

Methods

public class Student

{
private String name;
private int age;

public void setName(String studentName) {
name = studentName;

¥ I S
public void setAge(int studentAge) { MUtatOrS

age = studentAge;
} _
public String getName() { —_
return name;

}

public int getage() { SN\ cessors
return age;

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

return Statement

A method that returns a value must have at least
one return statement

Terminates the method, and returns a value
Syntax:

— return Expression;
Expression can be any expression that produces a

value of type specified by the return type in the
method heading

THE UNIVERSITY
of NORTH CAROLINA

at CHAPEL HILL

Methods

returns a String

getMajor()

return major;

publiccr'easeYear‘()
{

classYear++; <

return type

returns nothing

}

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Methods that Return a Value

As usual, inside a block (defined by braces), you can
have multiple statements

public String getClassYear()

{
if (classYear == 1)
return “Freshman”;
else if (classYear == 2)
return “Sophomore”;
else if ...
}

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

return Statement

* Can also be used in methods that return nothing
* Simply terminates the method
* Syntax:

— return;

public void increaseYear()

{
if (classYear >= 4)
return;
classYear++;
}

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Methods with Parameters

 Parameters are used to hold the value that you pass
to the method

* Parameters can be used as (local) variables inside
the method

public int Squar‘ Parameters go inside

{
return number * number; the parentheses of
} method header

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Calling a Method with Parameters

public static void main(String[] args)

{
Student jack = new Student();
jack.setName(“Jack Smith”);
jack.setClassYear(3);

}

Parameters/
Arguments

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

Methods with Multiple Parameters

* Multiple parameters separated by commas
public double getTotal(double price, double tax)

{

return price + price * tax;
}
 When calling a method, the order, type, and
number of arguments must match parameters
specified in method heading

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Today’s Topics

* Constructors
* Overloading methods
e Static variables and methods

THE UNIVERSITY
of NORTH CAROLINA

at CHAPEL HILL

Constructors

* Create and initialize new objects

* Special methods that are called when (and only
when) creating a new object

Student jack = new Student();

—_ THE UNIVERSITY
" I of NORTH CAROLINA
[|

—_— at CHAPEL HILL

Creating an Object

Create an object jack of class Student
Student jack = new Studept();

\

Assign the memory
address of the
object to variable

Return memory Create an object
address of object by calling a

constructor

Scanner keyboard = new Scannér(System.in);
Create an object keyboard of class Scanner

—_ THE UNIVERSITY
" I of NORTH CAROLINA
[|

at CHAPEL HILL

Constructors

e Can perform any action you write into a
constructor’s definition

— There are no specific rules about what’s in a constructor

 Meant to perform initializing actions

— Usually, initializing values of instance variables by the
creator of the object

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Similar to Setter Methods

 However, constructors create an object in addition
to setting the values of instance variables

* Like methods, constructors can have parameters

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Example: Pet class

public class Pet
{

private String name;
private int age;
private double weight;

public Pet() <

{

name = “No name yet.”;
age = 0;
weight = 0;

}

Default constructor

public static void main(String[] args)

{
Pet p = new Pet();

}

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Call constructor

The Same as Initialization

public class Pet

{ , , Default constructor
private String name = “No name yet.”;
private int age = 0; not declared — but
private double weight = 0; . .
still exists
public static void main(String[] args)
{
Pet p = new Pet();
! Call default

constructor
(so an object
is created)

THE UNIVERSITY
of NORTH CAROLINA

at CHAPEL HILL

Default Constructor

e Constructor that takes no parameters

public Pet()

{
name = “No name yet.”;
age = 0;
weight = 0;

}

e Java automatically defines a default constructor if
you do not define any constructors

— You’ve never written a constructor but you can still
create objects

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Constructors with Parameters

public class Pet

{
private String name;
private int age;
private double weight;

public Pet(String initName, int initAge, double initWeight)

name = initName;

age = initAge;

weight = initWeight;
}

public void setPet(String newName, int newAge, double newWeight)

