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Announcement 

• The deadline for Lab 5 is extended to Sunday, 
March 24th 

• The final project – Program 4 will be online soon, 
hopefully in this week 



Midterm Exam 

• Total points on the last page 

• Points for each part at the beginning of each part 

• Points for each question near the question 



Overall Grade 

• Average: 71 

• Distribution: 
– Higher than 90: 7 

– Between 80 and 90: 9 

– Between 70 and 80: 6 

– Between 60 and 70: 5 

– Between 50 and 60: 7 

– Below 50: 8 



The Objective of the Exam  

• You have to summarize: what part to improve? 

• The final exam will be in the same form 
– Will be a little easier, but more questions are expected   

• It will take 3 hours! 

– Prepare yourself for the final exam 
• The midterm is only 10% of the whole course 

• The final is 25% of the whole course 

• Please talk to me if you feel that the grade is not 
reflecting your effort 
– There may be something wrong in your learning style 



Key Skills 

• How to solve a problem in general 
– Write pseudocode for your algorithm! 

• You get points for pseudocode 

• How to express the solutions in Java 
– Especially, without the help of textbook, lecture notes, 

past assignments, and Eclipse 



Question 1-4 

• Easy questions (shouldn’t lose points) 
– Nothing special  

– Just read the solutions 



Question 5 

• Easy question 
– bestFriend and FIFTYSEVEN57 are fine 

– 7daysAWeek starts with a number 

– hello! and TOTAL&COST include special characters 
• Remember that ! and && have meanings 

– private, do and new are keywords in Java 



Question 6 

• Mid-level question 

• double var1 = 10 / 3;  
– The answer is 3 

– The right side is an integer, because 10 and 3 are both int 

• int var2 = (int) (2.5 * 2.6);  
– The answer is 6 

– 2.5*2.6 = 6.5. Then 6.5 is converted to integer 



Question 6 

• boolean var3 = !(3 > 3);  
– True 

– 3>3 is false. The negative will be true 

• boolean var4 = (121 % 11 == 0) || (5 == 5);  
– True 

– 121 % 11 is 0. You can decide it’s true because 5 == 5. 

• int var5 = 11 % 3;  
– 11 = 3*3 +2. The answer is 2. 



Question 7 

• Easy question 

• double accountBalance = 245.25; 
– Can’t use int! 



Question 8 

• Supposed to be easy, but turned out to be mid-level 

• a = b 
– It is an assignment statement 

– Let a have b’s value 

• a == b 
– It is a boolean expression, the value depends on a and b 

• a += b 
– a = a + b, add the value of b to a 

– Not “add a to b”!!! 



Question 9 

• Easy question 

 
H o w a r e y o u ? 

0 1 2 3 4 5 6 7 8 9 10 11 



Question 10 

• Easy question 

• str.length() 
– int type, the value is 12, not 11 

• str.equalsIgnoreCase("HOW ARE YOU") 
– boolean type. The value can only be true or false 

– Think about str.equals(anotherString) 

– The answer is false, because the last ‘?’ is missing.  

– str.equalsIgnoreCase("HOW ARE YOU?") will be true 

 



Question 10 

• str.indexOf("ou") 
– int type, the value is 9 

– The value is not 9 and 10  
• An integer can not have two values 

– indexOf() can search for a single character, or a string 

– The first position where “ou” appears is 9 

H o w a r e y o u ? 

0 1 2 3 4 5 6 7 8 9 10 11 



Question 10 

• str.lastIndexOf(" ") 
– int type, the value is 7 

• str.charAt(6) 
– char type, the value is ‘e’ 

• str.substring(1,6) 
– String type, the value is “ow ar” 

 H o w a r e y o u ? 

0 1 2 3 4 5 6 7 8 9 10 11 



Question 11 

• Supposed to be easy, turn out to be mid-level 

 

 
 

 
 

 

 

• count++ isn’t in the loop. The loop will never end 

int count = 0; 
 while (count < 100) 
  if (count % 5 == 0) 
   System.out.println(count); 
   count++; 

int count = 0; 
while (count < 100) 
 if (count % 5 == 0) 
  System.out.println(count); 
count++; 



Question 11 

• Correct code 

 

 
 

 
 

– This piece of code will print all numbers that are smaller 
than 100 and can be divided by 5 
• 0, 5, 10, 15, ……, 95 

 

int count = 0; 
while (count < 100) { 
 if (count % 5 == 0) { 
  System.out.println(count); 
 } 
 count++; 
} 



Question 11 

• Someone thought the code was 

 

 
 

 
 

– Then it will also be an infinite loop because if count = 1,  
it will not be increased 

– This answer was counted as correct 

 

int count = 0; 
while (count < 100) { 
 if (count % 5 == 0) { 
  System.out.println(count); 
  count++; 
 } 
} 



Question 12 

• Supposed to be easy, turned out to be hard! 

