
April 16, 2013

COMP 110-003
Introduction to Programming
Inheritance and Polymorphism

Haohan Li
TR 11:00 – 12:15, SN 011
Spring 2013

Daily Joke

• Q: What’s the object-oriented way to become
wealthy?

• A: Inheritance

Inheritance

• Important questions:
– What is inheritance?

– How to use inheritance?

• The biggest difficulty:
– Inheritance is specifically used for “better design”

– Design is harder than implementation, so you haven’t
done much design

Inheritance

• A way to organize classes

• Derived classes share the
characteristics of base
classes

• Usually referred as
subclass and superclass
– We don’t use child class and

parent class because it’s
inaccurate

Superclass

Subclass

Example: Bike
public class Bicycle {
 // the Bicycle class has three fields
 public int cadence, gear, speed;

 // the Bicycle class has one constructor
 public Bicycle(int startCadence, int startSpeed, int startGear) {
 gear = startGear; cadence = startCadence; speed = startSpeed;
 }

 // the Bicycle class has four methods
 public void setCadence(int newValue) {
 cadence = newValue;
 }
 public void setGear(int newValue) {
 gear = newValue;
 }
 public void applyBrake(int decrement) {
 speed -= decrement;
 }
 public void speedUp(int increment) {
 speed += increment;
 }
}

Example: MountainBike
public class MountainBike extends Bicycle {

 // the MountainBike subclass adds one field
 public int seatHeight;

 // the MountainBike subclass has one constructor
 public MountainBike(int startHeight, int startCadence, int startSpeed,
 int startGear) {
 super(startCadence, startSpeed, startGear); // introduce later
 seatHeight = startHeight;
 }

 // the MountainBike subclass adds one method
 public void setHeight(int newValue) {
 seatHeight = newValue;
 }
}

Syntax Rules

• public class Derived_Class_Name extends
Base_Class_Name

• public class MountainBike extends Bicycle

• After the inheritance, the subclass inherits all the
public variables and methods of the superclass
– Also, the subclass can add new variables and methods

• Bicycle class has cadence, gear, speed, constructor and four setters

• MountainBike class has cadence, gear, speed, seatHeight,
constructor, four setters and a new setter setHeight()

First Summary

• Subclasses inherit all public variables and methods
from superclass
– They can use these variables and methods as their own

• MountainBike mb = new MountainBike(110, 50, 30, 4);

• mb.setGear(5);

– You don’t have to copy and paste the duplicate methods.
It seems a good way to reuse your old code

More Inheritance: Override

• Moreover, you can write a method (and variables)
in the subclass to hide the method with the same
name in the superclass
– In this example, the MountainBike has a powerful break

so it immediately reduce the speed to 0

– Now if we call mb.applyBrake(3), the speed will be 0
• It won’t be the old speed minus 3, as the superclass defines

public class MountainBike extends Bicycle {
 // the MountainBike subclass overrides one method
 public void applyBrake(int decrement) {
 speed = 0;
 }
}

Wait a Minute……

• What’s the point of overriding a method
– If we want to reuse a method by inheritance, why do we

rewrite the method?

• If we think more – why do we reuse our code by
inheritance?
– We can simply use the old class in the new class

– Remember that we only inherit the public variables and
methods – there is no difference between using the
superclass

Example: MountainBike2

public class MountainBike2 {
 public int seatHeight;
 // the Bicycle class is used -- instead of inherited
 public Bicycle mb;

 public MountainBike2(int startHeight, int startCadence, int startSpeed,
 int startGear) {
 mb = new Bicycle(startCadence, startSpeed, startGear);
 seatHeight = startHeight;
 }

 public void setGear(int newValue) {
 mb.setGear(newValue);
 }

 public void applyBrake(int decrement) {
 mb.speed = 0;
 }
}

Inheritance is NOT for Reusability

• Though inheritance can be good for reusability, it is
not intended for reusability
– That means, if you want to reuse your code, you shall not

think about inheritance first!

