
April 23, 2013

COMP 110-003
Introduction to Programming
Final Exam Review

Haohan Li
TR 11:00 – 12:15, SN 011
Spring 2013

General Instructions

• The exam will be more like our midterm rather than
the sample exams
– The exam will take 3 hours. Thus the amount of

questions will be basically doubled

– There won’t be optional questions this time (no “choose
2 from 3”). You need to complete all questions. But there
are still extra points questions

• Comments are not required. However, you may
earn partial credits from them
– Don’t give up – you know the exam values 25%

Computer Basics

• What is --
– Bit

– Byte

– Instruction

– Program

– Algorithm

– Compiler

– CPU

– Memory
• Memory address

Primitive Types

• What are primitive types?
– int, byte, short, long, float, double, char, boolean

• What are the arithmetic operations
– Unary operators

• -, ++, -- (especially, remember “-” can mean “negative”)

– Binary arithmetic operators
• +, -, *, /, % (recall “mod”)

• Parentheses and precedence
– Parentheses > unary > binary

Primitive Types

• Type casting
– Implicit converting

• byte->short->int->long->float->double

• This can be automatically done

• Recall: double d = int1 / int2;

– Explicit casting
• In the other direction

• You must explicitly write the casting

• Recall: int i = (int)(double1 / double2);

Primitive Types

• Type casting
– Java casts types only when they don’t match

– Sample question:
int num = 31;
int val1 = (int) ((float) (num / 31 / 1 * 2 / 9) + (int) 1.0);

Primitive Types

• Type casting
– Java casts types only when they don’t match

– Sample question:

– Answer: val1 is 1
• num / 31 / 1 * 2 / 9 will keep int type, and the value is 0

• They are in a pair of parentheses, and include only int variables

• It is converted to float, but still with value 0

• The remaining part is easy

int num = 31;
int val1 = (int) ((float) (num / 31 / 1 * 2 / 9) + (int) 1.0);

Strings

• Recall Question 9 and Question 10 in the midterm
String str = "How are you?";
System.out.println(str.length() + ",” +
 str.equalsIgnoreCase("HOW ARE YOU") + "," +
 str.indexOf("ou“) + "," +
 str.lastIndexOf('a') + "," +
 str.charAt(6) + ",” +
 str.substring(1, 6));

Strings

• Recall Question 9 and Question 10 in the midterm

– The output: 12, false, 9, 4, e, ow ar

String str = "How are you?";
System.out.println(str.length() + ",” +
 str.equalsIgnoreCase("HOW ARE YOU") + "," +
 str.indexOf("ou“) + "," +
 str.lastIndexOf('a') + "," +
 str.charAt(6) + ",” +
 str.substring(1, 6));

Strings

• str.length()
– int type, the value is 12, not 11

• str.equalsIgnoreCase("HOW ARE YOU")
– boolean type. The value can only be true or false

– Think about str.equals(anotherString)

– The answer is false, because the last ‘?’ is missing.

– str.equalsIgnoreCase("HOW ARE YOU?") will be true

Strings

• str.indexOf("ou")
– int type, the value is 9

– The value is not 9 and 10
• An integer can not have two values

– indexOf() can search for a single character, or a string

– The first position where “ou” appears is 9

H o w a r e y o u ?

0 1 2 3 4 5 6 7 8 9 10 11

Strings

• str.lastIndexOf(" ")
– int type, the value is 7

• str.charAt(6)
– char type, the value is ‘e’

• str.substring(1,6)
– String type, the value is “ow ar”

 H o w a r e y o u ?

0 1 2 3 4 5 6 7 8 9 10 11

Strings

• Sample question:

String str2 = "Bananas are for monkeys“;
String val4 = str2.substring(str2.indexOf("n"), 6);

Strings

• Sample question:

– Answer: val4 is “nana”

• indexOf(“n”) returns 2, which represents the first ‘n’

• substring(2,6) returns 4 letters after the first ‘n’

• It is easy to get “nana” in this question

String str2 = "Bananas are for monkeys“;
String val4 = str2.substring(str2.indexOf("n"), 6);

Strings

• Sample question:

String str2 = "Bananas are for monkeys“;
String val2 = str2.substring(0, 1) + str2.substring(8, 12)
 + str2.substring(str2.indexOf("monkeys"));

