance = 245.25;
– Can’t use int!

Question 8

• Supposed to be easy, but turned out to be mid-level

• a = b
– It is an assignment statement

– Let a have b’s value

• a == b
– It is a boolean expression, the value depends on a and b

• a += b
– a = a + b, add the value of b to a

– Not “add a to b”!!!

Question 9

• Easy question

H o w a r e y o u ?

0 1 2 3 4 5 6 7 8 9 10 11

Question 10

• Easy question

• str.length()
– int type, the value is 12, not 11

• str.equalsIgnoreCase("HOW ARE YOU")
– boolean type. The value can only be true or false

– Think about str.equals(anotherString)

– The answer is false, because the last ‘?’ is missing.

– str.equalsIgnoreCase("HOW ARE YOU?") will be true

Question 10

• str.indexOf("ou")
– int type, the value is 9

– The value is not 9 and 10
• An integer can not have two values

– indexOf() can search for a single character, or a string

– The first position where “ou” appears is 9

H o w a r e y o u ?

0 1 2 3 4 5 6 7 8 9 10 11

Question 10

• str.lastIndexOf(" ")
– int type, the value is 7

• str.charAt(6)
– char type, the value is ‘e’

• str.substring(1,6)
– String type, the value is “ow ar”

 H o w a r e y o u ?

0 1 2 3 4 5 6 7 8 9 10 11

Question 11

• Supposed to be easy, turn out to be mid-level

• count++ isn’t in the loop. The loop will never end

int count = 0;
 while (count < 100)
 if (count % 5 == 0)
 System.out.println(count);
 count++;

int count = 0;
while (count < 100)
 if (count % 5 == 0)
 System.out.println(count);
count++;

Question 11

• Correct code

– This piece of code will print all numbers that are smaller
than 100 and can be divided by 5
• 0, 5, 10, 15, ……, 95

int count = 0;
while (count < 100) {
 if (count % 5 == 0) {
 System.out.println(count);
 }
 count++;
}

Question 11

• Someone thought the code was

– Then it will also be an infinite loop because if count = 1,
it will not be increased

– This answer was counted as correct

int count = 0;
while (count < 100) {
 if (count % 5 == 0) {
 System.out.println(count);
 count++;
 }
}

Question 12

• Supposed to be easy, turned out to be hard!

– The do-while loop is legal!

– It will start from the body, print the first string

– Then because the condition expression is false, it will not
repeat the loop, and continue to print the second string

– It will be an infinite loop if changed to be while(true)!

do {
 System.out.print("The programming language, "Java", ");
} while (false);
System.out.println("is named after the Java coffee");

Question 12

• The problem is about the quotation marks

– “Java” is outside of the paired quotation marks

– This is a syntax error

do {
 System.out.print("The programming language, "Java", ");
} while (false);
System.out.println("is named after the Java coffee");

Question 12

• The correct code

– We use backslash symbol to include quotation marks in a

string

– The correct code will print:
• The programming language, "Java", is named
after the Java coffee

– And it is true

do {
 System.out.print("The programming language, \"Java\", ");
} while (false);
System.out.println("is named after the Java coffee");

Question 13

• Easy question

– The first semicolon is wrong. It will end the whole if

statement

– The case that num is 0 is not covered

public int absoluteValue(int num) {
 if (num < 0);
 return -num;
 else if (num > 0)
 return num;
}

Question 13

• Correct code

– This piece of code appeared on Lecture 13, the review

session!