• Inheritance is for flexibility
– It is used when different objects need different methods

– We call this property “polymorphism”

Polymorphism

• It means “many forms”

• Same instruction to mean different things in
different contexts.
– Example: “Go play your favorite sport.”

• I’d go play soccer

• Others of you would play basketball or football instead.

• In programming, this means that the same method
name can cause different actions depending on
what object it is applied to

Why is Polymorphism Required?

• Let’s consider if we want to design a set of classes
that represents animals
– Every animal can play its own sound

– If we have to write a method for each
animal, the class design will be a disaster

Animal Class without Polymorphism

public class Animal {
 private String animalName;
 private String species;
 private void playDuckSound() {
 // play "QUACK"
 }
 private void playDogSound() {
 // play "WOOF"
 }
 private void playCatSound() {
 // play "MEW"
 }

 public void speak() {
 if (species.equals("Duck")) {
 this.playDuckSound();
 } else if (species.equals("Dog")) {
 this.playDogSound();
 } else if (species.equals("Cat")) {
 this.playCatSound();
 }
 }
}

If We Want to Add Cow to the Class

• We must add a method called playCowSound()
– Let it play “moo”

• Then we must change the speak() method by
adding a new case in the multibranch statement
– If there is more than one method that depends on the

species, we need more
• eat(), hunt(), sleep()

– Again, modifying this class is a disaster

Loops, Arrays and Polymorphism

• Loops are used to repeatedly access similar
statements

• Arrays are used to repeatedly access similar
variables

• Polymorphism are used to access similar methods

• Their syntax rules are very different, but you shall
see a similar purpose

Polymorphism and Overriding

• Key point:
– You can create a

subclass object for
a superclass type
variable

– When you invoke
the methods from
the superclass
variable, the
overridden method
is called

// Animal.java
public class Animal {
 private String animalName;
 public void speak() {
 // default method -- can be empty
 }
}

// In another file Cat.java
public class Cat extends Animal {
 public void speak() {
 // play "MEW"
 }
 public static void main(String[] args) {
 Animal c = new Cat();
 c.speak(); // will play "MEW"
 }
}

Polymorphism and Overriding

public class Animal {
 private String animalName;
 public void speak() {
 // default method -- can be empty
 }

 public static void main(String[] args)
 {
 Animal a[] = new Animal[3];
 a[0] = new Cat();
 a[1] = new Dog();
 a[2] = new Duck();
 for (int i = 0; i < 3; i++) {
 a[i].speak();
 }
 }
}

public class Cat extends Animal {
 public void speak() {
 System.out.println("MEW");
 }
}

public class Dog extends Animal {
 public void speak() {
 System.out.println("WOOF");
 }
}

public class Duck extends Animal {
 public void speak() {
 System.out.println("QUACK");
 }
}

Output: MEW, WOOF, QUACK

Polymorphism and Dynamic Binding

• What if we want to add a new animal: cow?
– Just write a new class Cow

• Nothing in Animal shall be
changed

– If you have another
method in Animal that
calls speak(), it won’t
be affected
• The method invocation is not bound to the method definition

until the program executes

• Java dynamically decide what method to call at run-time

public class Cow extends Animal {
 public void speak() {
 System.out.println("MOO");
 }
}

public class Animal {
 public static void groupSpeak
 (Animal[] group) {
 for (int i = 0; i < group.length; i++)
 group[i].speak();
}}

Second Summary: Polymorphism

• In programming, this means that the same method
name can cause different actions depending on
what object it is applied to
– You can create a subclass object for a superclass type

variable

– When you invoke the methods from the superclass
variable, the overridden method is called

The is-a Relationship

• This inheritance relationship is known as an is-a
relationship
– A Bear is a Mammal

– A Mammal is an Animal

• Is a Mammal a Bear?
– Not necessarily!