Strings

• Sample question:

– Answer: val2 is “Bare monkeys”

• Nothing complicated. Just remember that “+” means “to connect
Strings”

String str2 = "Bananas are for monkeys“;
String val2 = str2.substring(0, 1) + str2.substring(8, 12)
 + str2.substring(str2.indexOf("monkeys"));

Branch Statements – If and Else

• You can use only one if statement
– if (boolean expression)

 { statements; }
other statements;
• Other statements will always be executed

• You can also use an if-else statement
– if (boolean expression)

 { statements 1; }
else { statement 2; }
• If the expression is true, run statement 1, otherwise run statement 2

Boolean Expressions

• A combination of values and variables by
comparison operators. Its value can only be true or
false

Boolean Expressions

• Sample question:

int num = 31;
boolean val3 = ((30 / num != 0) == (num % 15 >= 9));

Boolean Expressions

• Sample question:

– Answer: val3 is true

• 30 / num is 0, 0 != 0 is false
• num % 15 is 1 because 31=15*2+1. 1 >= 9 is false
• false == false is true

int num = 31;
boolean val3 = ((30 / num != 0) == (num % 15 >= 9));

Loop Statements

• While, do-while, for
– You must expect that all loop-related questions now

include arrays

– There won’t be complicated manipulations. However,
you must be familiar with the execution orders of all
parts in a loop

Loop Statements

• Sample question:
– Write the output for:

int x = 7;
boolean found = false;

do {
 System.out.print(x + " ");
 if (x <= 2)
 found = true;
 else
 x = x - 5;
} while (x > 0 && !found);

Loop Statements

• Sample question:
– Write the output for:

– Answer: 7,2
• In the first iteration, no

condition is tested. 7 is the
output, and x is set to 2

• x > 0 and found is false, the
second iteration starts, output 2 and set found as true

• x > 0 but found is true. No more iteration will be executed

int x = 7;
boolean found = false;

do {
 System.out.print(x + " ");
 if (x <= 2)
 found = true;
 else
 x = x - 5;
} while (x > 0 && !found);

Loop Statements

• Sample question:
– Write some code that will declare, initialize, and fill in an

array of type int. After your code executes, the array
should look as follows

 0 2 4 6 8 10 12 14 16 18

Loop Statements

• Sample question:
– Write some code that will declare, initialize, and fill in an

array of type int. After your code executes, the array
should look as follows

• A “cheating” answer

0 2 4 6 8 10 12 14 16 18

int[] a = { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18 };

Loop Statements

• Sample question:
– Write some code that will declare, initialize, and fill in an

array of type int. After your code executes, the array
should look as follows

• Expected answer:

0 2 4 6 8 10 12 14 16 18

int[] b = new int[10];
for (int i = 0; i < 10; i++) {
 b[i] = 2 * i;
}

Arrays

• Sample question:
– Given an array whose elements are in range [1,10]. Write

a method to output how many each number appears in
the array
• Example: if the array is a = {3, 5, 3, 6, 8, 1, 1, 3};

• count(a) should output:
– 1 appears 2 times in the array

3 appears 3 times in the array
5 appears 1 times in the array
6 appears 1 times in the array
8 appears 1 times in the array

Arrays

• One possible answer:
– Enumerate all possible values using nested loop

public static void count(int[] a) {
 for (int i = 1; i <= 10; i++) {
 int count = 0;
 for (int j = 0; j < a.length; j++) {
 if (a[j] == i) {
 count++;
 }
 }
 if (count > 0) {
 System.out.println(i + " appears " + count
 + " times in the array.");
 }
 }
}

Arrays

• Another possible answer:
– Count all numbers with respect to an array count[i]

public static void count(int[] a) {
 int[] count = new int[11];
 for (int i = 1; i < 11; i++) {
 count[i] = 0;
 }
 for (int j = 0; j < a.length; j++) {
 count[a[j]]++;
 }
 for (int i = 1; i < 11; i++) {
 if (count[i] > 0) {
 System.out.println(i + " appears " + count[i]
 + " times in the array.");
 }
 }
}

Methods

• Sample question (parameters and return type):
– Write a method header for methods that do each of the

following things. Their headers start with the keywords
public and static. Do not write the body of the method.

– A method named printX() that just displays the String “X” to the
output window.

