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Daily Joke 

• Q: What’s the object-oriented way to become 
wealthy? 

• A: Inheritance 



Inheritance 

• Important questions: 
– What is inheritance? 

– How to use inheritance? 

• The biggest difficulty: 
– Inheritance is specifically used for “better design” 

– Design is harder than implementation, so you haven’t 
done much design 

 



Inheritance 

• A way to organize classes 

• Derived classes share the 
characteristics of base 
classes 

• Usually referred as 
subclass and superclass 
– We don’t use child class and 

parent class because it’s 
inaccurate 

Superclass 

Subclass 



Example: Bike 
public class Bicycle { 
 // the Bicycle class has three fields 
 public int cadence, gear, speed; 
 
 // the Bicycle class has one constructor 
 public Bicycle(int startCadence, int startSpeed, int startGear) { 
  gear = startGear; cadence = startCadence; speed = startSpeed; 
 } 
 
 // the Bicycle class has four methods 
 public void setCadence(int newValue) { 
  cadence = newValue; 
 } 
 public void setGear(int newValue) { 
  gear = newValue; 
 } 
 public void applyBrake(int decrement) { 
  speed -= decrement; 
 } 
 public void speedUp(int increment) { 
  speed += increment; 
 } 
} 



Example: MountainBike 
public class MountainBike extends Bicycle { 
 
 // the MountainBike subclass adds one field 
 public int seatHeight; 
 
 // the MountainBike subclass has one constructor 
 public MountainBike(int startHeight, int startCadence, int startSpeed, 
  int startGear) { 
  super(startCadence, startSpeed, startGear); // introduce later 
  seatHeight = startHeight; 
 } 
 
 // the MountainBike subclass adds one method 
 public void setHeight(int newValue) { 
  seatHeight = newValue; 
 } 
} 



Syntax Rules 

• public class Derived_Class_Name extends 
Base_Class_Name 

• public class MountainBike extends Bicycle 

• After the inheritance, the subclass inherits all the 
public variables and methods of the superclass 
– Also, the subclass can add new variables and methods 

• Bicycle class has cadence, gear, speed, constructor and four setters 

• MountainBike class has cadence, gear, speed, seatHeight, 
constructor, four setters and a new setter setHeight() 



First Summary 

• Subclasses inherit all public variables and methods 
from superclass 
– They can use these variables and methods as their own 

• MountainBike mb = new MountainBike(110, 50, 30, 4); 

• mb.setGear(5); 

– You don’t have to copy and paste the duplicate methods. 
It seems a good way to reuse your old code 

 



More Inheritance: Override 

• Moreover, you can write a method (and variables) 
in the subclass to hide the method with the same 
name in the superclass 
– In this example, the MountainBike has a powerful break 

so it immediately reduce the speed to 0 

 

 

 

– Now if we call mb.applyBrake(3), the speed will be 0 
• It won’t be the old speed minus 3, as the superclass defines 

public class MountainBike extends Bicycle { 
 // the MountainBike subclass overrides one method 
 public void applyBrake(int decrement) { 
  speed = 0; 
 } 
} 



Wait a Minute……  

• What’s the point of overriding a method 
– If we want to reuse a method by inheritance, why do we 

rewrite the method? 

• If we think more – why do we reuse our code by 
inheritance? 
– We can simply use the old class in the new class 

– Remember that we only inherit the public variables and 
methods – there is no difference between using the 
superclass 



Example: MountainBike2  

public class MountainBike2 { 
 public int seatHeight; 
 // the Bicycle class is used -- instead of inherited 
 public Bicycle mb; 
 
 public MountainBike2(int startHeight, int startCadence, int startSpeed, 
  int startGear) { 
  mb = new Bicycle(startCadence, startSpeed, startGear); 
  seatHeight = startHeight; 
 } 
 
 public void setGear(int newValue) { 
  mb.setGear(newValue); 
 } 
 
 public void applyBrake(int decrement) { 
  mb.speed = 0; 
 } 
} 



Inheritance is NOT for Reusability 

• Though inheritance can be good for reusability, it is 
not intended for reusability 
– That means, if you want to reuse your code, you shall not 

think about inheritance first! 