 

 

 
– The do-while loop is legal! 

– It will start from the body, print the first string 

– Then because the condition expression is false, it will not 
repeat the loop, and continue to print the second string 

– It will be an infinite loop if changed to be while(true)! 

do { 
 System.out.print("The programming language, "Java", "); 
} while (false); 
System.out.println("is named after the Java coffee"); 



Question 12 

• The problem is about the quotation marks 

 

 

 
– “Java” is outside of the paired quotation marks 

– This is a syntax error 

do { 
 System.out.print("The programming language, "Java", "); 
} while (false); 
System.out.println("is named after the Java coffee"); 



Question 12 

• The correct code 
 

 

 
– We use backslash symbol to include quotation marks in a 

string 

– The correct code will print: 
• The programming language, "Java", is named 
after the Java coffee 

– And it is true 

do { 
 System.out.print("The programming language, \"Java\", "); 
} while (false); 
System.out.println("is named after the Java coffee"); 



Question 13 

• Easy question 

 

 

 

 
– The first semicolon is wrong. It will end the whole if 

statement 

– The case that num is 0 is not covered 

public int absoluteValue(int num) { 
 if (num < 0); 
  return -num; 
 else if (num > 0) 
  return num; 
} 



Question 13 

• Correct code 

 

 

 

 
– This piece of code appeared on Lecture 13, the review 

session! 

– Someone thought -num is wrong 
• It is correct. It represents the negative of a variable 

public int absoluteValue(int num) { 
 if (num < 0) 
  return -num; 
 else 
  return num; 
} 



Question 14 

• Mid-level question 

 

 

 

 
– The swap() method 

won’t change 
anything because all 
variables are local 

public void swap(int a,  
int b) { 
 int temp = a; 
 a = b; 
 b = temp; 
} 

public void doSomething() { 
 int a = 2, b = 3; 
 a = b; 
 b = a; 
 System.out.println(a + "," + b); 
 int c = 2, d = 3; 
 int temp = c; 
 c = d; 
 d = temp; 
 System.out.println(c + "," + d); 
 int e = 2, f = 3; 
 swap(f, e); 
 System.out.println(e + "," + f); 
} 



Question 14 

public void doSomething() { 
 int a = 2, b = 3; 
 a = b; // a is 3 now 
 b = a; // b is assigned to be a, which is 3! 
 System.out.println(a + "," + b); // print 3,3 
 int c = 2, d = 3; 
 int temp = c; // temp is 2 now 
 c = d; // c is 3 now 
 d = temp; // d is 2. This is how we swap variables 
 // Think about if you swap liquid in two cups – 
 // you need another cup to do that! 
 System.out.println(c + "," + d); // print 3,2 
 int e = 2, f = 3; 
 swap(f, e); // All changes in swap() are local 
 System.out.println(e + "," + f); // 2,3 – nothing changed  
} 



Question 15 

• Supposed to be easy, turned out to be hard! 

 

 

 

 

 

• a = a+a, b = b*b, c=c/c 

• Repeat 3 times!!! 

int a = 2, b = 2, c = 2; 
for (int i = 0; i < 3; i++) { 
 a += a; 
 b *= b; 
 c /= c; 
} 
System.out.println(a + ", " + b + ", " + c + "."); 



Question 15 

• The first time 
– a = a+a = 2+2 = 4; b = b*b = 2*2 = 4; c = c/c = 2/2 = 1; 

• The second time 
– a = a+a = 4+4 = 8; b = b*b = 4*4 = 16; c = c/c = 1/1 = 1; 

– Pay attention that the value of a, b, c are changed after the 
first loop! 

• The third time 
– a = a+a = 8+8 = 16; b = b*b = 16*16 = 256; c = c/c = 1/1 = 1; 

• The result: 16, 256, 1 



Question 16 

• Mid-level question 

 

 

 

 
 

– Key point: what does this for loop do? 

