
April 09, 2013

COMP 110-003
Introduction to Programming
More Methods – Constructors, Overloading and Static

Haohan Li
TR 11:00 – 12:15, SN 011
Spring 2013

Methods

public class Student
{
 private String name;
 private int age;

 public void setName(String studentName) {
 name = studentName;
 }
 public void setAge(int studentAge) {
 age = studentAge;
 }
 public String getName() {
 return name;
 }
 public int getAge() {
 return age;
 }
}

Accessors

Mutators

return Statement

• A method that returns a value must have at least
one return statement

• Terminates the method, and returns a value

• Syntax:
– return Expression;

• Expression can be any expression that produces a
value of type specified by the return type in the
method heading

Methods

public String getMajor()
{
 return major;
}

public void increaseYear()
{
 classYear++;
}

returns a String

returns nothing

return type

Methods that Return a Value

As usual, inside a block (defined by braces), you can
have multiple statements

public String getClassYear()
{
 if (classYear == 1)
 return “Freshman”;
 else if (classYear == 2)
 return “Sophomore”;
 else if ...
}

return Statement

• Can also be used in methods that return nothing

• Simply terminates the method

• Syntax:
– return;

public void increaseYear()
{
 if (classYear >= 4)
 return;
 classYear++;
}

Methods with Parameters

• Parameters are used to hold the value that you pass
to the method

• Parameters can be used as (local) variables inside
the method

public int square(int number)
{
 return number * number;
}

Parameters go inside
the parentheses of

method header

Calling a Method with Parameters

public static void main(String[] args)
{
 Student jack = new Student();
 jack.setName(“Jack Smith”);
 jack.setClassYear(3);
}

 Parameters/

Arguments

Methods with Multiple Parameters

• Multiple parameters separated by commas
 public double getTotal(double price, double tax)
 {
 return price + price * tax;
 }

• When calling a method, the order, type, and
number of arguments must match parameters
specified in method heading

Today’s Topics

• Constructors

• Overloading methods

• Static variables and methods

Constructors

• Create and initialize new objects

• Special methods that are called when (and only
when) creating a new object

 Student jack = new Student();

Calling a constructor

Creating an Object

Create an object jack of class Student

Student jack = new Student();

Scanner keyboard = new Scanner(System.in);
Create an object keyboard of class Scanner

Create an object
by calling a
constructor

Return memory
address of object

Assign the memory
address of the
object to variable

Constructors

• Can perform any action you write into a
constructor’s definition
– There are no specific rules about what’s in a constructor

• Meant to perform initializing actions
– Usually, initializing values of instance variables by the

creator of the object

Similar to Setter Methods

• However, constructors create an object in addition
to setting the values of instance variables

• Like methods, constructors can have parameters

Example: Pet class

public class Pet
{
 private String name;
 private int age;
 private double weight;

 public Pet()
 {
 name = “No name yet.”;
 age = 0;
 weight = 0;
 }

 public static void main(String[] args)
 {
 Pet p = new Pet();
 }
}

Default constructor

Call constructor

The Same as Initialization

public class Pet
{
 private String name = “No name yet.”;
 private int age = 0;
 private double weight = 0;

 public static void main(String[] args)
 {
 Pet p = new Pet();
 }
}

Default constructor
not declared – but
still exists

Call default
constructor
(so an object
is created)

Default Constructor

• Constructor that takes no parameters

 public Pet()
 {
 name = “No name yet.”;
 age = 0;
 weight = 0;
 }

• Java automatically defines a default constructor if
you do not define any constructors
– You’ve never written a constructor but you can still

create objects

Constructors with Parameters

public class Pet
{
 private String name;
 private int age;
 private double weight;

 public Pet(String initName, int initAge, double initWeight)
 {
 name = initName;
 age = initAge;
 weight = initWeight;
 }

 public void setPet(String newName, int newAge, double newWeight)
 {
 name = newName;
 age = newAge;
 weight = newWeight;
 }

}

Another version of
constructor that
has parameters

A Closer Look

public Pet(String initName, int initAge, double initWeight)
{
 name = initName;
 age = initAge;
 weight = initWeight;
}

Same name as class name

No return type

Parameters Body

Constructors with Parameters

• If you define at least one constructor, a default
constructor will not be created for you

• Now you must create a Pet object like this:
– Pet odie = new Pet(“Odie”, 3, 8.5);
– Pet odie = new Pet(); // WRONG! No default constructors!

public class Pet {
 private String name;
 private int age;
 private double weight;
 public Pet(String initName, int initAge, double initWeight)
 {
 name = initName; age = initAge; weight = initWeight;
 }
}

Multiple Constructors

• You can have several constructors per class
– They all have the same name, just different parameters