The is-a Relationship

public class Animal {
 public void eat() {
 System.out.println("Get
 anything to eat");
 }
}

public class Mammal extends Animal {
}

public class Bear extends Mammal {
 public void eat() {
 System.out.println("Find a
 fish to eat");
 }
 public void hibernate() {
 System.out.println("Zzzzzz");
 }
}

public static void main(String[]
args) {
 Animal a = new Mammal();
 // YES! A Mammal is an Animal
 Animal b = new Bear();
 // YES! A Bear is an Animal
 Mammal c = new Bear();
 // YES! A Bear is a Mammal
 // Bear d = new Mammal(); NO! A
 // Mammal may not be a Bear!
 a.eat(); // OK. Mammal doesn't
 // override eat(). Eat anything.
 b.eat(); // OK. Bear overrides
 // eat(). Eat fish.
 // c.hibernate(); WRONG! Mammal
 // doesn't have this method!
}

More Complicated Hierarchy

• Who is a whom?

Person

Student Employee

Undergrad Grad

Masters Doctoral Nondegree

Faculty Staff

Third Summary

• A subclass object can be assigned to a superclass
type variable
– After the assignment, it loses its newly added methods

– However, it can still perform its own
action from overridden methods

• Therefore, a superclass object acts
as a superclass all the time, though
it can be actually a subclass object

Liskov Substitution Principle

• Derived types must be completely substitutable for

their base types
– Inheritance in fact means “detailed substitute”

• A bear can do anything that a mammal can do

– Therefore we don’t name them as parent/child class
• Children is not substitutes of their parent

• In a design, you must understand if a class is
another class, or uses another class
– Never inherit another class just because you want to use

it!

is-a vs. use-a

• Sometimes it is easy to determine
• A sedan is a car; a sedan uses an engine

• Sometimes it is hard
– Is Square a Rectangle?

• In program design, a square is not a rectangle!

• Because a square can not substitute a rectangle!
– In a rectangle, changing length won’t change its width

– In a square, it will – it’s not acting like a rectangle!

– Square can be implemented by using a rectangle
• Still, not straightforward

– Basically they are different

Square vs. Rectangle

public class Rectangle {
 protected int m_width;
 protected int m_height;

 public void setWidth(int width) {
 m_width = width;
 }

 public void setHeight(int height) {
 m_height = height;
 }

 public int getWidth() {
 return m_width;
 }

 public int getHeight() {
 return m_height;
 }

 public int getArea() {
 return m_width * m_height;
 }
}

public class Square extends Rectangle {
 public void setWidth(int width) {
 m_width = width;
 m_height = width;
 }

 public void setHeight(int height) {
 m_width = height;
 m_height = height;
 }

 public static void main(String args[]) {
 Rectangle r = new Square();
 r.setWidth(5);
 r.setHeight(10);
 // user knows that r it's a rectangle.
 // It assumes that he's able to set the
 // width and height as for the base
 // class
 System.out.println(r.getArea());
 // now he's surprised to see that the
 //area is 100 instead of 50.
 }
}

public, protected and private

• private instance variables and private methods in the
base class are NOT inherited by derived classes
– private instance variables and private methods are

inaccessible in all other classes – including its subclasses

• protected instance variables and protected methods
in the base class are inherited by derived classes
– protected instance variables and protected methods are

inaccessible in other classes except its subclasses

public, protected and private

• private instance variables and private methods exist
in subclasses – they are just invisible
– You can call them from public methods in superclasses

public class Person {
 private int ID;
 protected int age;
 public int getID(){
 return ID;
 }
}

public class Student extends Person{
 public void printInfo(){
 System.out.println(age);
 // OK. Age is accessible by Student
 System.out.println(ID);
 // WRONG! ID is invisible to Student;
 System.out.println(this.getID());
 // It is OK. getID() is public
 }
}

Using the Keyword super

• If your method overrides one of its superclass's
methods, you can invoke the overridden method
through the use of the keyword super

public class Animal {
 public void eat() {
 System.out.println("Get anything to eat");
 }
}

public class Bear extends Animal {
 public void eat() {
 super.eat();
 System.out.println("Finding a fish to eat is better");
 }
}

