
March 26, 2013

COMP 110-003
Introduction to Programming
Arrays

Haohan Li
TR 11:00 – 12:15, SN 011
Spring 2013

Announcement

• Program 4 is online!

• You will write a tic-tac-toe game

Requirements

• The game can be displayed
– When user clicks, a move will be made

• The game can be played
– After the user moves, the program makes another move

• The game will end
– The program judges if someone wins

Your Mission

• Write code to display things correctly

• Write code to judge if the game ends

• Write code to make automatic moves!
– That’s what we call artificial intelligence

– You can play against the AI I wrote and see if your
program is smart enough

Milestones

• Submit something by April 11th
– Do something before that time!

– If you wait until the end of the semester, you are doomed

• Make it run and write a random “AI” by April 20th
– You can submit things after April 20th and you lose points

• Write a smart AI and a report by April 30th
– By that day, you must submit everything

Start Immediately!!!

• Play the game online
– Think about how to decide if a game wins/draws

– Think about how to play smartly

– Write down your algorithms

• You can start coding now, or wait until we learn
more about arrays
– Start coding no later than next week!

– Code progressively; understand the structure first

• Ask questions if you have any – don’t guess

Extra Points

• You must write your AI in a way that it doesn’t rely
on who moves first
– Then your program will run if the computer moves first

• If you have this version, you can participate the
tournament!
– The AIs will fight each other

– The winner will get extra points on the final grade

Daily Joke

• Q: Why did the programmer quit his job?

• A: Because he didn't get arrays.

Review

• Classes

• Objects

• Instance variables

• Methods
– Return types

– Parameters and arguments

• Information hiding and encapsulation
– public/private

– accessors/mutators

Class

Class name

Data
(or attributes, or

instance variables)

Methods

public class Student {
 public String name;
 public int classYear;
 public double GPA;
 public String major;

// ...

 public String getMajor() {
 return major;
 }

 public void increaseYear() {
 classYear++;
 }
}

Using a Class

public class StudentTest {
 public static void main(String[] args) {
 Student jack = new Student();
 jack.name = "Jack Smith";
 jack.major = "Computer Science";
 jack.classYear = 1;
 jack.GPA = 3.5;

 String m = jack.getMajor(); //
 System.out.println("Jack's major is " + m);

 jack.increaseYear();

 System.out.println("Jack's class year is now
" + jack.classYear);

 }
}

public class Student {
 public String name;
 public int classYear;
 public double GPA;
 public String major;

// ...

 public String getMajor() {
 return major;
 }

 public void increaseYear() {
 classYear++;
 }
}

Methods

public class Student
{
 private String name;
 private int age;

 public void setName(String studentName) {
 name = studentName;
 }
 public void setAge(int studentAge) {
 age = studentAge;
 }
 public String getName() {
 return name;
 }
 public int getAge() {
 return age;
 }
}

Accessors

Mutators

Methods with Parameters

• Parameters are used to hold the value that you pass
to the method

• Parameters can be used as (local) variables inside
the method

public int square(int number)
{
 return number * number;
}

Parameters go inside
the parentheses of

method header

Variables of a Class Type

• What goes in these variables?
– In a class type variable, the address pointing to the actual

object is saved (not the object itself)

 s

jack

0 1 2 2 3 3 0 5

0 1 0 2 2 8 7 4

U N C i s G

r e a t !

0 3 9 6 3 1 4 7

0 0 0 2 3. 5 0 0

0 0 0 0

J a c k S m i

t h

Arrays

• To think about arrays, let’s think about loops first

• Why do we need loops?
– Because we want to repeat things without write them

again and again

– Think about the average score problem

Average Score without Loops

• Assuming that we only need 5 scores

int score1 = keyboard.nextInt();
int score2 = keyboard.nextInt();
int score3 = keyboard.nextInt();
int score4 = keyboard.nextInt();
int score5 = keyboard.nextInt();

double average = (double) (score1 + score2 +
 score3 + score4 + score5) / 5.0;