{

name = newName;
age = newAge;
weight = newWeight;

constructor that

has parameters

THE UNIVERSITY
of NORTH CAROLINA

at CHAPEL HILL

A Closer Look

Same name as class name

e€(String initName, int initAge, double initWeight)

initName; \/
w . R8s Parameters
weight = in ;

No return type I

=

THE UNIVERSITY o
of NORTH CAROLINA
at CHAPEL HILL

Constructors with Parameters

* If you define at least one constructor, a default
constructor will not be created for you
* Now you must create a Pet object like this:

— Pet odie = new Pet(“0Odie”, 3, 8.5);
— Pet odie = new Pet(); // WRONG! No default constructors!

public class Pet {
private String name;
private int age;
private double weight;
public Pet(String initName, int initAge, double initWeight)
{

name = initName; age = initAge; weight = initWeight;

THE UNIVERSITY
of NORTH CAROLINA

at CHAPEL HILL

Multiple Constructors

* You can have several constructors per class

— They all have the same name, just different parameters

e Remember that the name is the same as the class name

— The methods (with the same name) will be called
according to its parameters

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Multiple Constructors

public class Pet {
private String name;
private int age;
private double weight;

public Pet() {
name = “No name yet.”;

age = 0;
weight = 0;
}
public Pet(String initName, int initAge,
name = initName;
age = initAge;
weight = initWeight;
}

public static void main(String[] args)
Pet p = new Pet();
Pet q = new Pet(“Garfield”, 3, 10);

THE UNIVERSITY
of NORTH CAROLINA

at CHAPEL HILL

double initWeight) {

{

Multiple Constructors

public class Pet {
private String name = “No name yet.”;
private int age = 0;
private double weigﬁt = 1; // The instance variables are initialized

public Pet() {
name = “No name yet.”;
age = 0;
weight = 0;

public Pet(String initName, int initAge, double initWeight) {
name = 1nitName;
age = 1nitAge;
weight = initWeight;

public Pet(String initName) {
name = 1nitName;

public static void main(String[] args) { . .)
Pet p = new Pet); // p.weight 1is 0 - it is overwritten by constructor
Pet q = new Pet(“Garfield”, 3, 10);
Pet w = new Pet(“Odie”); // w.wei ht is 1, as only one constructor
//can be called. Variables will get initial value if not set in constructor.

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Calling a Constructor

e A constructor can be only called once when the object
is created

— Pet odie = new Pet(“Odie”, 3, 8.5);
* You can not invoke a constructor from an object

— odie.Pet(““Odie”, 3, 8.5);
// Wrong! A constructor can not be invoked this way

— odie.setPet(“0Odie”, 3, 8.5);
// Yes. You can use a setter instead

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Call a Setter from the Constructor

public class Pet

{

private String name;
private int age;
private double weight;

public Pet(String initName, int initAge, double initWeight)
{

}

setPet(initName, initAge, initWeight);

public void setPet(String newName, int newAge, double newWeight)

{

name = newName;
age = newAge; :
weight = newWeight; your code is reused. However,

it is not acceptable if you are
using inheritance.

THE UNIVERSITY
of NORTH CAROLINA
at CHAPEL HILL

Initializing and Setting Instance Variables

* I|nitialization values give values to instance variables
that are the same (or commonly the same) for all
objects

* Constructors give values to instance variables that
should be decided for each object

e Setters give values to instance variables that can be
changed during time

— |If a value is never going to be changed, no setter is
needed

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Example: Initialize, Construct and Set

public class Pet {
private String name;
private int age = 0;

// Age is always 0 (assuming newly-born pets are registered immediately)

private double weight;

public Pet(String initName, double initWeight){
name = initName;
weight = initWeight;
// Name is given when registering, and can not be changed

}

public void setPetWeight(double newWeight) {
weight = newWeight;
// Weight changes every time you weight your pet

public void setPetAge(double newAge) {
age = newAge,
// Surely age can change, too

