


Methods

public class Student

{
private String name;
private int age;

public void setName(String studentName) {
name = studentName;

¥ I S
public void setAge(int studentAge) { MUtatOrS

age = studentAge;
} _
public String getName() { —_
return name;

}

public int getage() { SN\ cessors
return age;
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return Statement

A method that returns a value must have at least
one return statement

Terminates the method, and returns a value
Syntax:

— return Expression;
Expression can be any expression that produces a

value of type specified by the return type in the
method heading
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Methods

returns a String

getMajor()

return major;

publiccr'easeYear‘()
{

classYear++; <

return type

returns nothing

}
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Methods that Return a Value

As usual, inside a block (defined by braces), you can
have multiple statements

public String getClassYear()

{
if (classYear == 1)
return “Freshman”;
else if (classYear == 2)
return “Sophomore”;
else if ...
}
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return Statement

* Can also be used in methods that return nothing
* Simply terminates the method
* Syntax:

— return;

public void increaseYear()

{
if (classYear >= 4)
return;
classYear++;
}
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Methods with Parameters

 Parameters are used to hold the value that you pass
to the method

* Parameters can be used as (local) variables inside
the method

public int Squar‘ Parameters go inside

{
return number * number; the parentheses of
} method header
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Calling a Method with Parameters

public static void main(String[] args)

{
Student jack = new Student();
jack.setName(“Jack Smith”);
jack.setClassYear(3);

}

Parameters/
Arguments
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Methods with Multiple Parameters

* Multiple parameters separated by commas
public double getTotal(double price, double tax)

{

return price + price * tax;
}
 When calling a method, the order, type, and
number of arguments must match parameters
specified in method heading
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Today’s Topics

* Constructors
* Overloading methods
e Static variables and methods
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Constructors

* Create and initialize new objects

* Special methods that are called when (and only
when) creating a new object

Student jack = new Student();
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Creating an Object

Create an object jack of class Student
Student jack = new Studept();

\

Assign the memory
address of the
object to variable

Return memory Create an object
address of object by calling a

constructor

Scanner keyboard = new Scannér(System.in);
Create an object keyboard of class Scanner
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Constructors

e Can perform any action you write into a
constructor’s definition

— There are no specific rules about what’s in a constructor

 Meant to perform initializing actions

— Usually, initializing values of instance variables by the
creator of the object
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Similar to Setter Methods

 However, constructors create an object in addition
to setting the values of instance variables

* Like methods, constructors can have parameters
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Example: Pet class

public class Pet
{

private String name;
private int age;
private double weight;

public Pet() <

{

name = “No name yet.”;
age = 0;
weight = 0;

}

Default constructor

public static void main(String[] args)

{
Pet p = new Pet();

}
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The Same as Initialization

public class Pet

{ , , Default constructor
private String name = “No name yet.”;
private int age = 0; not declared — but
private double weight = 0; . .
still exists
public static void main(String[] args)
{
Pet p = new Pet();
! Call default

constructor
(so an object
is created)
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Default Constructor

e Constructor that takes no parameters

public Pet()

{
name = “No name yet.”;
age = 0;
weight = 0;

}

e Java automatically defines a default constructor if
you do not define any constructors

— You’ve never written a constructor but you can still
create objects
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Constructors with Parameters

public class Pet

{
private String name;
private int age;
private double weight;

public Pet(String initName, int initAge, double initWeight)

name = initName;

age = initAge;

weight = initWeight;
}

public void setPet(String newName, int newAge, double newWeight)

{

name = newName;
age = newAge;
weight = newWeight;

constructor that

has parameters

THE UNIVERSITY
of NORTH CAROLINA

at CHAPEL HILL




A Closer Look

Same name as class name

e€(String initName, int initAge, double initWeight)

initName; \/
w . R8s Parameters
weight = in ;

No return type I

=
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Constructors with Parameters

* If you define at least one constructor, a default
constructor will not be created for you
* Now you must create a Pet object like this:

— Pet odie = new Pet(“0Odie”, 3, 8.5);
— Pet odie = new Pet(); // WRONG! No default constructors!

public class Pet {
private String name;
private int age;
private double weight;
public Pet(String initName, int initAge, double initWeight)
{

name = initName; age = initAge; weight = initWeight;
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Multiple Constructors