• Inheritance is for flexibility 
– It is used when different objects need different methods 

– We call this property “polymorphism” 



Polymorphism 

• It means “many forms”   

• Same instruction to mean different things in 
different contexts.   
– Example: “Go play your favorite sport.”  

• I’d go play soccer 

• Others of you would play basketball or football instead. 

• In programming, this means that the same method 
name can cause different actions depending on 
what object it is applied to 

 



Why is Polymorphism Required? 

• Let’s consider if we want to design a set of classes 
that represents animals 
– Every animal can play its own sound 

– If we have to write a method for each 
animal, the class design will be a disaster 

 



Animal Class without Polymorphism 

public class Animal { 
 private String animalName; 
 private String species; 
 private void playDuckSound() { 
  // play "QUACK" 
 } 
 private void playDogSound() { 
  // play "WOOF" 
 } 
 private void playCatSound() { 
  // play "MEW" 
 } 
 
 public void speak() { 
  if (species.equals("Duck")) { 
   this.playDuckSound(); 
  } else if (species.equals("Dog")) { 
   this.playDogSound(); 
  } else if (species.equals("Cat")) { 
   this.playCatSound(); 
  } 
 } 
} 



If We Want to Add Cow to the Class 

• We must add a method called playCowSound() 
– Let it play “moo” 

• Then we must change the speak() method by 
adding a new case in the multibranch statement 
– If there is more than one method that depends on the 

species, we need more 
• eat(), hunt(), sleep() 

– Again, modifying this class is a disaster 



Loops, Arrays and Polymorphism 

• Loops are used to repeatedly access similar 
statements 

• Arrays are used to repeatedly access similar 
variables 

• Polymorphism are used to access similar methods 

 

• Their syntax rules are very different, but you shall 
see a similar purpose 



Polymorphism and Overriding 

• Key point: 
– You can create a 

subclass object for 
a superclass type 
variable 

– When you invoke 
the methods from 
the superclass 
variable, the 
overridden  method 
is called 

// Animal.java 
public class Animal { 
 private String animalName; 
 public void speak() { 
  // default method -- can be empty 
 } 
} 
 
// In another file Cat.java 
public class Cat extends Animal { 
 public void speak() { 
  // play "MEW" 
 } 
 public static void main(String[] args) { 
  Animal c = new Cat(); 
  c.speak(); // will play "MEW" 
 } 
} 



Polymorphism and Overriding 

public class Animal { 
 private String animalName; 
 public void speak() { 
 // default method -- can be empty 
 } 
 
 public static void main(String[] args) 
 { 
  Animal a[] = new Animal[3]; 
  a[0] = new Cat(); 
  a[1] = new Dog(); 
  a[2] = new Duck(); 
  for (int i = 0; i < 3; i++) { 
   a[i].speak(); 
  } 
 } 
} 

public class Cat extends Animal { 
 public void speak() { 
  System.out.println("MEW"); 
 } 
} 
 
public class Dog extends Animal { 
 public void speak() { 
  System.out.println("WOOF"); 
 } 
} 
 
public class Duck extends Animal { 
 public void speak() { 
  System.out.println("QUACK"); 
 } 
} 

Output: MEW, WOOF, QUACK 



Polymorphism and Dynamic Binding 

• What if we want to add a new animal: cow? 
– Just write a new class Cow 

• Nothing in Animal shall be  
changed 

– If you have another  
method in Animal that  
calls speak(), it won’t  
be affected 
• The method invocation is not bound to the method definition 

until the program executes 

• Java dynamically decide what method to call at run-time 

 

public class Cow extends Animal { 
 public void speak() { 
  System.out.println("MOO"); 
 } 
} 

public class Animal { 
 public static void groupSpeak 
   (Animal[] group) { 
  for (int i = 0; i < group.length; i++) 
   group[i].speak(); 
}} 



Second Summary: Polymorphism 

• In programming, this means that the same method 
name can cause different actions depending on 
what object it is applied to 
– You can create a subclass object for a superclass type 

variable 

– When you invoke the methods from the superclass 
variable, the overridden  method is called 

 



The is-a Relationship 

• This inheritance relationship is known as an is-a 
relationship 
– A Bear is a Mammal 

– A Mammal is an Animal 

• Is a Mammal a Bear? 
– Not necessarily! 