THE UNIVERSITY
of NORTH CAROLINA

at CHAPEL HILL

Summary: Constructor

* A special method with the same name as the class,
and no return type

* Called only when an object is created
* |t can take parameters to initialize instance variables

* You can define multiple constructors with different
parameter lists

THE UNIVERSITY
of NORTH CAROLINA

at CHAPEL HILL

Methods Overloading

 We've seen that a class can have multiple
constructors. Notice that they have the same name

public class Pet {
public Pet() {..}
public Pet(String initName, int initAge, double initWeight)
{.}
public Pet(String initName) {..}
public static void main(String[] args) {

Pet p = new Pet(); // First constructor will be called
Pet q = new Pet(“Garfield”, 3, 10); // Second constructor
Pet w = new Pet(“Odie”); // Third constructor

Pet u =

new Pet(“Nermal”, 2); // Wrong - no matching method

THE UNIVERSITY
of NORTH CAROLINA

at CHAPEL HILL

Overloading

e Using the same method name for two or more
methods within the same class

— It’s not only for constructors
e Parameter lists must be different

— public double average(int nl, int n2)
— public double average(double n1, double n2)
— public double average(double nl1l, double n2, double n3)

e Java knows what to use based on the number and
types of the arguments

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Overloading

e Java knows what to use based on the number and
types of the arguments

— You’ve used overloading before

e System.out.println(“The result is”); // String
type parameter

 System.out.println(20); // int type parameter

* Java makes the decision based on a method’s
signature

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Method Signature

* The signature includes a method’s name and the

number and types of its parameters

— Pet g = new Pet(“Garfield”, 3, 10);
— Pet w = new Pet(“0Odie”);

e Signature does NOT include return type

— Cannot have two methods with the same signature in the

same class

— public double average(int nl1, int n2)
— public int average(int nl1, int n2) // Wrong overloading

— Java won’t know what method to call if average(1,2) is
invoked

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Overloading and Type Conversion

e Java always tries to find an exactly matching
method. If it fails, it tries type conversion

— If a class has the following two methods:

— public double average(int nl, int n2)
— public double average(double nl, double n2)

* If the method call is average(3,3), the first method will be called

— However, if a class only have this method:
— public double average(double nl, double n2)

* If the method call is average(3,3), it will be converted to
average(3.0,3.0) and call the (only) method

— Recall: byte->short->int->long->float->double

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

How to Use Overloading

 Use it onlyif two or more methods are performing
exactly the same function

— public void setPet(String newName)
— public void setPet(String newName, int newAge, double newWeight)

e |tis avery bad idea to create methods that have the

same name but do different things

— public void setPet(int newAge)
— public void setPet(double newWeight)

— What happens if we call setPet(3)? What about setPet(3.0)?

» Use setAge() and setWeight() instead
e Usually we do not overload methods if parameters can be converted

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Summary: Overloading

* Overloading means several methods share the
same name but have different parameters

e Java calls the methods according to the parameter
numbers and types

— The name, parameter number and parameter type form
the method signature

 Make sure that they do the same thing. Otherwise
the user will be confused

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Static Variables and Methods

* Instance variables
private int age;
private String name;

* Methods
public int getAge()
{

return age;

}

* Calling methods on objects

Student std = new Student();
std.setAge(20);
System.out.println(std.getAge());

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Static Variables and Methods

 Recall that “classes do not have data; individual
objects have data”

* This is not always true — classes can have data, too

— static variables and methods belong to a class as a
whole, not to an individual object

— When would you want a method that does not need an
object?

* If the method perform a general function instead of actions on
an object

THE UNIVERSITY
of NORTH CAROLINA

at CHAPEL HILL

Static Variables and Methods

// Returns x raised to the yth power, where y >= 0.
public int pow(int x, int y)

{
int result = 1;
for (int 1 =0; i < y; i++)
{
result *= x;
}
return result;
}

Do we need an object to call this method?