* You can have several constructors per class

— They all have the same name, just different parameters

e Remember that the name is the same as the class name

— The methods (with the same name) will be called
according to its parameters
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Multiple Constructors

public class Pet {
private String name;
private int age;
private double weight;

public Pet() {
name = “No name yet.”;

age = 0;
weight = 0;
}
public Pet(String initName, int initAge,
name = initName;
age = initAge;
weight = initWeight;
}

public static void main(String[] args)
Pet p = new Pet();
Pet q = new Pet(“Garfield”, 3, 10);
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Multiple Constructors

public class Pet {
private String name = “No name yet.”;
private int age = 0;
private double weigﬁt = 1; // The instance variables are initialized

public Pet() {
name = “No name yet.”;
age = 0;
weight = 0;

public Pet(String initName, int initAge, double initWeight) {
name = 1nitName;
age = 1nitAge;
weight = initWeight;

public Pet(String initName) {
name = 1nitName;

public static void main(String[] args) { . . )
Pet p = new Pet ); // p.weight 1is 0 - it is overwritten by constructor
Pet q = new Pet(“Garfield”, 3, 10);
Pet w = new Pet(“Odie”); // w.wei ht is 1, as only one constructor
//can be called. Variables will get initial value if not set in constructor.
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Calling a Constructor

e A constructor can be only called once when the object
is created

— Pet odie = new Pet(“Odie”, 3, 8.5);
* You can not invoke a constructor from an object

— odie.Pet(““Odie”, 3, 8.5);
// Wrong! A constructor can not be invoked this way

— odie.setPet(“0Odie”, 3, 8.5);
// Yes. You can use a setter instead
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Call a Setter from the Constructor

public class Pet

{

private String name;
private int age;
private double weight;

public Pet(String initName, int initAge, double initWeight)
{

}

setPet(initName, initAge, initWeight);

public void setPet(String newName, int newAge, double newWeight)

{

name = newName;
age = newAge; :
weight = newWeight; your code is reused. However,

it is not acceptable if you are
using inheritance.
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Initializing and Setting Instance Variables

* I|nitialization values give values to instance variables
that are the same (or commonly the same) for all
objects

* Constructors give values to instance variables that
should be decided for each object

e Setters give values to instance variables that can be
changed during time

— |If a value is never going to be changed, no setter is
needed
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Example: Initialize, Construct and Set

public class Pet {
private String name;
private int age = 0;

// Age is always 0 (assuming newly-born pets are registered immediately)

private double weight;

public Pet(String initName, double initWeight){
name = initName;
weight = initWeight;
// Name is given when registering, and can not be changed

}

public void setPetWeight(double newWeight) {
weight = newWeight;
// Weight changes every time you weight your pet

public void setPetAge(double newAge) {
age = newAge,
// Surely age can change, too
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Summary: Constructor

* A special method with the same name as the class,
and no return type

* Called only when an object is created
* |t can take parameters to initialize instance variables

* You can define multiple constructors with different
parameter lists
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Methods Overloading

 We've seen that a class can have multiple
constructors. Notice that they have the same name

public class Pet {
public Pet() {..}
public Pet(String initName, int initAge, double initWeight)
{.}
public Pet(String initName) {..}
public static void main(String[] args) {

Pet p = new Pet(); // First constructor will be called
Pet q = new Pet(“Garfield”, 3, 10); // Second constructor
Pet w = new Pet(“Odie”); // Third constructor

Pet u =

new Pet(“Nermal”, 2); // Wrong - no matching method
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Overloading

e Using the same method name for two or more
methods within the same class

— It’s not only for constructors
e Parameter lists must be different

— public double average(int nl, int n2)
— public double average(double n1, double n2)
— public double average(double nl1l, double n2, double n3)

e Java knows what to use based on the number and
types of the arguments

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL




Overloading

e Java knows what to use based on the number and
types of the arguments

— You’ve used overloading before

e System.out.println(“The result is”); // String
type parameter

 System.out.println(20); // int type parameter

* Java makes the decision based on a method’s
signature
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Method Signature

* The signature includes a method’s name and the

number and types of its parameters

— Pet g = new Pet(“Garfield”, 3, 10);
— Pet w = new Pet(“0Odie”);

e Signature does NOT include return type

— Cannot have two methods with the same signature in the

same class

— public double average(int nl1, int n2)
— public int average(int nl1, int n2) // Wrong overloading

— Java won’t know what method to call if average(1,2) is
invoked
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Overloading and Type Conversion

e Java always tries to find an exactly matching
method. If it fails, it tries type conversion