 



The is-a Relationship 

public class Animal { 
 public void eat() { 
  System.out.println("Get  
   anything to eat"); 
 } 
} 
 
public class Mammal extends Animal { 
} 
 
public class Bear extends Mammal { 
 public void eat() { 
  System.out.println("Find a  
   fish to eat"); 
 } 
 public void hibernate() { 
  System.out.println("Zzzzzz"); 
 } 
} 

public static void main(String[] 
args) { 
 Animal a = new Mammal();  
 // YES! A Mammal is an Animal 
 Animal b = new Bear();  
 // YES! A Bear is an Animal 
 Mammal c = new Bear();  
 // YES! A Bear is a Mammal 
 // Bear d = new Mammal(); NO! A 
 // Mammal may not be a Bear! 
 a.eat(); // OK. Mammal doesn't 
 // override eat(). Eat anything. 
 b.eat(); // OK. Bear overrides 
 // eat(). Eat fish. 
 // c.hibernate(); WRONG! Mammal 
 // doesn't have this method! 
} 



More Complicated Hierarchy 

• Who is a whom? 

Person 

Student Employee 

Undergrad Grad 

Masters Doctoral Nondegree 

Faculty Staff 



Third Summary 

• A subclass object can be assigned to a superclass 
type variable 
– After the assignment, it loses its newly added methods 

– However, it can still perform its own  
action from overridden methods 

• Therefore, a superclass object acts  
as a superclass all the time, though  
it can be actually a subclass object 



Liskov Substitution Principle 
 
• Derived types must be completely substitutable for 

their base types 
– Inheritance in fact means “detailed substitute” 

• A bear can do anything that a mammal can do 

– Therefore we don’t name them as parent/child class 
• Children is not substitutes of their parent 

• In a design, you must understand if a class is 
another class, or uses another class 
– Never inherit another class just because you want to use 

it! 



is-a vs. use-a 

• Sometimes it is easy to determine 
• A sedan is a car; a sedan uses an engine 

• Sometimes it is hard 
– Is Square a Rectangle? 

• In program design, a square is not a rectangle! 

• Because a square can not substitute a rectangle! 
– In a rectangle, changing length won’t change its width 

– In a square, it will – it’s not acting like a rectangle! 

– Square can be implemented by using a rectangle 
• Still, not straightforward 

– Basically they are different 



Square vs. Rectangle 

public class Rectangle { 
 protected int m_width; 
 protected int m_height; 
 
 public void setWidth(int width) { 
  m_width = width; 
 } 
 
 public void setHeight(int height) { 
  m_height = height; 
 } 
 
 public int getWidth() { 
  return m_width; 
 } 
 
 public int getHeight() { 
  return m_height; 
 } 
 
 public int getArea() { 
  return m_width * m_height; 
 } 
} 

public class Square extends Rectangle { 
 public void setWidth(int width) { 
  m_width = width; 
  m_height = width; 
 } 
 
 public void setHeight(int height) { 
  m_width = height; 
  m_height = height; 
 } 
 
 public static void main(String args[]) { 
  Rectangle r = new Square(); 
  r.setWidth(5); 
  r.setHeight(10); 
  // user knows that r it's a rectangle. 
  // It assumes that he's able to set the  
  // width and height as for the base 
  // class 
  System.out.println(r.getArea()); 
  // now he's surprised to see that the  
  //area is 100 instead of 50. 
 } 
} 



public, protected and private 

• private instance variables and private methods in the 
base class are NOT inherited by derived classes 
– private instance variables and private methods are 

inaccessible in all other classes – including its subclasses 

• protected instance variables and protected methods 
in the base class are inherited by derived classes 
– protected instance variables and protected methods are 

inaccessible in other classes except its subclasses 

 
 



public, protected and private 

• private instance variables and private methods exist 
in subclasses – they are just invisible 
– You can call them from public methods in superclasses 

