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Announcement 

• Program 4 is online! 

• You will write a tic-tac-toe game 



Requirements 

• The game can be displayed 
– When user clicks, a move will be made 

• The game can be played  
– After the user moves, the program makes another move 

• The game will end 
– The program judges if someone wins 



Your Mission 

• Write code to display things correctly 

• Write code to judge if the game ends 

• Write code to make automatic moves! 
– That’s what we call artificial intelligence 

– You can play against the AI I wrote and see if your 
program is smart enough 



Milestones 

• Submit something by April 11th  
– Do something before that time!  

– If you wait until the end of the semester, you are doomed 

• Make it run and write a random “AI” by April 20th  
– You can submit things after April 20th and you lose points 

• Write a smart AI and a report by April 30th  
– By that day, you must submit everything 

 



Start Immediately!!! 

• Play the game online 
– Think about how to decide if a game wins/draws 

– Think about how to play smartly 

– Write down your algorithms 

• You can start coding now, or wait until we learn 
more about arrays 
– Start coding no later than next week! 

– Code progressively; understand the structure first 

• Ask questions if you have any – don’t guess 



Extra Points 

• You must write your AI in a way that it doesn’t rely 
on who moves first 
– Then your program will run if the computer moves first 

• If you have this version, you can participate the 
tournament! 
– The AIs will fight each other 

– The winner will get extra points on the final grade 



Daily Joke 

• Q: Why did the programmer quit his job? 

• A: Because he didn't get arrays. 

 



Review 

• Classes 

• Objects 

• Instance variables 

• Methods 
– Return types 

– Parameters and arguments 

• Information hiding and encapsulation 
– public/private 

– accessors/mutators 



Class 

Class name 

Data 
(or attributes, or 

instance variables) 

Methods 

public class Student { 
 public String name; 
 public int classYear; 
 public double GPA; 
 public String major; 
 
// ... 
 
 public String getMajor() { 
  return major; 
 } 
 
 public void increaseYear() { 
  classYear++; 
 } 
} 



Using a Class 

public class StudentTest { 
  public static void main(String[] args) { 
 Student jack = new Student(); 
 jack.name = "Jack Smith"; 
 jack.major = "Computer Science"; 
 jack.classYear = 1; 
 jack.GPA = 3.5; 
  
 String m = jack.getMajor(); // 
 System.out.println("Jack's major is " + m); 
 
 jack.increaseYear(); 
 
 System.out.println("Jack's class year is now 
" + jack.classYear); 
 
  } 
} 

public class Student { 
 public String name; 
 public int classYear; 
 public double GPA; 
 public String major; 
 
// ... 
 
 public String getMajor() { 
  return major; 
 } 
 
 public void increaseYear() { 
  classYear++; 
 } 
} 



Methods 

public class Student 
{ 
    private String name; 
    private int age; 
 
    public void setName(String studentName) { 
        name = studentName; 
    } 
    public void setAge(int studentAge) { 
        age = studentAge; 
    } 
    public String getName() { 
        return name; 
    } 
    public int getAge() { 
        return age; 
    } 
} 

Accessors 

Mutators 



Methods with Parameters 

• Parameters are used to hold the value that you pass 
to the method 
 

• Parameters can be used as (local) variables inside 
the method 

 
 
public int square(int number) 
{ 
    return number * number; 
} 

 

Parameters go inside 
the parentheses of 

method header 



Variables of a Class Type 

• What goes in these variables? 
– In a class type variable, the address pointing to the actual 

object is saved (not the object itself) 

   s 
 
jack 
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Arrays 

• To think about arrays, let’s think about loops first 

• Why do we need loops? 
– Because we want to repeat things without write them 

again and again 

– Think about the average score problem 



Average Score without Loops 

• Assuming that we only need 5 scores 

int score1 = keyboard.nextInt(); 
int score2 = keyboard.nextInt(); 
int score3 = keyboard.nextInt(); 
int score4 = keyboard.nextInt(); 
int score5 = keyboard.nextInt(); 
 
double average = (double) (score1 + score2 +  
  score3 + score4 + score5) / 5.0; 