– A method named doubleValue() that takes in an argument of type
int and returns twice the argument’s value.

– A method named piCount() that takes in an array of doubles and
returns the number of elements that are greater than Pi.

– A method named largerThan() that takes in one int and one double
and returns true if the int is larger than the double, and false
otherwise.

Methods

• Answer:
– public static void printX()

– public static int doubleValue(int n)

– public static int piCount(int[] a)

– public static boolean largerThan(int i, double d)

Methods

• Sample question (local variables and return values):
– Show the output produced by the following code

public class MyClass {

 public static void changeX() {
 int x = 20;
 System.out.println(x);
 }

 public static void incrementX(int x) {
 x++;
 System.out.println(x);
 }

public static int returnX(int x) {
 x = 0;
 System.out.println(x);
 return x;
}

public static void main(String[] args) {
 int x = 10;
 changeX();
 System.out.println(x);
 incrementX(x);
 System.out.println(x);
 x = returnX(x);
 System.out.println(x);
 }
}

Methods

• Sample question (local variables and return values):
– Show the output produced by the following code

public class MyClass {

 public static void changeX() {
 int x = 20;
 System.out.println(x);
 }

 public static void incrementX(int x) {
 x++;
 System.out.println(x);
 }

public static int returnX(int x) {
 x = 0;
 System.out.println(x);
 return x;
}

public static void main(String[] args) {
 int x = 10;
 changeX(); // 20
 System.out.println(x); // 10
 incrementX(x); // 11
 System.out.println(x); // 10
 x = returnX(x); // 0
 System.out.println(x); // 0
 }
}

Next Lecture on Thursday

• Classes

• Inheritance

• Program 4

Classes

• Classes vs. objects

• Instance variables vs. static variables

• Methods with/without return values

• public/protected/private

• Class type variables (reference type)

• Constructors

• Method parameters – overloading

• Static variables and methods

Classes vs. Objects

• Classes:
– What we can create

– Specify the data
to save

• Objects:
– What have been

created

– Save actual data

Defining a class

public class Student
{
 public String name;
 public int classYear;
 public double GPA;
 public String major;
 // ...

 public String getMajor()
 {
 return major;
 }

 public void increaseYear()
 {
 classYear++;
 }
}

Class name

Instance Variables

Methods

Methods

public String getMajor()
{
 return major;
}

public void increaseYear()
{
 classYear++;
}

returns a String

returns nothing

return type

Methods with Parameters

public class Student
{
 public String name;
 public int classYear;
 // …
 public void setName(String studentName)
 {
 name = studentName;
 }
 public void setClassYear(int year)
 {
 classYear = year;
 }
}

Local Variable Rule

• Usually, a variable is only accessible in its
surrounding brackets

 public class Variable {
 String a = "a";

 public void f() {
 String b = "b";
 if (a.equals("b")) {
 String c = "c";
 }
 }
}

public/private Modifier

• public: there is no restriction on how you can use
the method or instance variable

• private: can not directly use the method or instance
variable’s name outside the class

• protected: can not directly use the method or
instance variable’s name outside the class, except in
the class’s subclasses

public/private Modifier

public class Student

{

 public int classYear;

 private String major;

}

public class StudentTest{

 public static void main(String[] args){

 Student jack = new Student();

 jack.classYear = 1;

 jack.major = “Computer Science”; // ERROR!!!

 }

}

OK, classYear is public

Error!!! major is private

Well Encapsulation

• Imagine a wall between (other) programmers and
(your) implementation
– It’s called interface

Implementation:

Private instance variables
Private constants
Private Methods
Bodies of all methods
Method definitions

Programmer
Interface:
Comments
Headings of public methods
Public defined constants

Variables of a Class Type

• What goes in these variables?
– In a class type variable, the address pointing to the actual

object is saved (not the object itself)

 s

jack

0 1 2 2 3 3 0 5

0 1 0 2 2 8 7 4

U N C i s G

r e a t !

0 3 9 6 3 1 4 7

0 0 0 2 3. 5 0 0

0 0 0 0

J a c k S m i

t h

Array is Also a Class Type

var name score[0] score[1] score[2] score[3] score[4]

data 62 51 88 70 74

m address 25131 25132 25133 25134 25135

• Index numbers start with 0. They do NOT start with 1
or any other number.