Using the Keyword super

• super can also be used to invoke superclass's
constructor. It must be the first line in the subclass
constructor

– The default constructor super() will be automatically
called. If the super class does not have a no-argument
constructor, you must invoke the superclass constructor
with a matching parameter list

public class MountainBike extends Bicycle {
 public MountainBike(int startHeight, int startCadence, int startSpeed,
 int startGear) {
 super(startCadence, startSpeed, startGear);
 seatHeight = startHeight;
}}

Overriding and Overloading

• If a derived class defines a method of the same
name, same number and types of parameter as a
base class method (in short, the same signature),
this is overriding

• You can still have another method of the same
name in the same class, as long as its number or
types of parameters are different: overloading

Overriding and Overloading

public class BaseClass {
 public void m(int a) {
 System.out.println("Method with one int in BaseClass");
 }

 public void m(int a, int b) {
 System.out.println("Method with two int in BaseClass");
 }
}

public class DeriveClass extends BaseClass {
 public void m(int a) {
 System.out.println("Method with one int in DeriveClass");
 }
 public static void main(String[] args) {
 BaseClass c = new DeriveClass();
 c.m(0);
 }
}

Will print: Method with one int in DeriveClass

c is a DeriveClass object.
The method m(int) is

defined (overridden) in c

Overriding and Overloading

public class BaseClass {
 public void m(int a) {
 System.out.println("Method with one int in BaseClass");
 }

 public void m(int a, int b) {
 System.out.println("Method with two int in BaseClass");
 }
}

public class DeriveClass extends BaseClass {
 public void m(int a) {
 System.out.println("Method with one int in DeriveClass");
 }
 public static void main(String[] args) {
 BaseClass c = new DeriveClass();
 c.m(0,0);
 }
}

Will print: Method with two int in BaseClass

c is a DeriveClass object.
However, the method

m(int, int) is not defined
(overridden) in c.

Therefore, it will call the
inherited and overloaded

method in BaseClass

Overriding and Overloading

public class BaseClass {
 public void m(int a) {
 System.out.println("Method with one int in BaseClass");
 }
}

public class DeriveClass extends BaseClass {
 public void m(int a) {
 System.out.println("Method with one int in DeriveClass");
 }

 public void m(int a, int b) {
 System.out.println("Method with two int in DeriveClass");
 }

 public static void main(String[] args) {
 BaseClass c = new DeriveClass();
 c.m(0,0);
 // You can declare c as DeriveClass c = new DeriveClass();
 }
}

Will cause a syntax error

c is in BaseClass type. There
is no m(int, int) method

defined in BaseClass type.

Keyword instanceof

• instanceof is very similar to a comparison operator.
It returns a boolean value indicating if an object is
in a given class type

• The syntax rule: Variable_of_Object instanceof
Class_Name
– If the value of the expression is true, it means the

variable is (or can be treated as) in the class type

Keyword instanceof

• Person a = new Grad();

• Grad b = new Doctoral();

• Employee c = new Faculty();

• a instanceof Grad is true

• a instanceof Doctoral is false

• b instanceof Doctoral is true

• c instanceof Person is true

• c instanceof Employee is true

Person

Student Employee

Undergrad Grad

Masters Doctoral Nondegree

Faculty Staff

Type Casting

• Similar to primitive types, you can cast a variable to
a different type
– Syntax rule: (Class_Name) variable_of_object;

• double d = 13.5;

• int a = (int) d;

• Person p = new Student();

• Student s = (Student) p;

– A run-time error happens if you can’t cast the object
• Person p = new Student();

• Student s = (Student) p;

• Doctoral d = (Doctoral) p; // WRONG! p is not in Doctoral type!