Average Score with Loops 

• Assuming that we only need 5 scores 

for (int i = 0; i < 5; i++) 
 scoreSum += keyboard.nextInt(); 
 
double average = (double) scoreSum / 5.0; 



What if We Really Need to Save Them 

• If we really need to save these scores, loop won’t 
help you 

• Think about the requirement 
– Print out if a score is above/below average 

– We have to calculate average first, then decide if a score 
is above/below average 

– Therefore we must save all these scores, and compare 
them to the average in the end 



Comparing All Scores and the Average 

System.out.println("Enter 5 basketball scores:"); 
Scanner keyboard = new Scanner(System.in); 
int score1 = keyboard.nextInt(); 
int score2 = keyboard.nextInt(); 
int score3 = keyboard.nextInt(); 
int score4 = keyboard.nextInt(); 
int score5 = keyboard.nextInt(); 
double average = (double) (score1 + score2 + score3 + score4 + score5) / 5.0; 
System.out.println("Average score: " + average); 
 
// repeat this for each of the 5 scores 
if (score1 > average) 
 System.out.println(score1 + ": above average"); 
else if (score1 < average) 
 System.out.println(score1 + ": below average"); 
else 
 System.out.println(score1 + ": equal to the average"); 
 
// if score2...score3...score4... 



If We Have More Scores…… 

• Think about 80 scores… 
– Declare 80 variables 

– Check them 80 times 

• This is illogical! 

• There must be an easier 
way! 
– What about things like: 

Score1, Score2, …, Scoren 



Arrays 

• int[] scores = new int[5]; 
• This is like declaring 5 strangely named variables of 

type int: 
– scores[0] 

– scores[1] 

– scores[2] 

– scores[3] 

– scores[4] 

• Especially, you can use score[i] to locate a single one 



Arrays 

• An array is a collection of items of the same type 

• Like a list of different variables, but with a nice, 
compact way to name them 

• A special kind of object in Java 

• Loops repeat things temporally; arrays repeat 
things spatially 



Comparing Scores/Average w/ Arrays 

System.out.println("Enter 5 basketball scores:"); 
Scanner keyboard = new Scanner(System.in); 
int[] scores = new int[5]; 
int scoreSum = 0; 
for (int i = 0; i < 5; i++) { 
 scores[i] = keyboard.nextInt(); 
 scoreSum += scores[i]; 
} 
double average = (double) scoreSum / 5; 
System.out.println("Average score: " + average); 
 
for (int i = 0; i < 5; i++) { 
 if (scores[i] > average) 
  System.out.println(scores[i] + ": above average"); 
 else if (scores[i] < average) 
  System.out.println(scores[i] + ": below average"); 
 else 
  System.out.println(scores[i] + ": equal to the average"); 
} 



Index 

• Variables such as scores[0] and scores[1] that have 
an integer expression in square brackets are known 
as: 
– indexed variables, subscripted variables, array 

elements, or simply elements 

• An index or subscript is an integer expression inside 
the square brackets that indicates an array element 
– ArrayName[index] 



Index 

• Where have we seen the word index before? 
– String’s indexOf() method 

 

 

 

– str.indexOf(‘e’) == 6; 

– str.charAt(6) == ‘e’; 

– char[] ca = str.toCharArray(); 

– char[6] == ‘e’; 

• In C, there is only char arrays instead of Strings(FYI) 

H o w a r e y o u ? 

0 1 2 3 4 5 6 7 8 9 10 11 



Index 

• Index numbers start with 0. They do NOT start with 
1 or any other number. 
– Not like counters in loops, you can’t change the range of 

indices 

• The reason is that the array name represents a 
memory address, and the ith element can be 
accessed by the address plus i 



Array and Index 

var name score[0] score[1] score[2] score[3] score[4] 

data 62 51 88 70 74 

m address 25131 25132 25133 25134 25135 

• In history, computer scientists argued a lot on this 
• “Should array indices start at 0 or 1? My compromise of 

0.5 was rejected without, I thought, proper consideration.” 
– Stan Kelly-Bootle  

score score+1 score+2 



Access Elements with Indices 

• The number inside square brackets can be any 
integer expression 
– An integer:        scores[3] 

– Variable of type int:      scores[index] 

– Expression that evaluates to int:  scores[index*3] 

• Can use elements just like any other variables: 
– scores[3] = 68; 

– scores[4] = scores[4] + 3;  // just made a 3-pointer! 

