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Daily Joke 



Daily Joke – Behind the Scenes 

• How powerful is a computer nowadays? 
– A computer can perform billions of arithmetical 

operations in every second 

– You’ve written a program computing π. In a millisecond, 
it computes so many digits on which many 
mathematicians spent their whole lives in 19th Century 

• How smart is a computer nowadays? 
– You know, it’s still hard for it to recognize a cat 

– If you know how to do it accurately, you can definitely 
become a professor in our department 



You Wonder Why? 

• Computers do things in a deterministic way! 
– The algorithms have to be precise and deterministic 

• Computer scientists don’t have tools significantly better than Java 

– When you see a cat, you know it is a cat, but you don’t know 
the rule for telling that truth 
• That’s your instinct, which is hard to be logical 

– Computer excels at board games because these games can 
be deterministic 
• You will write the logic behind it, and make people feel it smart 

• But still, it has only logic 



Miscellaneous 

• Initialization of instance variables 

• Evaluation of boolean expressions 

• break statement (and return statement) 

• Random number generator 



Initialization of Instance Variables 

• In Lab 4, initialization was required 
– Many of you ignored this requirement 

– Those who did it didn’t do it right 



Initialization of Instance Variables 

• You can declare default values for instance variables 
public class Rectangle 
{ 
    public int width = 1; 
    public int height = 1; 
    public int area = 1; 
    public void setDimensions( 
        int newWidth, 
        int newHeight){ 
        width = newWidth; 
        height = newHeight; 
        area = width * height; 
    } 
    public int getArea(){ 
        return area; 
    } 
} 

Rectangle box = new Rectangle(); 
System.out.println(box.getArea()); 
 
// Output: 1 

Slide from Lecture 11 



What’s the Point of Initialization 

• When people call your methods, they won’t get an 
error 
– Because from outside of your class, they can not see 

implementation details 

– You must guarantee that every object in your class works, 
starting from it’s created 



Common Solution without Initialing 

public class Statistics { 
 
 private int Goals_Made, Free_Throws, Three_Pointers,  
   Goal_Attempts, Free_ThrowAttemp, Three_Attempts; 
 
 public void setFieldGoalsMade(int FG_Made) { 
  Goals_Made = FG_Made; 
 } 
 
 public double getFieldGoalPercent() { 
  return (((double) Goals_Made) /  
   ((double) Goal_Attempts)) * 100; 
 } 
 
} 



If UNCStats Call It This Way 

public static void main(String[] args) { 
 Statistics unc = new Statistics(); 
 DecimalFormat df = new DecimalFormat("0.00"); 
 unc.setFieldGoalsMade(1); 
 unc.setFieldGoalAttempts(2);  
 
 int points = (int) unc.getTotalPoints(); 
 double field = unc.getFieldGoalPercent(); 
 double free = unc.getFreeThrowPercent(); 
 double three = unc.get3PointPercent(); 
 System.out.print("UNC has scored " + points + " points\n" 
  + "UNC has a field-goal percentage of " + df.format(field) 
  + "%\n" + "UNC has a free-throw percentage of " 
  + df.format(free) + "%\n" 
  + "UNC has a 3-point field-goal percentage of " 
  + df.format(three) + "%\n"); 
} 



If UNCStats Call It This Way 

• In a game with only two field attempts, what is the 
free throw and three pointer percentage? 
– It should be 0.0% (or 100.0% if you want to) 

• The uninitialized version outputs: 

 

 
– Divide-by-zero run-time error 

Exception in thread "main" java.lang.ArithmeticException: / by zero 
at Statistics.getFreeThrowPercent(Statistics.java:87) 
at UNCStats2.main(UNCStats2.java:15) 



If UNCStats Call It This Way 

• Obviously, the problem is you are calculating 0/0 

• For both integer and floating-point instance 
variables, the initial value is always 0 
– For boolean variables, it is always false 

– Actually, it makes no difference if you initialize everything 
as 0 

– You have to initialize variables so that there is no error 



Correct Initialization 

public class Statistics { 
 
 private int Goals_Made = 0, Free_Throws = 0, Three_Pointers = 0, 
  Goal_Attempts = 0, Free_ThrowAttemp = 0, Three_Attempts = 0; 
 private double Goal_Percent = 0, Free_Percent = 0, Three_Percent = 0; 
 // The methods will be in charge of checking values 
} 

public class Statistics { 
 
 private int Goals_Made = 0, Free_Throws = 0, Three_Pointers = 0, 
  Goal_Attempts = 1, Free_ThrowAttemp = 1, Three_Attempts = 1; 
 // Only works when you don’t have  
 // methods like makeAShot() and missAShot() 
  
} 



Key Point of Initialization 

• You class should work as long as an object is 
created 
– You should try your best to cover all cases 

– If it can’t be done, we will learn “constructor method” in 
next week, which pushes the responsibility to the user 



Evaluation of Boolean Expressions 

• Logical operators 
– &&: be false if ONE expression is false 

– ||: be true if ONE expression is true 

• Java doesn’t evaluate all subexpressions if the result 
is known 
– a && b && c && d 

• The evaluation stops when one subexpression is false 

– a || b || c || d 
• The evaluation stops when one subexpression is true 



Evaluation of Boolean Expressions 

• The following code will have a run-time error 

 

 

 

• The following code will print “Something” 

if (3 == 3 && 3 / 0 == 1) { 
 System.out.println("Something"); 
} 

if (3 == 3 || 3 / 0 == 1) { 
 System.out.println("Something"); 
} 



Why is This Useful? 

