COMP 110-003 Introduction to Programming *Computer Basics*

January 10, 2013

Haohan Li TR 11:00 – 12:15, SN 011 Spring 2013

Today

- Hardware and Memory
- Programs and Compiling
- Your first program

Before Programming

- You need to know basics of a computer
 - Like learning driving, you should know that it has an engine that burns gasoline and deliver power to wheels
- Understand what your program is doing
- Talk intelligently about computers

Computer – It's not Magic

From: Great Ideas in Computer Science by JAVA, by A. W. Biermann and D. Ramm, The MIT Press 2002.

Hardware vs Software (Concretely)

- Hardware physical machine
 - CPU, Memory
- Software programs that give instructions to the computer
 - Windows 7, Google Chrome, Games, Eclipse

Hardware vs Software (Abstractly)

- Software
 - An organized collection of instructions
- Hardware
 - Circuits that execute, store and interact with instructions
 - Execution: CPU
 - Storage: Memory
 - Interaction: Peripherals, like keyboards, monitors, networks

Instructions

- An instruction is a sequences of 0's and 1's that represents a single operation on the computer
 - Example: 00000101 0000001 00000010
 - Means: ADD 1 2

Instruction Data

- The output will be 3
- These O's and 1's are called bits
 - Why only 0 and 1?
 - Because it is easy to make an electrical device that has only two stable states

CPU (Central Processing Unit)

- It is the "brain" of the computer
 - CPU executes the instructions
 - CPU's working routine
 - read instructions and data from memory
 - do calculation
 - write calculation results back to memory
- Intel Core i7 3.4 GHz
 - Executes at most 3,400,000,000 instructions per second

Memory

- Holds instructions and data for the computer
 - How much the "brain" can remember
- Main Memory

- For intermediate calculations (program you are running)
- Disappears when you shut down your computer
- Secondary Memory
 - Hard drives, CDs, Flash drives
 - Exists until you delete it

GB? MB? KB?

- 1 bit = 0 or 1
- 1 byte = 8 bits

Smallest addressable unit of memory

- Kilo, Mega, Giga, Tera
 - 1 KB = 1,000 bytes (1 thousand bytes)
 - 1 MB = 1,000 KB = 1,000,000 bytes (1 million bytes)
 - 1 GB = 1,000 MB = 1,000,000,000 bytes (1 billion bytes)
 - The same for GHz (1 Giga Hertz)
 - 1 TB = 1,000 GB = 1,000,000,000 bytes!

Main Memory

- Memory address
 - To locate certain memory positions
 - CPU fetches data according to memory address
- Another interesting fact: characters are also saved in bits, and so does everything

Peripherals

- Input devices
 - Keyboards, mouses, game controllers.....
 - When they get inputs, they save them at certain memory addresses
- Output devices
 - Monitors, speakers, printers.....
 - They are projected to certain memory addresses
 - When CPU wants to output, it writes to those addresses
- CPU sees everything as memory

Programs

- Set of instructions for a CPU to follow
 - Also known as software.
- You will be writing programs
 We will look at one soon
- Our programs will be in Java

Programming Languages

- Why do we need languages when we have instructions?
 - Too hard for humans to write bits directly

From: Great Ideas in Computer Science by JAVA, by A. W. Biermann and D. Ramm, The MIT Press 2002.

Programming Languages

- Different languages are good at different aspects
 - C/C++: close to instructions, runs fast
 - Matlab: good at scientific computation
 - Python: relatively easy, fast development
- We choose Java
 - Not because
 - Best Language (there is no such thing)
 - Easiest to learn 😕
 - Because
 - Widely used, incorporate (most) modern features

From Languages to Instructions

- The translator is called **compiler**
 - It is also a program
 - From human-readable to machine-readable

Self-test Questions

- What is a software?
- What are the two kinds of memories?
 What's the difference?
- How many bits are there in 1 MB?
- When we enter something from the keyboard, what will happen inside the computer?