• Remember that the name is the same as the class name

– The methods (with the same name) will be called
according to its parameters

Multiple Constructors

public class Pet {
 private String name;
 private int age;
 private double weight;

 public Pet() {
 name = “No name yet.”;
 age = 0;
 weight = 0;
 }

 public Pet(String initName, int initAge, double initWeight) {
 name = initName;
 age = initAge;
 weight = initWeight;
 }

 public static void main(String[] args) {
 Pet p = new Pet();
 Pet q = new Pet(“Garfield”, 3, 10);
 }
}

Multiple Constructors

public class Pet {
 private String name = “No name yet.”;
 private int age = 0;
 private double weight = 1; // The instance variables are initialized

 public Pet() {
 name = “No name yet.”;
 age = 0;
 weight = 0;
 }

 public Pet(String initName, int initAge, double initWeight) {
 name = initName;
 age = initAge;
 weight = initWeight;
 }

 public Pet(String initName) {
 name = initName;
 }

 public static void main(String[] args) {
 Pet p = new Pet(); // p.weight is 0 – it is overwritten by constructor
 Pet q = new Pet(“Garfield”, 3, 10);
 Pet w = new Pet(“Odie”); // w.weight is 1, as only one constructor
//can be called. Variables will get initial value if not set in constructor.
 }
}

Calling a Constructor

• A constructor can be only called once when the object
is created
– Pet odie = new Pet(“Odie”, 3, 8.5);

• You can not invoke a constructor from an object
– odie.Pet(“Odie”, 3, 8.5);

// Wrong! A constructor can not be invoked this way

– odie.setPet(“Odie”, 3, 8.5);
// Yes. You can use a setter instead

Call a Setter from the Constructor

public class Pet
{
 private String name;
 private int age;
 private double weight;

 public Pet(String initName, int initAge, double initWeight)
 {
 setPet(initName, initAge, initWeight);
 }

 public void setPet(String newName, int newAge, double newWeight)
 {
 name = newName;
 age = newAge;
 weight = newWeight;
 }

}

You are allowed to do that so
your code is reused. However,
it is not acceptable if you are
using inheritance.

Initializing and Setting Instance Variables

• Initialization values give values to instance variables
that are the same (or commonly the same) for all
objects

• Constructors give values to instance variables that
should be decided for each object

• Setters give values to instance variables that can be
changed during time
– If a value is never going to be changed, no setter is

needed

Example: Initialize, Construct and Set

public class Pet {
 private String name;
 private int age = 0;

 // Age is always 0 (assuming newly-born pets are registered immediately)
 private double weight;

 public Pet(String initName, double initWeight){
 name = initName;
 weight = initWeight;

 // Name is given when registering, and can not be changed
 }

 public void setPetWeight(double newWeight) {
 weight = newWeight;
 // Weight changes every time you weight your pet
 }

 public void setPetAge(double newAge) {
 age = newAge;
 // Surely age can change, too
 }
}

Summary: Constructor

• A special method with the same name as the class,
and no return type

• Called only when an object is created

• It can take parameters to initialize instance variables

• You can define multiple constructors with different
parameter lists

Methods Overloading

• We’ve seen that a class can have multiple
constructors. Notice that they have the same name

public class Pet {
 public Pet() {…}
 public Pet(String initName, int initAge, double initWeight)
 {…}
 public Pet(String initName) {…}
 public static void main(String[] args) {
 Pet p = new Pet(); // First constructor will be called
 Pet q = new Pet(“Garfield”, 3, 10); // Second constructor
 Pet w = new Pet(“Odie”); // Third constructor
 Pet u = new Pet(“Nermal”, 2); // Wrong – no matching method
 }

Overloading

• Using the same method name for two or more
methods within the same class
– It’s not only for constructors

• Parameter lists must be different
– public double average(int n1, int n2)
– public double average(double n1, double n2)
– public double average(double n1, double n2, double n3)

• Java knows what to use based on the number and
types of the arguments

Overloading

• Java knows what to use based on the number and
types of the arguments
– You’ve used overloading before

• System.out.println(“The result is”); // String
type parameter

• System.out.println(20); // int type parameter

• Java makes the decision based on a method’s
signature

Method Signature

• The signature includes a method’s name and the
number and types of its parameters

– Pet q = new Pet(“Garfield”, 3, 10);
– Pet w = new Pet(“Odie”);

• Signature does NOT include return type
– Cannot have two methods with the same signature in the

same class
– public double average(int n1, int n2)
– public int average(int n1, int n2) // Wrong overloading

– Java won’t know what method to call if average(1,2) is
invoked

Overloading and Type Conversion

• Java always tries to find an exactly matching
method. If it fails, it tries type conversion
– If a class has the following two methods:
– public double average(int n1, int n2)
– public double average(double n1, double n2)

• If the method call is average(3,3), the first method will be called

– However, if a class only have this method:
– public double average(double n1, double n2)

• If the method call is average(3,3), it will be converted to
average(3.0,3.0) and call the (only) method

– Recall: byte->short->int->long->float->double

How to Use Overloading

• Use it only if two or more methods are performing
exactly the same function

– public void setPet(String newName)
– public void setPet(String newName, int newAge, double newWeight)