• In certain circumstances, we can make things short 

 

 

 

 

 

 
– The second version won’t have an out-of-bound problem 

if (i >= 1) { 
 if (num[i - 1] > currentValue) { 
  num[i - 1] = num[i]; 
 } 
} 

if (i >= 1 && num[i - 1] > currentValue) { 
 num[i - 1] = num[i]; 
} 



Break Statement 

• We saw it in switch statement 

• It can also be used in loops 
– The syntax is very simple 

• break; 

– It means: to jump out of current loop 

• It is used when 
– You don’t want to execute the remaining loop 

– You must stop executing the remaining loop 



Break Statement 

public boolean equalStrings(String a, String b) { 
 boolean result = true;  
 if (a.length() != b.length()) { 
  result = false; 
 } else { 
  for (int i = 0; i < a.length(); i++) { 
   if (a.charAt(i) != b.charAt(i)) { 
    result = false; 
    break; // jump out of the loop immediately 
   } 
  } 
 } 
 return result; 
} 



Break Statement 

• You can only jump out one loop 
– There is no way to jump out a nested loop using break 

System.out.println("All  
 possible dice combinations no greater than 8 are:"); 
for (int i = 1; i <= 6; i++) { 
 for (int j = 1; j <= 6; j++) { 
   if (i + j >= 8) 
    break; 
   System.out.print("(" + i + "," + j + "), "); 
  } 
 System.out.println(); 
} 



Break Statement 

• You can run the code by yourself 

• The results are: 

All possible dice combinations no greater than 8 are: 
(1,1), (1,2), (1,3), (1,4), (1,5), (1,6),  
(2,1), (2,2), (2,3), (2,4), (2,5),  
(3,1), (3,2), (3,3), (3,4),  
(4,1), (4,2), (4,3),  
(5,1), (5,2),  
(6,1),  



Jump Out of All Loops 

• The only way is to use return statement in a method 

• An example question: 
– Given an array, does it include 3 numbers that add up to 0? 

– For example, if the array is 
• int[] nums = { 3, 2, 4, 9, -3, -3, -2, -11 }; 

• You should output: 2+9+-11=0 

– If the array is 
• int[] nums = { 3, 2, 4, 9, -3, -3, -2, -10 }; 

• You should output: No such three numbers 



Solution 

public static void main(String[] args) { 
 int[] nums = { 3, 2, 4, 9, -3, -3, -2, -10 }; 
 threeSumZero(nums); 
} 
private static void threeSumZero(int[] num) { 
 for (int i = 0; i < num.length; i++) 
  for (int j = 0; j < num.length; j++) 
   for (int k = 0; k < num.length; k++) 
    if (i != j && i != k && j != k 
     && num[i] + num[j] + num[k] == 0) { 
      System.out.println(num[i] + "+"  
       + num[j] + "+" + num[k] + "=0"); 
      return; // JUMP OUT OF EVERYTHING 
     } 
 System.out.println("No such three numbers"); 
} 



Random Number Generator 

• It is very similar to Scanner 
 

 

 

 
– If you run the code many times, the output varies 

• 7,6,6,1,9/5,6,8,8,5/5,6,7,3,9/6,7,4,0,2 

– nextInt(N) generates integers in [0,N) 
• Like arrays, 0 is included but N is not 

• You can get 0 but not 10 in this program 

 

int N = 10, print = 5; 
Random generator = new Random(); 
for (int i = 0; i < print; i++) { 
 int randomNum = generator.nextInt(N); 
 System.out.println(randomNum); 
} 



Random Number Generator 

• Like scanners, using one generator is sufficient 

• You can use it in many ways 
– Create a random size array with random increasing elements 

• The size can be from 10 to 19 

• The values starts from 0 to 100 

– Sample outputs: 
• The array has a size 17. The elements are: 

– 3,7,8,11,15,16,21,24,26,30,33,38,41,42,45,46,51. 

• The array has a size 15. The elements are: 
– 2,3,7,8,10,12,18,21,24,30,35,40,46,47,50. 



Random Number Generator 

int lowSize = 10, highSize = 20, valueRange = 100; 
Random generator = new Random(); 
int size = lowSize + generator.nextInt(highSize - lowSize); 
System.out.println("The array has a size " + size 
  + ". The elements are:"); 
int[] array = new int[size]; 
array[0] = generator.nextInt(valueRange / size); 
for (int i = 1; i < size; i++) { 
 array[i] = array[i - 1]  
   + generator.nextInt(valueRange / size) + 1; 
 System.out.print(array[i - 1] + ","); 
} 
System.out.print(array[size - 1] + "."); 



Avoid “Magic Numbers” 

• Magic numbers means 
– It is there. It works. But you don’t know what it is. 