• The array name represents a memory address, and
the ith element can be accessed by the address plus i

score score+1 score+2

Arrays of Class Types

Smiley[] smilies = new Smiley[3];
for (int i = 0; i < smilies.length; i++) {
 smilies[i] = new Smiley();
}

1045 2584 2836

true
GREEN
3

false
BLUE
1

false
CYAN
4

Key Message of Class Types

• A primitive type can never be changed by being
passed to a method as a parameter
– It is impossible to change x like this:

• int x = 10;
incrementX(x);

• A class type’s contents can be changed by passing
to a method

• int[] a = new int[5];
swap(i,j,a);

Constructor

• A special method with the same name as the class,
and no return type

• Called only when an object is created

• It can take parameters to initialize instance variables

• You can define multiple constructors with different
parameter lists

Example: Pet class

public class Pet
{
 private String name;
 private int age;
 private double weight;

 public Pet()
 {
 name = “No name yet.”;
 age = 0;
 weight = 0;
 }

 public static void main(String[] args)
 {
 Pet p = new Pet();
 }
}

Default constructor

Call constructor

Constructors with Parameters

• If you define at least one constructor, a default
constructor will not be created for you

• Now you must create a Pet object like this:
– Pet odie = new Pet(“Odie”, 3, 8.5);
– Pet odie = new Pet(); // WRONG! No default constructors!

public class Pet {
 private String name;
 private int age;
 private double weight;
 public Pet(String initName, int initAge, double initWeight)
 {
 name = initName; age = initAge; weight = initWeight;
 }
}

Method Overloading

• Overloading means several methods share the
same name but have different parameters

• Java calls the methods according to the parameter
numbers and types
– The name, parameter number and parameter type form

the method signature

• Make sure that they do the same thing. Otherwise
the user will be confused

Methods Overloading

• We’ve seen that a class can have multiple
constructors. Notice that they have the same name

public class Pet {
 public Pet() {…}
 public Pet(String initName, int initAge, double initWeight)
 {…}
 public Pet(String initName) {…}
 public static void main(String[] args) {
 Pet p = new Pet(); // First constructor will be called
 Pet q = new Pet(“Garfield”, 3, 10); // Second constructor
 Pet w = new Pet(“Odie”); // Third constructor
 Pet u = new Pet(“Nermal”, 2); // Wrong – no matching method
 }

Static Variables/Methods

• Static variables and methods belong to a class
instead of an object

• Every object has its own instance variables; all
objects in the same type share the same static
variables

• Pay attention to: what can be accessed in different
methods

Example: Static Variables and Methods
public class Pet {
 private String name;
 private static int totalNumber = 0;
 // totalNumber is initialized when the first object is created

 public Pet(String initName) {
 this.name = initName;
 // Recommended: use "this" to call instance variables
 totalNumber++; // totalNumber can be accessed in an instance method
 System.out.println("Total pet number is " + Pet.getTotalNumber());
 // Recommended: use class name to call static variables
 }

 public static int getTotalNumber() {
 return totalNumber;
 // You can not access "name" or "this" in a static method
 }

 public static void main(String[] args) {
 Pet a = new Pet("Odie");
 Pet b = new Pet("Garfield");
 Pet c = new Pet("Nermal");
 // Three objects are created, so totalNumber is increased for three times
 System.out.println("Total pet number is " + a.getTotalNumber());
 System.out.println("Total pet number is " + b.getTotalNumber());
 // You can invoke a static method from an object. However they perform the same.
 // You are recommended to call it as Pet.getTotalNumber();
 }
}

Inheritance

• What is inheritance
– Subclasses inherit all public and protected variables and

methods from superclass

• What is overriding
– If a subclass defines a method of the same signature as

the super class, this is overriding

• What is polymorphism
– A subclass object can be assigned to a superclass variable

– It can perform its own action from overridden methods

Polymorphism and Overriding

public class Animal {
 private String animalName;
 public void speak() {
 // default method -- can be empty
 }

 public static void main(String[] args)
 {
 Animal a[] = new Animal[3];
 a[0] = new Cat();
 a[1] = new Dog();
 a[2] = new Duck();
 for (int i = 0; i < 3; i++) {
 a[i].speak();
 }
 }
}

public class Cat extends Animal {
 public void speak() {
 System.out.println("MEW");
 }
}

public class Dog extends Animal {
 public void speak() {
 System.out.println("WOOF");
 }
}

public class Duck extends Animal {
 public void speak() {
 System.out.println("QUACK");
 }
}

