
April 02, 2013

COMP 110-003
Introduction to Programming
Miscellaneous and More Arrays

Haohan Li
TR 11:00 – 12:15, SN 011
Spring 2013

Daily Joke

Daily Joke – Behind the Scenes

• How powerful is a computer nowadays?
– A computer can perform billions of arithmetical

operations in every second

– You’ve written a program computing π. In a millisecond,
it computes so many digits on which many
mathematicians spent their whole lives in 19th Century

• How smart is a computer nowadays?
– You know, it’s still hard for it to recognize a cat

– If you know how to do it accurately, you can definitely
become a professor in our department

You Wonder Why?

• Computers do things in a deterministic way!
– The algorithms have to be precise and deterministic

• Computer scientists don’t have tools significantly better than Java

– When you see a cat, you know it is a cat, but you don’t know
the rule for telling that truth
• That’s your instinct, which is hard to be logical

– Computer excels at board games because these games can
be deterministic
• You will write the logic behind it, and make people feel it smart

• But still, it has only logic

Miscellaneous

• Initialization of instance variables

• Evaluation of boolean expressions

• break statement (and return statement)

• Random number generator

Initialization of Instance Variables

• In Lab 4, initialization was required
– Many of you ignored this requirement

– Those who did it didn’t do it right

Initialization of Instance Variables

• You can declare default values for instance variables
public class Rectangle
{
 public int width = 1;
 public int height = 1;
 public int area = 1;
 public void setDimensions(
 int newWidth,
 int newHeight){
 width = newWidth;
 height = newHeight;
 area = width * height;
 }
 public int getArea(){
 return area;
 }
}

Rectangle box = new Rectangle();
System.out.println(box.getArea());

// Output: 1

Slide from Lecture 11

What’s the Point of Initialization

• When people call your methods, they won’t get an
error
– Because from outside of your class, they can not see

implementation details

– You must guarantee that every object in your class works,
starting from it’s created

Common Solution without Initialing

public class Statistics {

 private int Goals_Made, Free_Throws, Three_Pointers,
 Goal_Attempts, Free_ThrowAttemp, Three_Attempts;

 public void setFieldGoalsMade(int FG_Made) {
 Goals_Made = FG_Made;
 }

 public double getFieldGoalPercent() {
 return (((double) Goals_Made) /
 ((double) Goal_Attempts)) * 100;
 }

}

If UNCStats Call It This Way

public static void main(String[] args) {
 Statistics unc = new Statistics();
 DecimalFormat df = new DecimalFormat("0.00");
 unc.setFieldGoalsMade(1);
 unc.setFieldGoalAttempts(2);

 int points = (int) unc.getTotalPoints();
 double field = unc.getFieldGoalPercent();
 double free = unc.getFreeThrowPercent();
 double three = unc.get3PointPercent();
 System.out.print("UNC has scored " + points + " points\n"
 + "UNC has a field-goal percentage of " + df.format(field)
 + "%\n" + "UNC has a free-throw percentage of "
 + df.format(free) + "%\n"
 + "UNC has a 3-point field-goal percentage of "
 + df.format(three) + "%\n");
}

If UNCStats Call It This Way

• In a game with only two field attempts, what is the
free throw and three pointer percentage?
– It should be 0.0% (or 100.0% if you want to)

• The uninitialized version outputs:

– Divide-by-zero run-time error

Exception in thread "main" java.lang.ArithmeticException: / by zero
at Statistics.getFreeThrowPercent(Statistics.java:87)
at UNCStats2.main(UNCStats2.java:15)

If UNCStats Call It This Way

• Obviously, the problem is you are calculating 0/0

• For both integer and floating-point instance
variables, the initial value is always 0
– For boolean variables, it is always false