– System.out.println(scores[1]); 



Indices and For-Loops 

• In programming, a for-loop usually starts with 
counter i = 0. There is a reason 

for (int i = 0; i < 5; i++) { 
 scores[i] = keyboard.nextInt(); 
 scoreSum += scores[i]; 
} 



The Example Again 

System.out.println("Enter 5 basketball scores:"); 
Scanner keyboard = new Scanner(System.in); 
int[] scores = new int[5]; 
int scoreSum = 0; 
for (int i = 0; i < 5; i++) { 
 scores[i] = keyboard.nextInt(); 
 scoreSum += scores[i]; 
} 
double average = (double) scoreSum / 5; 
System.out.println("Average score: " + average); 
 
for (int i = 0; i < 5; i++) { 
 if (scores[i] > average) 
  System.out.println(scores[i] + ": above average"); 
 else if (scores[i] < average) 
  System.out.println(scores[i] + ": below average"); 
 else 
  System.out.println(scores[i] + ": equal to the average"); 
} 



Creating an Array 

• Array is a special class and we create its objects 
– Syntax for creating an array: 

• Base_Type[] Array_Name = new Base_Type[Length]; 

– Example: 
• int[] pressure = new int[100]; 

– Alternatively: 
• int[] pressure; 

• pressure = new int[100]; 

 



Creating an Array 

• The base type can be any type 
– double[] temperature = new double[7]; 

– Student[] students = new Student[35]; 

• The number of elements in an array is called its 
length or size 
– temperature has 7 elements, temperature[0] through 

temperature[6] 

– students has 35 elements, students[0] through 
students[34] 

 



Creating an Array 

• Create an array with given length saved in constants 
– public static final int NUMBER_OF_READINGS = 100; 

– int[] pressure = new int[NUMBER_OF_READINGS]; 

• Create an array with user input length 
– System.out.println("How many scores?"); 

– int numScores = keyboard.nextInt(); 

– int[] scores = new int[numScores]; 



Finding Length of An Existing Array 

• An array is a special kind of object 
– It has one public instance variable: length 

– length is equal to the length of the array 
Pet[] pets = new Pet[20]; 
pets.length has the value 20 

– You cannot change the value of length because it is final 

 



The Example Again (and again…) 

System.out.println("Enter 5 basketball scores:"); 
Scanner keyboard = new Scanner(System.in); 
int[] scores = new int[5]; 
int scoreSum = 0; 
for (int i = 0; i < scores.length; i++) { 
 scores[i] = keyboard.nextInt(); 
 scoreSum += scores[i]; 
} 
double average = (double) scoreSum / 5; 
System.out.println("Average score: " + average); 
 
for (int i = 0; i < scores.length; i++) { 
 if (scores[i] > average) 
  System.out.println(scores[i] + ": above average"); 
 else if (scores[i] < average) 
  System.out.println(scores[i] + ": below average"); 
 else 
  System.out.println(scores[i] + ": equal to the average"); 
} 



Don’t be OUT OF BOUNDS! 

• Indices MUST be in bounds 
– double[] entries = new double[5]; // from [0] to [4] 

– entries[5] = 3.7;  // ERROR! Index out of bounds 

• Your code will compile if you are using an index that 
is out of bounds, but it will give you a run-time 
error! 



Initializing Arrays 

• You can initialize arrays when you declare them 
– int[] scores = { 68, 97, 102 }; 

• Equivalent to 
– int[] scores = new int[3]; 

– scores[0] = 68; 

– scores[1] = 97; 

– scores[2] = 102; 

• Or, you can use for-loop 
– When in doubt, for-loop! 
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