 

• Use variables instead 
 

 

– If you want to change it, you know what to do 

int lowSize = 10, highSize = 20, valueRange = 100; 
int size = lowSize + generator.nextInt(highSize - lowSize); 

int size = 10 + generator.nextInt(10); 



Back to Arrays 

• int[] scores = new int[5]; 
• This is like declaring 5 strangely named variables of 

type int: 
– scores[0] 

– scores[1] 

– scores[2] 

– scores[3] 

– scores[4] 

• Especially, you can use score[i] to locate a single one 



Review: Array and Index 

var name score[0] score[1] score[2] score[3] score[4] 

data 62 51 88 70 74 

m address 25131 25132 25133 25134 25135 

• Index numbers start with 0. They do NOT start with 1 
or any other number. 

• he array name represents a memory address, and the 
ith element can be accessed by the address plus i 

score score+1 score+2 



Review: Creating an Array 

• Create an array with given length saved in constants 
– public static final int NUMBER_OF_READINGS = 100; 

– int[] pressure = new int[NUMBER_OF_READINGS]; 

• Create an array with user input length 
– System.out.println("How many scores?"); 

– int numScores = keyboard.nextInt(); 

– int[] scores = new int[numScores]; 



Review: Don’t be OUT OF BOUNDS! 

• Indices MUST be in bounds 
– double[] entries = new double[5]; // from [0] to [4] 

– entries[5] = 3.7;  // ERROR! Index out of bounds 

• Your code will compile if you are using an index that 
is out of bounds, but it will give you a run-time 
error! 



Arrays as Instance Variables 

• Quite straight forward 

public class Weather { 
 private double[] temperature; 
 private double[] pressure; 
 
 public void initializeTemperature(int len) { 
  temperature = new double[len]; 
 } 
} 



Arrays of Objects 

• When you create an array of objects like this: 
  Student[] students = new Student[35]; 

• Each of the elements of students is not yet an 
object 

• You have to instantiate each individual one 
students[0] = new Student(); 
students[1] = new Student(); 

• …or do this in a loop 



Arrays of Objects 

Smiley[] smilies = new Smiley[3]; 
for (int i = 0; i < smilies.length; i++) { 
    smilies[i] = new Smiley(); 
} 

1045 2584 2836 

true 
GREEN 
3 

false 
BLUE 
1 

false 
CYAN 
4 



Arrays as Parameters 

public void changeArray(int[] arr) { 
    int len = arr.length; 
    arr[len – 1] = 25; 
} 

 

 

 
23 47 52 14 7 

23 47 52 14 25 

changeArray(num) 

num 

num 



Arrays as Return Types 

• Create an array and return it 

public double[] buildArray(int len) { 
 double[] retArray = new double[len]; 
 for (int i = 0; i < retArray.length; i++) { 
  retArray[i] = i * 1.5; 
 } 
 return retArray; 
} 



Indexed Variables as Arguments 

• The same as a regular variable 

public void printNum(int num) { 
 System.out.println(num); 
} 
 
public void doStuff() { 
 int[] scores = { 15, 37, 95 }; 
 for (int index = 0; index < scores.length; index++) { 
  printNum(index); 
  printNum(scores[index]); 
 } 
} 



2D Arrays 

• Arrays having more than one index are often useful 
– Tables 

– Grids 

– Board games 

 0: Open 1: High 2: Low 3: Close 

0: Apple Inc. 99.24 99.85 95.72 98.24 

1: Walt Disney Co. 21.55 24.20 21.41 23.36 

2: Google Inc. 333.12 341.15 325.33 331.14 

3: Microsoft Corp. 21.32 21.54 21.00 21.50 



Declaring and Creating 2D Arrays 

• Two pairs of square brackets means 2D 
– int[][] table = new int[3][4]; 

• or 
– int[][] table; 

– table = new int[3][4];  



Declaring and Creating 2D Arrays 

• Array (or 1D array) gives you a list of variables 
– int[] score = new int[5] gives you score[0], score[1], … , 

score[5] 

• 2D array gives you a table of variables 
– int[][] table = new int[3][4]; 

 table[0][0] table[0][1] table[0][2] table[0][3] 

table[1][0] table[1][1] table[1][2] table[1][3] 

table[2][0] table[2][1] table[2][2] table[2][3] 



Using a 2D Array 

• We use a loop to access 1D arrays 

for (int i = 0; i < 5; i++) { 
 scores[i] = keyboard.nextInt(); 
 scoreSum += scores[i]; 
} 



Using a 2D Array 

• We use nested loops for 2D arrays 

int[][] table = new int[4][3]; 
for (int i = 0; i < 4; i++) { 
 for (int j = 0; j < 3; j++) { 
  table[i][j] = i * 3 + j; 
  System.out.println(table[i][j]); 
 } 
} 



Multidimensional Arrays 

• You can have more than two dimensions 
– int[][][] cube = new int[4][3][4]; 

• Use more nested loops to access all elements 
– for (int i…) 

• for (int j…) 
– for (int k…) 

 



Announcement 

• Those who haven’t done the make-up assignment, 
today is the deadline 
– InsertionSort.java will be online tomorrow 
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