– Actually, it makes no difference if you initialize everything
as 0

– You have to initialize variables so that there is no error

Correct Initialization

public class Statistics {

 private int Goals_Made = 0, Free_Throws = 0, Three_Pointers = 0,
 Goal_Attempts = 0, Free_ThrowAttemp = 0, Three_Attempts = 0;
 private double Goal_Percent = 0, Free_Percent = 0, Three_Percent = 0;
 // The methods will be in charge of checking values
}

public class Statistics {

 private int Goals_Made = 0, Free_Throws = 0, Three_Pointers = 0,
 Goal_Attempts = 1, Free_ThrowAttemp = 1, Three_Attempts = 1;
 // Only works when you don’t have
 // methods like makeAShot() and missAShot()

}

Key Point of Initialization

• You class should work as long as an object is
created
– You should try your best to cover all cases

– If it can’t be done, we will learn “constructor method” in
next week, which pushes the responsibility to the user

Evaluation of Boolean Expressions

• Logical operators
– &&: be false if ONE expression is false

– ||: be true if ONE expression is true

• Java doesn’t evaluate all subexpressions if the result
is known
– a && b && c && d

• The evaluation stops when one subexpression is false

– a || b || c || d
• The evaluation stops when one subexpression is true

Evaluation of Boolean Expressions

• The following code will have a run-time error

• The following code will print “Something”

if (3 == 3 && 3 / 0 == 1) {
 System.out.println("Something");
}

if (3 == 3 || 3 / 0 == 1) {
 System.out.println("Something");
}

Why is This Useful?

• In certain circumstances, we can make things short

– The second version won’t have an out-of-bound problem

if (i >= 1) {
 if (num[i - 1] > currentValue) {
 num[i - 1] = num[i];
 }
}

if (i >= 1 && num[i - 1] > currentValue) {
 num[i - 1] = num[i];
}

Break Statement

• We saw it in switch statement

• It can also be used in loops
– The syntax is very simple

• break;

– It means: to jump out of current loop

• It is used when
– You don’t want to execute the remaining loop

– You must stop executing the remaining loop

Break Statement

public boolean equalStrings(String a, String b) {
 boolean result = true;
 if (a.length() != b.length()) {
 result = false;
 } else {
 for (int i = 0; i < a.length(); i++) {
 if (a.charAt(i) != b.charAt(i)) {
 result = false;
 break; // jump out of the loop immediately
 }
 }
 }
 return result;
}

Break Statement

• You can only jump out one loop
– There is no way to jump out a nested loop using break

System.out.println("All
 possible dice combinations no greater than 8 are:");
for (int i = 1; i <= 6; i++) {
 for (int j = 1; j <= 6; j++) {
 if (i + j >= 8)
 break;
 System.out.print("(" + i + "," + j + "), ");
 }
 System.out.println();
}

Break Statement

• You can run the code by yourself

• The results are:

All possible dice combinations no greater than 8 are:
(1,1), (1,2), (1,3), (1,4), (1,5), (1,6),
(2,1), (2,2), (2,3), (2,4), (2,5),
(3,1), (3,2), (3,3), (3,4),
(4,1), (4,2), (4,3),
(5,1), (5,2),
(6,1),

Jump Out of All Loops

• The only way is to use return statement in a method

• An example question:
– Given an array, does it include 3 numbers that add up to 0?

– For example, if the array is
• int[] nums = { 3, 2, 4, 9, -3, -3, -2, -11 };

• You should output: 2+9+-11=0

– If the array is
• int[] nums = { 3, 2, 4, 9, -3, -3, -2, -10 };

• You should output: No such three numbers

Solution

public static void main(String[] args) {
 int[] nums = { 3, 2, 4, 9, -3, -3, -2, -10 };
 threeSumZero(nums);
}
private static void threeSumZero(int[] num) {
 for (int i = 0; i < num.length; i++)
 for (int j = 0; j < num.length; j++)
 for (int k = 0; k < num.length; k++)
 if (i != j && i != k && j != k
 && num[i] + num[j] + num[k] == 0) {
 System.out.println(num[i] + "+"
 + num[j] + "+" + num[k] + "=0");
 return; // JUMP OUT OF EVERYTHING
 }
 System.out.println("No such three numbers");
}