– Someone thought -num is wrong
• It is correct. It represents the negative of a variable

public int absoluteValue(int num) {
 if (num < 0)
 return -num;
 else
 return num;
}

Question 14

• Mid-level question

– The swap() method

won’t change
anything because all
variables are local

public void swap(int a,
int b) {
 int temp = a;
 a = b;
 b = temp;
}

public void doSomething() {
 int a = 2, b = 3;
 a = b;
 b = a;
 System.out.println(a + "," + b);
 int c = 2, d = 3;
 int temp = c;
 c = d;
 d = temp;
 System.out.println(c + "," + d);
 int e = 2, f = 3;
 swap(f, e);
 System.out.println(e + "," + f);
}

Question 14

public void doSomething() {
 int a = 2, b = 3;
 a = b; // a is 3 now
 b = a; // b is assigned to be a, which is 3!
 System.out.println(a + "," + b); // print 3,3
 int c = 2, d = 3;
 int temp = c; // temp is 2 now
 c = d; // c is 3 now
 d = temp; // d is 2. This is how we swap variables
 // Think about if you swap liquid in two cups –
 // you need another cup to do that!
 System.out.println(c + "," + d); // print 3,2
 int e = 2, f = 3;
 swap(f, e); // All changes in swap() are local
 System.out.println(e + "," + f); // 2,3 – nothing changed
}

Question 15

• Supposed to be easy, turned out to be hard!

• a = a+a, b = b*b, c=c/c

• Repeat 3 times!!!

int a = 2, b = 2, c = 2;
for (int i = 0; i < 3; i++) {
 a += a;
 b *= b;
 c /= c;
}
System.out.println(a + ", " + b + ", " + c + ".");

Question 15

• The first time
– a = a+a = 2+2 = 4; b = b*b = 2*2 = 4; c = c/c = 2/2 = 1;

• The second time
– a = a+a = 4+4 = 8; b = b*b = 4*4 = 16; c = c/c = 1/1 = 1;

– Pay attention that the value of a, b, c are changed after the
first loop!

• The third time
– a = a+a = 8+8 = 16; b = b*b = 16*16 = 256; c = c/c = 1/1 = 1;

• The result: 16, 256, 1

Question 16

• Mid-level question

– Key point: what does this for loop do?

– It deletes the first k words!

public void test(int k) {
 String t = "The quick brown fox jumps over the lazy dog";
 for (int i = 0; i < k; i++) {
 t = t.substring(t.indexOf(" ") + 1);
 }
 System.out.println(t.substring(0, t.indexOf(" ")));
}

Extract Words (From Lecture 10)

String t = "2.5 + 3 + 5 + 12 + 16";
while (t.indexOf(" ") != -1) {
 String temp = t.substring(0, t.indexOf(" "));
 t = t.substring(t.indexOf(" ") + 1);
 System.out.print("**" + temp + "**");
}
System.out.println("**" + t + "**");

• This piece of code will extract each single word in
the string
– While there is at least one space, we print the first word

• The output will be
2.5+**3**+**5**+**12**+**16**

Question 16

• Mid-level question

– Reading the loop
• In each loop body, t is updated to be the string after its first “ ”

• Therefore, the first word is deleted

• After k times, the first k words are deleted

public void test(int k) {
 String t = "The quick brown fox jumps over the lazy dog";
 for (int i = 0; i < k; i++) {
 t = t.substring(t.indexOf(" ") + 1);
 }
 System.out.println(t.substring(0, t.indexOf(" ")));
}

Question 16

• Mid-level question

– After the loop, we print the substring from the beginning
to the first “ ”
• We print the first word

public void test(int k) {
 String t = "The quick brown fox jumps over the lazy dog";
 for (int i = 0; i < k; i++) {
 t = t.substring(t.indexOf(" ") + 1);
 }
 System.out.println(t.substring(0, t.indexOf(" ")));
}

Question 16

• Mid-level question

– Therefore, for test(1), it will remove 1 word then print
the first word in the remaining string, which is “quick”

– test(3) will print the 4th word, which is “fox”

– test(5) will print the 6th word, which is “over”

public void test(int k) {
 String t = "The quick brown fox jumps over the lazy dog";
 for (int i = 0; i < k; i++) {
 t = t.substring(t.indexOf(" ") + 1);
 }
 System.out.println(t.substring(0, t.indexOf(" ")));
}

Question 17-19

• Supposed to be easy to mid-level, turned out to be
mid-level (not so bad compared with 11-16)

• First problem: no pseudocode!
– If you don’t write down your idea, I have to guess from

your sketch code – it is really hard!