• It is a very bad idea to create methods that have the
same name but do different things

– public void setPet(int newAge)
– public void setPet(double newWeight)

– What happens if we call setPet(3)? What about setPet(3.0)?
• Use setAge() and setWeight() instead

• Usually we do not overload methods if parameters can be converted

Summary: Overloading

• Overloading means several methods share the
same name but have different parameters

• Java calls the methods according to the parameter
numbers and types
– The name, parameter number and parameter type form

the method signature

• Make sure that they do the same thing. Otherwise
the user will be confused

Static Variables and Methods

• Instance variables
private int age;
private String name;

• Methods
public int getAge()
{
 return age;
}

• Calling methods on objects
Student std = new Student();
std.setAge(20);
System.out.println(std.getAge());

Static Variables and Methods

• Recall that “classes do not have data; individual
objects have data”

• This is not always true – classes can have data, too
– static variables and methods belong to a class as a

whole, not to an individual object

– When would you want a method that does not need an
object?
• If the method perform a general function instead of actions on

an object

Static Variables and Methods

// Returns x raised to the yth power, where y >= 0.
public int pow(int x, int y)
{
 int result = 1;
 for (int i = 0; i < y; i++)
 {
 result *= x;
 }
 return result;
}

Do we need an object to call this method?

Static Variables and Methods

• We have seen static variables and methods before
– private static final int FACE_DIAMETER = 200;

• Recall that “final” means “not changable”
– public static void main(String[] args)

– Static can describe more than constants and main method
• Static variables are sometimes referred as “global variables”, which

record the global status of all objects in the same class

• Static methods are used for actions that do not relate to a certain
object

– main method is a static method because if you execute a program,
this entrance is not owned by an object

Instance vs. Static

• Instance variables and methods
– private int name;
– public void setName(String newName){}

• Static variables and methods
– private static int totalNumber;
– public static int getTotalNumber(){}

Instance vs. Static

• In an instance method
– Instance variables/methods can be called

– Static variables/methods can also be called
• Eg: you can call a static method pow(x,y) anywhere in a class

• In a static method
– Only static variables/methods can be called

– Instance variables/methods can be only called if they are
invoked from an object
• Instance variables include “this”

Invoking Instance and Static Methods

• From an object, both instance and static
variables/methods can be invoked
– ObjectName.var;

– However, static variables/methods keep the same for the
same type objects

• From a class, only static variables/methods can be
invoked
– ClassName.var;

– You are suggested to call static variables/methods this
way

Example: Static Variables and Methods
public class Pet {
 private String name;
 private static int totalNumber = 0;
 // totalNumber is initialized when the first object is created

 public Pet(String initName) {
 this.name = initName;
 // Recommended: use "this" to call instance variables
 totalNumber++; // totalNumber can be accessed in an instance method
 System.out.println("Total pet number is " + Pet.getTotalNumber());
 // Recommended: use class name to call static variables
 }

 public static int getTotalNumber() {
 return totalNumber;
 // You can not access "name" or "this" in a static method
 }

 public static void main(String[] args) {
 Pet a = new Pet("Odie");
 Pet b = new Pet("Garfield");
 Pet c = new Pet("Nermal");
 // Three objects are created, so totalNumber is increased for three times
 System.out.println("Total pet number is " + a.getTotalNumber());
 System.out.println("Total pet number is " + b.getTotalNumber());
 // You can invoke a static method from an object. However they perform the same.
 // You are recommended to call it as Pet.getTotalNumber();
 }
}

Example: The Output

• Total pet number is 1
• Total pet number is 2
• Total pet number is 3
• Total pet number is 3
• Total pet number is 3

Summary: Static Variables/Methods

• Static variables and methods belong to a class
instead of an object

• Every object has its own instance variables; all
objects in the same type share the same static
variables

• Pay attention to: what can be accessed in different
methods

	幻灯片编号 1
	Methods
	return Statement
	Methods
	Methods that Return a Value
	return Statement
	Methods with Parameters
	Calling a Method with Parameters
	Methods with Multiple Parameters
	Today’s Topics
	Constructors
	Creating an Object
	Constructors
	Similar to Setter Methods
	Example: Pet class
	The Same as Initialization
	Default Constructor
	Constructors with Parameters
	A Closer Look
	Constructors with Parameters
	Multiple Constructors
	Multiple Constructors
	Multiple Constructors
	Calling a Constructor
	Call a Setter from the Constructor
	Initializing and Setting Instance Variables
	Example: Initialize, Construct and Set
	Summary: Constructor
	Methods Overloading
	Overloading
	Overloading
	Method Signature
	Overloading and Type Conversion
	How to Use Overloading
	Summary: Overloading
	Static Variables and Methods
	Static Variables and Methods
	Static Variables and Methods
	Static Variables and Methods
	Instance vs. Static
	Instance vs. Static
	Invoking Instance and Static Methods
	Example: Static Variables and Methods
	Example: The Output
	Summary: Static Variables/Methods