Random Number Generator

• It is very similar to Scanner

– If you run the code many times, the output varies

• 7,6,6,1,9/5,6,8,8,5/5,6,7,3,9/6,7,4,0,2

– nextInt(N) generates integers in [0,N)
• Like arrays, 0 is included but N is not

• You can get 0 but not 10 in this program

int N = 10, print = 5;
Random generator = new Random();
for (int i = 0; i < print; i++) {
 int randomNum = generator.nextInt(N);
 System.out.println(randomNum);
}

Random Number Generator

• Like scanners, using one generator is sufficient

• You can use it in many ways
– Create a random size array with random increasing elements

• The size can be from 10 to 19

• The values starts from 0 to 100

– Sample outputs:
• The array has a size 17. The elements are:

– 3,7,8,11,15,16,21,24,26,30,33,38,41,42,45,46,51.

• The array has a size 15. The elements are:
– 2,3,7,8,10,12,18,21,24,30,35,40,46,47,50.

Random Number Generator

int lowSize = 10, highSize = 20, valueRange = 100;
Random generator = new Random();
int size = lowSize + generator.nextInt(highSize - lowSize);
System.out.println("The array has a size " + size
 + ". The elements are:");
int[] array = new int[size];
array[0] = generator.nextInt(valueRange / size);
for (int i = 1; i < size; i++) {
 array[i] = array[i - 1]
 + generator.nextInt(valueRange / size) + 1;
 System.out.print(array[i - 1] + ",");
}
System.out.print(array[size - 1] + ".");

Avoid “Magic Numbers”

• Magic numbers means
– It is there. It works. But you don’t know what it is.

• Use variables instead

– If you want to change it, you know what to do

int lowSize = 10, highSize = 20, valueRange = 100;
int size = lowSize + generator.nextInt(highSize - lowSize);

int size = 10 + generator.nextInt(10);

Back to Arrays

• int[] scores = new int[5];
• This is like declaring 5 strangely named variables of

type int:
– scores[0]

– scores[1]

– scores[2]

– scores[3]

– scores[4]

• Especially, you can use score[i] to locate a single one

Review: Array and Index

var name score[0] score[1] score[2] score[3] score[4]

data 62 51 88 70 74

m address 25131 25132 25133 25134 25135

• Index numbers start with 0. They do NOT start with 1
or any other number.

• he array name represents a memory address, and the
ith element can be accessed by the address plus i

score score+1 score+2

Review: Creating an Array

• Create an array with given length saved in constants
– public static final int NUMBER_OF_READINGS = 100;

– int[] pressure = new int[NUMBER_OF_READINGS];

• Create an array with user input length
– System.out.println("How many scores?");

– int numScores = keyboard.nextInt();

– int[] scores = new int[numScores];

Review: Don’t be OUT OF BOUNDS!

• Indices MUST be in bounds
– double[] entries = new double[5]; // from [0] to [4]

– entries[5] = 3.7; // ERROR! Index out of bounds

• Your code will compile if you are using an index that
is out of bounds, but it will give you a run-time
error!

Arrays as Instance Variables

• Quite straight forward

public class Weather {
 private double[] temperature;
 private double[] pressure;

 public void initializeTemperature(int len) {
 temperature = new double[len];
 }
}

Arrays of Objects

• When you create an array of objects like this:
 Student[] students = new Student[35];

• Each of the elements of students is not yet an
object

• You have to instantiate each individual one
students[0] = new Student();
students[1] = new Student();

• …or do this in a loop

Arrays of Objects

Smiley[] smilies = new Smiley[3];
for (int i = 0; i < smilies.length; i++) {
 smilies[i] = new Smiley();
}