– Also, it is hard for yourself to follow the whole logic flow

• Second problem: not familiar with methods
– I used methods so that you don’t have to write

complicated user interactions
• You didn’t lose points for not using methods correctly

Question 17

• Supposed to be easy, turned out to be mid-level

• The requirement: count all divisors

• How do you count things?
– You try all cases

– For each case that fulfills the requirement, you add the
total number by 1

Question 17

• Supposed to be easy, turned out to be mid-level

• The requirement: count all divisors

• How do you count things?
– You try all cases

• Try all cases: test every positive integer no greater than N

– For each case that fulfills the requirement, you add the
total number by 1
• Use a variable to count the value. If the integer is a divisor, add

the counting variable by 1

Question 17

• You try all cases
– Try all cases: test every positive integer no greater than N

– for (int i=1; i<=N; i++)

• For each case that fulfills the requirement, you add
the total number by 1
– Use a variable to count the value. If the integer is a

divisor, add the counting variable by 1

– if (N%i == 0) count++;

– Remember to initialize count as 0

Question 17

• Now it is a complete program

public int divisors(int N) {
 int count = 0;
 for (int i = 1; i <= N; i++) {
 if (N % i == 0)
 count++;
 }
 return count;
}

Question 17

• Advanced version
– The hint is quite straightforward: if N%i == 0, then of

course N%(N/i) is also 0

– Therefore, every time we find a divisor, there is another
paired divisor. We can increase counter by 2

– How to avoid over-counting? We only count the small
value in the pair. Therefore, the loop stops at Math.sqrt(N)

– The only problem: for Math.sqrt(N) itself, if it is an integer,
there is no paired integer (think about 100%10 == 0).
Therefore, we have to deal with this special case

Question 17

• Advanced version

public int factors(int N) {
 int count = 0;
 for (int i = 1; i <= Math.sqrt(N); i++) {
 if (N % i == 0)
 count += 2;
 if (i == Math.sqrt(N))
 count--; // avoid over-counting
 }
 return count;
}

Question 18

• Mid-level question

• The requirement: compare two strings

• How do you compare two strings?
– If they are not in the same length, they can not be equal

– If they are in the same length, then if there is one
different pair of characters, they can not be equal

– If we can not find anything wrong, they are equal

– However, if we find a pair of matching characters, it does
not mean that they are equal

Question 18

• If they are not in the same length, they aren’t equal

• If they are in the same length, then if there is one different
pair of characters, they can not be equal

• However, if we find a pair of matching characters, it does
not mean that they are equal

H o w a r e

H o w a r e y o u ?

H o w a r e y o u ?

H o w i s g o i n g

H o w a r e y o u ?

H o w i s g o i n g

Question 18

public boolean equalStrings(String a, String b) {
 boolean result = true;
 // We start from true, and try to find violations
 if (a.length() != b.length()) {
 result = false;
 } else {
 for (int i = 0; i < a.length(); i++) {
 if (a.charAt(i) != b.charAt(i))
 result = false;
 // You can not write: else result = true;
 }
 }
 return result;
}

Question 18

• Another idea
– Count the pairs and see if there are a.length() pairs

 public boolean equalStrings(String a, String b) {
 int match = 0;
 if (a.length() != b.length()) {
 return false;
 } else {
 for (int i = 0; i < a.length(); i++) {
 if (a.charAt(i) == b.charAt(i))
 match++;
 }
 }
 return (match == a.length());
}

Question 18

• Advanced version
– This is the most difficult question in the exam. It’s good

that almost no one attempted it.

• Basic idea
– Find the short string, and compare each character in the

short string with the long string

– After that, check if all remaining characters in the long
strings are all spaces

Question 19

• Mid-level question (it is not a hard question)

• The requirement: calculate π using the series

• How to calculate?
– Of course you have to use a loop

– But what is in the loop body?