Type Casting

• You can cast the object only if the object is an
instance of the class type
– Therefore, you can always use

if (objectVariable instanceof ClassName)
 ClassName newVar = (ClassName) objectVariable;

– The casting can be to a higher level (to superclass) or to a
lower level (to subclass). Usually we only use the explict
casting if to a lower level
• Student s = new Doctoral();

• Person p = s;

• Doctoral d = (Doctoral) s;

The Class Object

• Every class in Java inherits a base class “Object”
– You don’t have to write “extends” explicitly

– Every class in Java is an object

• Class Object has several methods that can be
overridden
– The most important one is

public boolean equals (Object obj)

– This method compares if two Object variables are the
same

– We’ve used the overridden one in String class

equals() Method

• Read Chapter 8.2 for more details
public class Student {

 private String name;
 private int studentNumber;

 public boolean sameName(Student otherStudent) {
 return this.name.equals(otherStudent.name);
 }

 public boolean equals(Object otherObject) {
 boolean isEqual = false;
 if (otherObject instanceof Student) {
 Student otherStudent = (Student) otherObject;
 isEqual = this.sameName(otherStudent)
 && (this.studentNumber == otherStudent.studentNumber);
 }
 return isEqual;
 }
}

Two More Keywords: abstract & final

• If a method is abstract, subclasses must override it

• If a method is final, subclasses can not override it

• There are more details:
– A class with at least one abstract method is called an

abstract class. You can not create objects in this class. It
can only be used as a base class

– A class can be declared as final. Then you can not inherit
this class

– A variable can also be declared as final. You know that it
also means the variable is not changeable

Two More Keywords: abstract & final

public abstract class AbstractClass {
 public abstract void m();
 // An abstract method can not have method body
 // Also, you must declare the class as abstract
}

public class ClassWithFinal {
 public final void m() {
 System.out.println("Can't override!");
 }
 public void n() {
 System.out.println("Can override");
 }
}

public final class FinalClass {
 public void m() {
 System.out.println("Can't inheritance!");
 }
}

public class Class1 extends AbstractClass {
 public void m() {
 System.out.println("Must override!");
 }
}

public class Class2 extends ClassWithFinal {

 // Can not override method m();

 public void n() {
 System.out.println("Override n()!");
 }
}

// A final class can not be inherited

Take-Home Message

• A subclass object can be assigned to a superclass
type variable

• When you invoke a method, what is called depends
on what object it is invoked from

• Polymorphism means you can write methods for
superclass only, and the behavior depends on
detailed subclass implementation

Announcement

• On next lecture, we will start reviewing the
important contents, with sample questions from
example exams
– Be sure to attend!

• Read Lab 6 and Lab 7, and review sheets
– No submission required for new labs. Solutions are given

• Send me an email if you want to attend our tic-tac-
toe AI tournament
– You need (eventually) a version with CPU moves first

	幻灯片编号 1
	Daily Joke
	Inheritance
	Inheritance
	Example: Bike
	Example: MountainBike
	Syntax Rules
	First Summary
	More Inheritance: Override
	Wait a Minute……	
	Example: MountainBike2
	Inheritance is NOT for Reusability
	Polymorphism
	Why is Polymorphism Required?
	Animal Class without Polymorphism
	If We Want to Add Cow to the Class
	Loops, Arrays and Polymorphism
	Polymorphism and Overriding
	Polymorphism and Overriding
	Polymorphism and Dynamic Binding
	Second Summary: Polymorphism
	The is-a Relationship
	The is-a Relationship
	More Complicated Hierarchy
	Third Summary
	Liskov Substitution Principle�
	is-a vs. use-a
	Square vs. Rectangle
	public, protected and private
	public, protected and private
	Using the Keyword super
	Using the Keyword super
	Overriding and Overloading
	Overriding and Overloading
	Overriding and Overloading
	Overriding and Overloading
	Keyword instanceof
	Keyword instanceof
	Type Casting
	Type Casting
	The Class Object
	equals() Method
	Two More Keywords: abstract & final
	Two More Keywords: abstract & final
	Take-Home Message
	Announcement