1045 2584 2836

true
GREEN
3

false
BLUE
1

false
CYAN
4

Arrays as Parameters

public void changeArray(int[] arr) {
 int len = arr.length;
 arr[len – 1] = 25;
}

23 47 52 14 7

23 47 52 14 25

changeArray(num)

num

num

Arrays as Return Types

• Create an array and return it

public double[] buildArray(int len) {
 double[] retArray = new double[len];
 for (int i = 0; i < retArray.length; i++) {
 retArray[i] = i * 1.5;
 }
 return retArray;
}

Indexed Variables as Arguments

• The same as a regular variable

public void printNum(int num) {
 System.out.println(num);
}

public void doStuff() {
 int[] scores = { 15, 37, 95 };
 for (int index = 0; index < scores.length; index++) {
 printNum(index);
 printNum(scores[index]);
 }
}

2D Arrays

• Arrays having more than one index are often useful
– Tables

– Grids

– Board games

 0: Open 1: High 2: Low 3: Close

0: Apple Inc. 99.24 99.85 95.72 98.24

1: Walt Disney Co. 21.55 24.20 21.41 23.36

2: Google Inc. 333.12 341.15 325.33 331.14

3: Microsoft Corp. 21.32 21.54 21.00 21.50

Declaring and Creating 2D Arrays

• Two pairs of square brackets means 2D
– int[][] table = new int[3][4];

• or
– int[][] table;

– table = new int[3][4];

Declaring and Creating 2D Arrays

• Array (or 1D array) gives you a list of variables
– int[] score = new int[5] gives you score[0], score[1], … ,

score[5]

• 2D array gives you a table of variables
– int[][] table = new int[3][4];

 table[0][0] table[0][1] table[0][2] table[0][3]

table[1][0] table[1][1] table[1][2] table[1][3]

table[2][0] table[2][1] table[2][2] table[2][3]

Using a 2D Array

• We use a loop to access 1D arrays

for (int i = 0; i < 5; i++) {
 scores[i] = keyboard.nextInt();
 scoreSum += scores[i];
}

Using a 2D Array

• We use nested loops for 2D arrays

int[][] table = new int[4][3];
for (int i = 0; i < 4; i++) {
 for (int j = 0; j < 3; j++) {
 table[i][j] = i * 3 + j;
 System.out.println(table[i][j]);
 }
}

Multidimensional Arrays

• You can have more than two dimensions
– int[][][] cube = new int[4][3][4];

• Use more nested loops to access all elements
– for (int i…)

• for (int j…)
– for (int k…)

Announcement

• Those who haven’t done the make-up assignment,
today is the deadline
– InsertionSort.java will be online tomorrow

	幻灯片编号 1
	Daily Joke
	Daily Joke – Behind the Scenes
	You Wonder Why?
	Miscellaneous
	Initialization of Instance Variables
	Initialization of Instance Variables
	What’s the Point of Initialization
	Common Solution without Initialing
	If UNCStats Call It This Way
	If UNCStats Call It This Way
	If UNCStats Call It This Way
	Correct Initialization
	Key Point of Initialization
	Evaluation of Boolean Expressions
	Evaluation of Boolean Expressions
	Why is This Useful?
	Break Statement
	Break Statement
	Break Statement
	Break Statement
	Jump Out of All Loops
	Solution
	Random Number Generator
	Random Number Generator
	Random Number Generator
	Avoid “Magic Numbers”
	Back to Arrays
	Review: Array and Index
	Review: Creating an Array
	Review: Don’t be OUT OF BOUNDS!
	Arrays as Instance Variables
	Arrays of Objects
	Arrays of Objects
	Arrays as Parameters
	Arrays as Return Types
	Indexed Variables as Arguments
	2D Arrays
	Declaring and Creating 2D Arrays
	Declaring and Creating 2D Arrays
	Using a 2D Array
	Using a 2D Array
	Multidimensional Arrays
	Announcement