Average Score with Loops

• Assuming that we only need 5 scores

for (int i = 0; i < 5; i++)
 scoreSum += keyboard.nextInt();

double average = (double) scoreSum / 5.0;

What if We Really Need to Save Them

• If we really need to save these scores, loop won’t
help you

• Think about the requirement
– Print out if a score is above/below average

– We have to calculate average first, then decide if a score
is above/below average

– Therefore we must save all these scores, and compare
them to the average in the end

Comparing All Scores and the Average

System.out.println("Enter 5 basketball scores:");
Scanner keyboard = new Scanner(System.in);
int score1 = keyboard.nextInt();
int score2 = keyboard.nextInt();
int score3 = keyboard.nextInt();
int score4 = keyboard.nextInt();
int score5 = keyboard.nextInt();
double average = (double) (score1 + score2 + score3 + score4 + score5) / 5.0;
System.out.println("Average score: " + average);

// repeat this for each of the 5 scores
if (score1 > average)
 System.out.println(score1 + ": above average");
else if (score1 < average)
 System.out.println(score1 + ": below average");
else
 System.out.println(score1 + ": equal to the average");

// if score2...score3...score4...

If We Have More Scores……

• Think about 80 scores…
– Declare 80 variables

– Check them 80 times

• This is illogical!

• There must be an easier
way!
– What about things like:

Score1, Score2, …, Scoren

Arrays

• int[] scores = new int[5];
• This is like declaring 5 strangely named variables of

type int:
– scores[0]

– scores[1]

– scores[2]

– scores[3]

– scores[4]

• Especially, you can use score[i] to locate a single one

Arrays

• An array is a collection of items of the same type

• Like a list of different variables, but with a nice,
compact way to name them

• A special kind of object in Java

• Loops repeat things temporally; arrays repeat
things spatially

Comparing Scores/Average w/ Arrays

System.out.println("Enter 5 basketball scores:");
Scanner keyboard = new Scanner(System.in);
int[] scores = new int[5];
int scoreSum = 0;
for (int i = 0; i < 5; i++) {
 scores[i] = keyboard.nextInt();
 scoreSum += scores[i];
}
double average = (double) scoreSum / 5;
System.out.println("Average score: " + average);

for (int i = 0; i < 5; i++) {
 if (scores[i] > average)
 System.out.println(scores[i] + ": above average");
 else if (scores[i] < average)
 System.out.println(scores[i] + ": below average");
 else
 System.out.println(scores[i] + ": equal to the average");
}

Index

• Variables such as scores[0] and scores[1] that have
an integer expression in square brackets are known
as:
– indexed variables, subscripted variables, array

elements, or simply elements

• An index or subscript is an integer expression inside
the square brackets that indicates an array element
– ArrayName[index]

Index

• Where have we seen the word index before?
– String’s indexOf() method

– str.indexOf(‘e’) == 6;

– str.charAt(6) == ‘e’;

– char[] ca = str.toCharArray();

– char[6] == ‘e’;

• In C, there is only char arrays instead of Strings(FYI)

H o w a r e y o u ?

0 1 2 3 4 5 6 7 8 9 10 11

Index

• Index numbers start with 0. They do NOT start with
1 or any other number.
– Not like counters in loops, you can’t change the range of

indices

• The reason is that the array name represents a
memory address, and the ith element can be
accessed by the address plus i

Array and Index

var name score[0] score[1] score[2] score[3] score[4]

data 62 51 88 70 74

m address 25131 25132 25133 25134 25135

• In history, computer scientists argued a lot on this
• “Should array indices start at 0 or 1? My compromise of

0.5 was rejected without, I thought, proper consideration.”
– Stan Kelly-Bootle

score score+1 score+2

Access Elements with Indices

• The number inside square brackets can be any
integer expression
– An integer: scores[3]

– Variable of type int: scores[index]

– Expression that evaluates to int: scores[index*3]

• Can use elements just like any other variables:
– scores[3] = 68;

– scores[4] = scores[4] + 3; // just made a 3-pointer!