THE UNIVERSITY
of NORTH CAROLINA

at CHAPEL HILL

Static Variables and Methods

* We have seen static variables and methods before
— private static final int FACE_DIAMETER = 200;

e Recall that “final” means “not changable”
— public static void main(String[] args)

— Static can describe more than constants and main method

 Static variables are sometimes referred as “global variables”, which
record the global status of all objects in the same class

e Static methods are used for actions that do not relate to a certain
object

— main method is a static method because if you execute a program,
this entrance is not owned by an object

THE UNIVERSITY
of NORTH CAROLINA

at CHAPEL HILL

Instance vs. Static

 |nstance variables and methods
— private int name;
— public void setName(String newName){}

e Static variables and methods

— private static int totalNumber;
— public static int getTotalNumber(){}

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Instance vs. Static

* In an instance method
— |Instance variables/methods can be called
— Static variables/methods can also be called
e Eg:you can call a static method pow(x,y) anywhere in a class
* |n a static method
— Only static variables/methods can be called

— Instance variables/methods can be only called if they are
invoked from an object

* |nstance variables include “this”

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Invoking Instance and Static Methods

 From an object, both instance and static
variables/methods can be invoked

— ObjectName.var;

— However, static variables/methods keep the same for the
same type objects

* From a class, only static variables/methods can be
invoked
— ClassName.var;

— You are suggested to call static variables/methods this
wa

THE UNIVERSITY
of NORTH CAROLINA

at CHAPEL HILL

Example: Static Variables and Methods

public class Pet {
private String name;
private static int totalNumber = @;
// totalNumber is initialized when the first object is created

public Pet(String initName) {
this.name = initName;
// Recommended: use "this" to call instance variables
totalNumber++; // totalNumber can be accessed in an instance method
System.out.println("Total pet number is " + Pet.getTotalNumber());
// Recommended: use class name to call static variables

}

public static int getTotalNumber() {
return totalNumber;
// You can not access "name" or "this" in a static method

}

public static void main(String[] args) {
Pet a = new Pet("Odie");
Pet b = new Pet("Garfield");
Pet ¢ = new Pet("Nermal");
// Three objects are created, so totalNumber is increased for three times
System.out.println("Total pet number is " + a.getTotalNumber());
System.out.println("Total pet number is " + b.getTotalNumber());
// You can invoke a static method from an object. However they perform the same.
// You are recommended to call it as Pet.getTotalNumber();

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Example: The Output

e Total pet number is
e Total pet number is
e Total pet number is
e Total pet number is

w w w N B

e Total pet number is

THE UNIVERSITY

of NORTH CAROLINA
at CHAPEL HILL

Summary: Static Variables/Methods

e Static variables and methods belong to a class
instead of an object

* Every object has its own instance variables; all

objects in the same type share the same static
variables

e Pay attention to: what can be accessed in different
methods

THE UNIVERSITY
of NORTH CAROLINA

at CHAPEL HILL

	幻灯片编号 1
	Methods
	return Statement
	Methods
	Methods that Return a Value
	return Statement
	Methods with Parameters
	Calling a Method with Parameters
	Methods with Multiple Parameters
	Today’s Topics
	Constructors
	Creating an Object
	Constructors
	Similar to Setter Methods
	Example: Pet class
	The Same as Initialization
	Default Constructor
	Constructors with Parameters
	A Closer Look
	Constructors with Parameters
	Multiple Constructors
	Multiple Constructors
	Multiple Constructors
	Calling a Constructor
	Call a Setter from the Constructor
	Initializing and Setting Instance Variables
	Example: Initialize, Construct and Set
	Summary: Constructor
	Methods Overloading
	Overloading
	Overloading
	Method Signature
	Overloading and Type Conversion
	How to Use Overloading
	Summary: Overloading
	Static Variables and Methods
	Static Variables and Methods
	Static Variables and Methods
	Static Variables and Methods
	Instance vs. Static
	Instance vs. Static
	Invoking Instance and Static Methods
	Example: Static Variables and Methods
	Example: The Output
	Summary: Static Variables/Methods