 
  

public class Person { 
 private int ID; 
 protected int age; 
 public int getID(){ 
  return ID; 
 } 
} 

public class Student extends Person{ 
 public void printInfo(){ 
  System.out.println(age); 
  // OK. Age is accessible by Student 
  System.out.println(ID); 
  // WRONG! ID is invisible to Student; 
  System.out.println(this.getID()); 
  // It is OK. getID() is public 
 } 
} 



Using the Keyword super 

• If your method overrides one of its superclass's 
methods, you can invoke the overridden method 
through the use of the keyword super 

public class Animal { 
 public void eat() { 
  System.out.println("Get anything to eat"); 
 } 
} 
 
public class Bear extends Animal { 
 public void eat() { 
  super.eat(); 
  System.out.println("Finding a fish to eat is better"); 
 } 
} 



Using the Keyword super 

• super can also be used to invoke superclass's 
constructor. It must be the first line in the subclass 
constructor 

 

 
 

 

– The default constructor super() will be automatically 
called. If the super class does not have a no-argument 
constructor, you must invoke the superclass constructor 
with a matching parameter list 

 

public class MountainBike extends Bicycle { 
 public MountainBike(int startHeight, int startCadence, int startSpeed, 
  int startGear) { 
  super(startCadence, startSpeed, startGear);  
  seatHeight = startHeight; 
}} 



Overriding and Overloading 

• If a derived class defines a method of the same 
name, same number and types of parameter as a 
base class method (in short, the same signature), 
this is overriding 

• You can still have another method of the same 
name in the same class, as long as its number or 
types of parameters are different: overloading 

 



Overriding and Overloading 

 

 

public class BaseClass { 
 public void m(int a) { 
  System.out.println("Method with one int in BaseClass"); 
 } 
 
 public void m(int a, int b) { 
  System.out.println("Method with two int in BaseClass"); 
 } 
} 

public class DeriveClass extends BaseClass { 
 public void m(int a) { 
  System.out.println("Method with one int in DeriveClass"); 
 } 
 public static void main(String[] args) { 
  BaseClass c = new DeriveClass(); 
  c.m(0); 
 } 
} 

Will print: Method with one int in DeriveClass 

c is a DeriveClass object. 
The method m(int) is 

defined (overridden) in c 



Overriding and Overloading 

 

 

public class BaseClass { 
 public void m(int a) { 
  System.out.println("Method with one int in BaseClass"); 
 } 
 
 public void m(int a, int b) { 
  System.out.println("Method with two int in BaseClass"); 
 } 
} 

public class DeriveClass extends BaseClass { 
 public void m(int a) { 
  System.out.println("Method with one int in DeriveClass"); 
 } 
 public static void main(String[] args) { 
  BaseClass c = new DeriveClass(); 
  c.m(0,0); 
 } 
} 

Will print: Method with two int in BaseClass 

c is a DeriveClass object. 
However, the method  

m(int, int) is not defined 
(overridden) in c. 

Therefore, it will call the 
inherited and overloaded 

method in BaseClass 



Overriding and Overloading 

 

 

public class BaseClass { 
 public void m(int a) { 
  System.out.println("Method with one int in BaseClass"); 
 } 
} 

public class DeriveClass extends BaseClass { 
 public void m(int a) { 
  System.out.println("Method with one int in DeriveClass"); 
 } 
 
 public void m(int a, int b) { 
  System.out.println("Method with two int in DeriveClass"); 
 } 
 
 public static void main(String[] args) { 
  BaseClass c = new DeriveClass(); 
  c.m(0,0);  
  // You can declare c as DeriveClass c = new DeriveClass(); 
 } 
} 

Will cause a syntax error 

c is in BaseClass type. There 
is no m(int, int) method 

defined in BaseClass type. 