– It deletes the first k words! 

public void test(int k) { 
 String t = "The quick brown fox jumps over the lazy dog"; 
 for (int i = 0; i < k; i++) { 
  t = t.substring(t.indexOf(" ") + 1); 
 } 
 System.out.println(t.substring(0, t.indexOf(" "))); 
} 



Extract Words (From Lecture 10) 

String t = "2.5 + 3 + 5 + 12 + 16"; 
while (t.indexOf(" ") != -1) { 
 String temp = t.substring(0, t.indexOf(" ")); 
 t = t.substring(t.indexOf(" ") + 1); 
 System.out.print("**" + temp + "**"); 
} 
System.out.println("**" + t + "**"); 

 

 
 

 

• This piece of code will extract each single word in 
the string 
– While there is at least one space, we print the first word 

• The output will be 
**2.5**+**3**+**5**+**12**+**16** 



Question 16 

• Mid-level question 
 

 

 
 

– Reading the loop 
• In each loop body, t is updated to be the string after its first “ ” 

• Therefore, the first word is deleted 

• After k times, the first k words are deleted 

public void test(int k) { 
 String t = "The quick brown fox jumps over the lazy dog"; 
 for (int i = 0; i < k; i++) { 
  t = t.substring(t.indexOf(" ") + 1); 
 } 
 System.out.println(t.substring(0, t.indexOf(" "))); 
} 



Question 16 

• Mid-level question 
 

 

 
 

– After the loop, we print the substring from the beginning 
to the first “ ” 
• We print the first word 

public void test(int k) { 
 String t = "The quick brown fox jumps over the lazy dog"; 
 for (int i = 0; i < k; i++) { 
  t = t.substring(t.indexOf(" ") + 1); 
 } 
 System.out.println(t.substring(0, t.indexOf(" "))); 
} 



Question 16 

• Mid-level question 
 

 

 
 

– Therefore, for test(1), it will remove 1 word then print 
the first word in the remaining string, which is “quick” 

– test(3) will print the 4th word, which is “fox” 

– test(5) will print the 6th word, which is “over” 

public void test(int k) { 
 String t = "The quick brown fox jumps over the lazy dog"; 
 for (int i = 0; i < k; i++) { 
  t = t.substring(t.indexOf(" ") + 1); 
 } 
 System.out.println(t.substring(0, t.indexOf(" "))); 
} 



Question 17-19 

• Supposed to be easy to mid-level, turned out to be 
mid-level (not so bad compared with 11-16) 

• First problem: no pseudocode! 
– If you don’t write down your idea, I have to guess from 

your sketch code – it is really hard! 

– Also, it is hard for yourself to follow the whole logic flow 

• Second problem: not familiar with methods 
– I used methods so that you don’t have to write 

complicated user interactions 
• You didn’t lose points for not using methods correctly 



Question 17 

• Supposed to be easy, turned out to be mid-level 

• The requirement: count all divisors 

• How do you count things? 
– You try all cases 

– For each case that fulfills the requirement, you add the 
total number by 1 



Question 17 

• Supposed to be easy, turned out to be mid-level 

• The requirement: count all divisors 

• How do you count things? 
– You try all cases 

• Try all cases: test every positive integer no greater than N 

– For each case that fulfills the requirement, you add the 
total number by 1 
• Use a variable to count the value. If the integer is a divisor, add 

the counting variable by 1 



Question 17 

• You try all cases 
– Try all cases: test every positive integer no greater than N 

– for (int i=1; i<=N; i++) 

• For each case that fulfills the requirement, you add 
the total number by 1 
– Use a variable to count the value. If the integer is a 

divisor, add the counting variable by 1 

– if (N%i == 0) count++; 

– Remember to initialize count as 0 



Question 17 

• Now it is a complete program 

public int divisors(int N) { 
 int count = 0; 
 for (int i = 1; i <= N; i++) { 
  if (N % i == 0) 
   count++; 
 } 
 return count; 
} 



Question 17 

• Advanced version 
– The hint is quite straightforward: if N%i == 0, then of 

course N%(N/i) is also 0 

– Therefore, every time we find a divisor, there is another 
paired divisor. We can increase counter by 2 

– How to avoid over-counting? We only count the small 
value in the pair. Therefore, the loop stops at Math.sqrt(N) 

– The only problem: for Math.sqrt(N) itself, if it is an integer, 
there is no paired integer (think about 100%10 == 0). 
Therefore, we have to deal with this special case 



Question 17 

• Advanced version 

public int factors(int N) { 
 int count = 0; 
 for (int i = 1; i <= Math.sqrt(N); i++) { 
  if (N % i == 0)  
   count += 2; 
  if (i == Math.sqrt(N))  
  count--; // avoid over-counting 
 } 
 return count; 
} 



Question 18 

• Mid-level question 

• The requirement: compare two strings 

• How do you compare two strings? 
– If they are not in the same length, they can not be equal 

– If they are in the same length, then if there is one 
different pair of characters, they can not be equal 

– If we can not find anything wrong, they are equal 

– However, if we find a pair of matching characters, it does 
not mean that they are equal 



Question 18 

• If they are not in the same length, they aren’t equal 

 

 

• If they are in the same length, then if there is one different 
pair of characters, they can not be equal 

 

 

• However, if we find a pair of matching characters, it does 
not mean that they are equal 

H o w a r e 

H o w   a r e y o u ? 