– The key point is to find the pattern

Question 19

• Idea 1: (Find the relationship in terms and indices)
– The 1st term is 1/(2*1-1), it is positive

– The 2nd term is 1/(2*2-1), it is negative

– …

– The ith term is 1/(2*i-1), it is positive if i is odd, and is
negative is i is even

Question 19

public double pi() {
 double qPi = 0;
 for (int i = 1; i <= 10000; i++) {
 if (i % 2 != 0) { // check pos or neg
 qPi += 1 / (double) (2 * i - 1);
 // don't forget the type converting!
 } else {
 qPi -= 1 / (double) (2 * i - 1);
 }
 }
 return qPi * 4;
 // remember: we are calculating a quarter of pi
}

Question 19

• Idea 2: (Find the relationship in terms and indices)
– The 1st term is 1/1

– The 2nd term is the 1st term multiplying -1/3

– The 3rd tem is the 2nd term multiplying -3/5

– …

– The ith term is the (i-1)th term multiplying -(2*i-1)/(2*i+1)

Question 19

public double pi () {
 double pi = 0;
 double term = 4;
 for (int i = 1; i <= 10000; i++) {
 pi += term;
 term *= -(double) (2 * i - 1) / (2 * i + 1);
}

Question 19

• Idea 3: (Find the relationship in only terms)
– The 1st term’s divisor is 1

– The 2nd term’s divisor is 3

– …

– The ith term’s divisor is the (i-1)th term’s divisor plus 2

– The positive and negative term alters

– End the loop when the divisor is greater than 20001

Question 19

public double pi() {
 double qPi = 0, divisor = 1;
 boolean odd = true;
 while (divisor <= 20001) { // Notice the condition
 if (odd) {
 qPi += (1 / divisor);
 odd = false;
 // if current term is pos, turn to neg;
 } else {
 qPi -= (1 / divisor);
 odd = true;
 // if current term is neg, turn to pos;
 }
 divisor += 2;
 }
 return qPi * 4;
}

Question 19

• Idea 4: (Find the relationship in only terms)
– The 1st two terms are 1/1-1/3

– The 2nd two terms are 1/5-1/7

– ……

– The ith two terms’ divisors are the (i-1)th two terms’ divisors
plus 4

– You can group the terms by pairs – one by one is not a must

Question 19

public double pi() {
 double qPi = 0;
 double divisor = 1;
 for (int i = 0; i < 10000; i++) {
 qPi += (1 / divisor);
 qPi -= (1 / (divisor + 2));
 divisor += 4;
 }
 return qPi * 4;
}

Let Me Know If

• I added the numbers wrong on your exam paper
– I won’t re-grade your answers

• The grade on the paper is different from Sakai

• You attempted Question 19 and want to see the
correct code in your version
– All semi-finished answers in Question 19 were modified

to complete programs when being graded

• You have been working hard but feels that the
grade can not reflect your effort

	幻灯片编号 1
	Announcement
	Midterm Exam
	Overall Grade
	The Objective of the Exam
	Key Skills
	Question 1-4
	Question 5
	Question 6
	Question 6
	Question 7
	Question 8
	Question 9
	Question 10
	Question 10
	Question 10
	Question 11
	Question 11
	Question 11
	Question 12
	Question 12
	Question 12
	Question 13
	Question 13
	Question 14
	Question 14
	Question 15
	Question 15
	Question 16
	Extract Words (From Lecture 10)
	Question 16
	Question 16
	Question 16
	Question 17-19
	Question 17
	Question 17
	Question 17
	Question 17
	Question 17
	Question 17
	Question 18
	Question 18
	Question 18
	Question 18
	Question 18
	Question 19
	Question 19
	Question 19
	Question 19
	Question 19
	Question 19
	Question 19
	Question 19
	Question 19
	Let Me Know If