Keyword instanceof 

• instanceof is very similar to a comparison operator. 
It returns a boolean value indicating if an object is 
in a given class type 

• The syntax rule: Variable_of_Object instanceof 
Class_Name 
– If the value of the expression is true, it means the 

variable is (or can be treated as) in the class type 



Keyword instanceof 

• Person a = new Grad(); 

• Grad b = new Doctoral(); 

• Employee c = new Faculty(); 

• a instanceof Grad is true 

• a instanceof Doctoral is false 

• b instanceof Doctoral is true 

• c instanceof Person is true 

• c instanceof Employee is true 

Person 

Student Employee 

Undergrad Grad 

Masters Doctoral Nondegree 

Faculty Staff 



Type Casting 

• Similar to primitive types, you can cast a variable to 
a different type 
– Syntax rule: (Class_Name) variable_of_object; 

• double d = 13.5; 

• int a = (int) d; 

• Person p = new Student(); 

• Student s = (Student) p; 

– A run-time error happens if you can’t cast the object 
• Person p = new Student(); 

• Student s = (Student) p; 

• Doctoral d = (Doctoral) p; // WRONG! p is not in Doctoral type! 

 



Type Casting 

• You can cast the object only if the object is an 
instance of the class type 
– Therefore, you can always use 

if (objectVariable  instanceof  ClassName) 
  ClassName  newVar = (ClassName)  objectVariable; 

– The casting can be to a higher level (to superclass) or to a 
lower level (to subclass). Usually we only use the explict 
casting if to a lower level 
• Student s = new Doctoral(); 

• Person p = s; 

• Doctoral d = (Doctoral) s; 

 



The Class Object 

• Every class in Java inherits a base class “Object” 
– You don’t have to write “extends” explicitly 

– Every class in Java is an object 

• Class Object has several methods that can be 
overridden 
– The most important one is  

public boolean equals (Object obj) 

– This method compares if two Object variables are the 
same 

– We’ve used the overridden one in String class 



equals() Method 

• Read Chapter 8.2 for more details 
public class Student { 
 
 private String name; 
 private int studentNumber; 
 
 public boolean sameName(Student otherStudent) { 
  return this.name.equals(otherStudent.name); 
 } 
 
 public boolean equals(Object otherObject) { 
  boolean isEqual = false; 
  if (otherObject instanceof Student) { 
   Student otherStudent = (Student) otherObject; 
   isEqual = this.sameName(otherStudent) 
    && (this.studentNumber == otherStudent.studentNumber); 
  } 
  return isEqual; 
 } 
} 



Two More Keywords: abstract & final 

• If a method is abstract, subclasses must override it 

• If a method is final, subclasses can not override it 

• There are more details: 
– A class with at least one abstract method is called an 

abstract class. You can not create objects in this class. It 
can only be used as a base class 

– A class can be declared as final. Then you can not inherit 
this class 

– A variable can also be declared as final. You know that it 
also means the variable is not changeable 



Two More Keywords: abstract & final 

public abstract class AbstractClass { 
 public abstract void m(); 
 // An abstract method can not have method body 
 // Also, you must declare the class as abstract 
} 
 
public class ClassWithFinal { 
 public final void m() { 
  System.out.println("Can't override!"); 
 } 
 public void n() { 
  System.out.println("Can override"); 
 } 
} 
 
public final class FinalClass { 
 public void m() { 
  System.out.println("Can't inheritance!"); 
 } 
} 

public class Class1 extends AbstractClass { 
 public void m() { 
  System.out.println("Must override!"); 
 } 
} 
 
public class Class2 extends ClassWithFinal { 
 
 // Can not override method m(); 
 
 public void n() { 
  System.out.println("Override n()!"); 
 } 
} 
 
 
// A final class can not be inherited 
 
 
 



Take-Home Message 

• A subclass object can be assigned to a superclass 
type variable 

• When you invoke a method, what is called depends 
on what object it is invoked from 

• Polymorphism means you can write methods for 
superclass only, and the behavior depends on 
detailed subclass implementation 



Announcement 

• On next lecture, we will start reviewing the 
important contents, with sample questions from 
example exams 
– Be sure to attend! 

• Read Lab 6 and Lab 7, and review sheets 
– No submission required for new labs. Solutions are given 

• Send me an email if you want to attend our tic-tac-
toe AI tournament 
– You need (eventually) a version with CPU moves first 
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