H o w a r e y o u ? 

H o w i s g o i n g 

H o w a r e y o u ? 

H o w i s g o i n g 



Question 18 

public boolean equalStrings(String a, String b) { 
 boolean result = true;  
 // We start from true, and try to find violations 
 if (a.length() != b.length()) { 
  result = false; 
 } else { 
  for (int i = 0; i < a.length(); i++) { 
   if (a.charAt(i) != b.charAt(i)) 
    result = false; 
    // You can not write: else result = true; 
  } 
 } 
 return result; 
} 



Question 18 

• Another idea 
– Count the pairs and see if there are a.length() pairs 

 public boolean equalStrings(String a, String b) { 
 int match = 0;  
 if (a.length() != b.length()) { 
   return false; 
 } else { 
  for (int i = 0; i < a.length(); i++) { 
   if (a.charAt(i) == b.charAt(i)) 
    match++; 
  } 
 } 
 return (match == a.length()); 
} 



Question 18 

• Advanced version 
– This is the most difficult question in the exam. It’s good 

that almost no one attempted it. 

• Basic idea 
– Find the short string, and compare each character in the 

short string with the long string 

– After that, check if all remaining characters in the long 
strings are all spaces 



Question 19 

• Mid-level question (it is not a hard question) 

• The requirement: calculate π using the series 

 

 

• How to calculate? 
– Of course you have to use a loop 

– But what is in the loop body? 

– The key point is to find the pattern 



Question 19 

 

 

• Idea 1: (Find the relationship in terms and indices) 
– The 1st term is 1/(2*1-1), it is positive 

– The 2nd term is 1/(2*2-1), it is negative 

– … 

– The ith term is 1/(2*i-1), it is positive if i is odd, and is 
negative is i is even 



Question 19 

public double pi() { 
 double qPi = 0; 
 for (int i = 1; i <= 10000; i++) { 
  if (i % 2 != 0) { // check pos or neg 
   qPi += 1 / (double) (2 * i - 1); 
   // don't forget the type converting! 
  } else { 
   qPi -= 1 / (double) (2 * i - 1); 
  } 
 } 
 return qPi * 4; 
 // remember: we are calculating a quarter of pi 
} 



Question 19 

 

 

• Idea 2: (Find the relationship in terms and indices) 
– The 1st term is 1/1 

– The 2nd term is the 1st term multiplying -1/3 

– The 3rd tem is the 2nd term multiplying -3/5 

– … 

– The ith term is the (i-1)th term multiplying -(2*i-1)/(2*i+1) 



Question 19 

public double pi () { 
 double pi = 0; 
 double term = 4; 
 for (int i = 1; i <= 10000; i++) { 
  pi += term; 
  term *= -(double) (2 * i - 1) / (2 * i + 1); 
} 
 



Question 19 

 

 

• Idea 3: (Find the relationship in only terms) 
– The 1st term’s divisor is 1 

– The 2nd term’s divisor is 3 

– … 

– The ith term’s divisor is the (i-1)th term’s divisor plus 2 

– The positive and negative term alters 

– End the loop when the divisor is greater than 20001 



Question 19 

public double pi() { 
 double qPi = 0, divisor = 1; 
 boolean odd = true; 
 while (divisor <= 20001) { // Notice the condition 
  if (odd) { 
   qPi += (1 / divisor); 
   odd = false; 
   // if current term is pos, turn to neg; 
  } else { 
   qPi -= (1 / divisor); 
   odd = true; 
   // if current term is neg, turn to pos; 
  } 
  divisor += 2; 
 } 
 return qPi * 4; 
} 



Question 19 

 

 

• Idea 4: (Find the relationship in only terms) 
– The 1st two terms are 1/1-1/3 

– The 2nd two terms are 1/5-1/7 

– …… 

– The ith two terms’ divisors are the (i-1)th two terms’ divisors 
plus 4 

– You can group the terms by pairs – one by one is not a must 



Question 19 

public double pi() { 
 double qPi = 0; 
 double divisor = 1; 
 for (int i = 0; i < 10000; i++) { 
  qPi += (1 / divisor); 
  qPi -= (1 / (divisor + 2)); 
  divisor += 4; 
 } 
 return qPi * 4; 
} 



Let Me Know If 

• I added the numbers wrong on your exam paper 
– I won’t re-grade your answers 

• The grade on the paper is different from Sakai 

• You attempted Question 19 and want to see the 
correct code in your version 
– All semi-finished answers in Question 19 were modified 

to complete programs when being graded 

• You have been working hard but feels that the 
grade can not reflect your effort 
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