— If a class has the following two methods:

— public double average(int nl, int n2)
— public double average(double nl, double n2)

* If the method call is average(3,3), the first method will be called

— However, if a class only have this method:
— public double average(double nl, double n2)

* If the method call is average(3,3), it will be converted to
average(3.0,3.0) and call the (only) method

— Recall: byte->short->int->long->float->double
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How to Use Overloading

 Use it onlyif two or more methods are performing
exactly the same function

— public void setPet(String newName)
— public void setPet(String newName, int newAge, double newWeight)

e |tis avery bad idea to create methods that have the

same name but do different things

— public void setPet(int newAge)
— public void setPet(double newWeight)

— What happens if we call setPet(3)? What about setPet(3.0)?

» Use setAge() and setWeight() instead
e Usually we do not overload methods if parameters can be converted
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Summary: Overloading

* Overloading means several methods share the
same name but have different parameters

e Java calls the methods according to the parameter
numbers and types

— The name, parameter number and parameter type form
the method signature

 Make sure that they do the same thing. Otherwise
the user will be confused
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Static Variables and Methods

* Instance variables
private int age;
private String name;

* Methods
public int getAge()
{

return age;

}

* Calling methods on objects

Student std = new Student();
std.setAge(20);
System.out.println(std.getAge());
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Static Variables and Methods

 Recall that “classes do not have data; individual
objects have data”

* This is not always true — classes can have data, too

— static variables and methods belong to a class as a
whole, not to an individual object

— When would you want a method that does not need an
object?

* If the method perform a general function instead of actions on
an object
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Static Variables and Methods

// Returns x raised to the yth power, where y >= 0.
public int pow(int x, int y)

{
int result = 1;
for (int 1 =0; i < y; i++)
{
result *= x;
}
return result;
}

Do we need an object to call this method?
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Static Variables and Methods

* We have seen static variables and methods before
— private static final int FACE_DIAMETER = 200;

e Recall that “final” means “not changable”
— public static void main(String[] args)

— Static can describe more than constants and main method

 Static variables are sometimes referred as “global variables”, which
record the global status of all objects in the same class

e Static methods are used for actions that do not relate to a certain
object

— main method is a static method because if you execute a program,
this entrance is not owned by an object
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Instance vs. Static

 |nstance variables and methods
— private int name;
— public void setName(String newName){}

e Static variables and methods

— private static int totalNumber;
— public static int getTotalNumber(){}

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL




Instance vs. Static

* In an instance method
— |Instance variables/methods can be called
— Static variables/methods can also be called
e Eg:you can call a static method pow(x,y) anywhere in a class
* |n a static method
— Only static variables/methods can be called

— Instance variables/methods can be only called if they are
invoked from an object

* |nstance variables include “this”
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Invoking Instance and Static Methods

 From an object, both instance and static
variables/methods can be invoked

— ObjectName.var;

— However, static variables/methods keep the same for the
same type objects

* From a class, only static variables/methods can be
invoked
— ClassName.var;

— You are suggested to call static variables/methods this
wa
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Example: Static Variables and Methods

public class Pet {
private String name;
private static int totalNumber = @;
// totalNumber is initialized when the first object is created

public Pet(String initName) {
this.name = initName;
// Recommended: use "this" to call instance variables
totalNumber++; // totalNumber can be accessed in an instance method
System.out.println("Total pet number is " + Pet.getTotalNumber());
// Recommended: use class name to call static variables

}

public static int getTotalNumber() {
return totalNumber;
// You can not access "name" or "this" in a static method

}

public static void main(String[] args) {
Pet a = new Pet("Odie");
Pet b = new Pet("Garfield");
Pet ¢ = new Pet("Nermal");
// Three objects are created, so totalNumber is increased for three times
System.out.println("Total pet number is " + a.getTotalNumber());
System.out.println("Total pet number is " + b.getTotalNumber());
// You can invoke a static method from an object. However they perform the same.
// You are recommended to call it as Pet.getTotalNumber();
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Example: The Output

e Total pet number is
e Total pet number is
e Total pet number is
e Total pet number is

w w w N B

e Total pet number is
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Summary: Static Variables/Methods

e Static variables and methods belong to a class
instead of an object

* Every object has its own instance variables; all

objects in the same type share the same static
variables

e Pay attention to: what can be accessed in different
methods
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