– System.out.println(scores[1]);

Indices and For-Loops

• In programming, a for-loop usually starts with
counter i = 0. There is a reason

for (int i = 0; i < 5; i++) {
 scores[i] = keyboard.nextInt();
 scoreSum += scores[i];
}

The Example Again

System.out.println("Enter 5 basketball scores:");
Scanner keyboard = new Scanner(System.in);
int[] scores = new int[5];
int scoreSum = 0;
for (int i = 0; i < 5; i++) {
 scores[i] = keyboard.nextInt();
 scoreSum += scores[i];
}
double average = (double) scoreSum / 5;
System.out.println("Average score: " + average);

for (int i = 0; i < 5; i++) {
 if (scores[i] > average)
 System.out.println(scores[i] + ": above average");
 else if (scores[i] < average)
 System.out.println(scores[i] + ": below average");
 else
 System.out.println(scores[i] + ": equal to the average");
}

Creating an Array

• Array is a special class and we create its objects
– Syntax for creating an array:

• Base_Type[] Array_Name = new Base_Type[Length];

– Example:
• int[] pressure = new int[100];

– Alternatively:
• int[] pressure;

• pressure = new int[100];

Creating an Array

• The base type can be any type
– double[] temperature = new double[7];

– Student[] students = new Student[35];

• The number of elements in an array is called its
length or size
– temperature has 7 elements, temperature[0] through

temperature[6]

– students has 35 elements, students[0] through
students[34]

Creating an Array

• Create an array with given length saved in constants
– public static final int NUMBER_OF_READINGS = 100;

– int[] pressure = new int[NUMBER_OF_READINGS];

• Create an array with user input length
– System.out.println("How many scores?");

– int numScores = keyboard.nextInt();

– int[] scores = new int[numScores];

Finding Length of An Existing Array

• An array is a special kind of object
– It has one public instance variable: length

– length is equal to the length of the array
Pet[] pets = new Pet[20];
pets.length has the value 20

– You cannot change the value of length because it is final

The Example Again (and again…)

System.out.println("Enter 5 basketball scores:");
Scanner keyboard = new Scanner(System.in);
int[] scores = new int[5];
int scoreSum = 0;
for (int i = 0; i < scores.length; i++) {
 scores[i] = keyboard.nextInt();
 scoreSum += scores[i];
}
double average = (double) scoreSum / 5;
System.out.println("Average score: " + average);

for (int i = 0; i < scores.length; i++) {
 if (scores[i] > average)
 System.out.println(scores[i] + ": above average");
 else if (scores[i] < average)
 System.out.println(scores[i] + ": below average");
 else
 System.out.println(scores[i] + ": equal to the average");
}

Don’t be OUT OF BOUNDS!

• Indices MUST be in bounds
– double[] entries = new double[5]; // from [0] to [4]

– entries[5] = 3.7; // ERROR! Index out of bounds

• Your code will compile if you are using an index that
is out of bounds, but it will give you a run-time
error!

Initializing Arrays

• You can initialize arrays when you declare them
– int[] scores = { 68, 97, 102 };

• Equivalent to
– int[] scores = new int[3];

– scores[0] = 68;

– scores[1] = 97;

– scores[2] = 102;

• Or, you can use for-loop
– When in doubt, for-loop!

	幻灯片编号 1
	Announcement
	Requirements
	Your Mission
	Milestones
	Start Immediately!!!
	Extra Points
	Daily Joke
	Review
	Class
	Using a Class
	Methods
	Methods with Parameters
	Variables of a Class Type
	Arrays
	Average Score without Loops
	Average Score with Loops
	What if We Really Need to Save Them
	Comparing All Scores and the Average
	If We Have More Scores……
	Arrays
	Arrays
	Comparing Scores/Average w/ Arrays
	Index
	Index
	Index
	Array and Index
	Access Elements with Indices
	Indices and For-Loops
	The Example Again
	Creating an Array
	Creating an Array
	Creating an Array
	Finding Length of An Existing Array
	The Example Again (and again…)
	Don’t be OUT OF BOUNDS!
	Initializing Arrays