Output: MEW, WOOF, QUACK

The is-a Relationship

public class Animal {
 public void eat() {
 System.out.println("Get
 anything to eat");
 }
}

public class Mammal extends Animal {
}

public class Bear extends Mammal {
 public void eat() {
 System.out.println("Find a
 fish to eat");
 }
 public void hibernate() {
 System.out.println("Zzzzzz");
 }
}

public static void main(String[]
args) {
 Animal a = new Mammal();
 // YES! A Mammal is an Animal
 Animal b = new Bear();
 // YES! A Bear is an Animal
 Mammal c = new Bear();
 // YES! A Bear is a Mammal
 // Bear d = new Mammal(); NO! A
 // Mammal may not be a Bear!
 a.eat(); // OK. Mammal doesn't
 // override eat(). Eat anything.
 b.eat(); // OK. Bear overrides
 // eat(). Eat fish.
 // c.hibernate(); WRONG! Mammal
 // doesn't have this method!
}

Sample Question

• Write two classes to inherit a given class Person
– Person represents a person working in the university

• It has 3 protected instance variables: hourlyRate, hoursPerWeek
and insuranceCost

• Also, one static variable: WEEKSPERSEMESTER

– Student represents a student who works in part-time

– Employee represents a permanent employee

– You must override getIncome() and getOutcome()
methods to generate correct output

Sample Question

• Write two classes to inherit a given class Person
– You must override getIncome() and getOutcome()

methods to generate correct output
• A student’s income is: hourly rate * hours per week * week per

semester

• A student’s outcome is: tuition cost + insurance cost

• An employee’s income is: base salary + hourly rate * hours per
week * week per semester

• An employee’s outcome is: insurance cost

– Write getTotalBalance() to calculate income – outcome

– The expected output is given

Solution to Sample Question

• The getTotalBalance() method in Person

public double getTotalBalance() {
 return this.getIncome() - this.getOutcome();
 // getIncome() and getOutcome() are implemented
 in subclasses -- but it is fine
}

Solution to Sample Question

• The Student class
class Student extends Person {
 private double tuitionCost;

 public Student(double tuition, double rate, int hours, double insurance) {
 super(rate, hours, insurance);
 // You must use super() to call superclass's constructor
 this.tuitionCost = tuition;
 // tuitionCost must be initialized
 }

 // getIncome() and getOutcome() must be implemented
 public double getIncome() {
 return this.hourlyRate * this.hoursPerWeek * Person.WEEKSPERSEMESTER;
 // hourlyRate and hoursPerWeek are inherited. WEEKSPERSEMESTER can be called directly
 }

 public double getOutcome() {
 return this.tuitionCost + this.insuranceCost;
 // tuitionCost is newly defined.
 }
}

Solution to Sample Question

• The Employee class
class Employee extends Person {
 private double baseSalary;

 public Employee(double base, double rate, int hours, double insurance) {
 super(rate, hours, insurance);
 this.baseSalary = base;
 }

 public double getIncome() {
 return this.baseSalary + this.hourlyRate * this.hoursPerWeek
 * Person.WEEKSPERSEMESTER;
 }

 public double getOutcome() {
 return this.insuranceCost;
 }
}

Closing Note

• It is my great pleasure to have all of you in the class
– I hope that you enjoyed this course

• I will appreciate if you take the online evaluation

• My doctorate dissertation defense is on 9:00am
tomorrow, at FB 141
– I will start working as a senior software engineer at

MathWorks in this summer

• Thank you for taking this course!

https://www.digitalmeasures.com/login/unc/student�

	幻灯片编号 1
	General Instructions
	Computer Basics
	Primitive Types
	Primitive Types
	Primitive Types
	Primitive Types
	Strings
	Strings
	Strings
	Strings
	Strings
	Strings
	Strings
	Strings
	Strings
	Branch Statements – If and Else
	Boolean Expressions
	Boolean Expressions
	Boolean Expressions
	Loop Statements
	Loop Statements
	Loop Statements
	Loop Statements
	Loop Statements
	Loop Statements
	Arrays
	Arrays
	Arrays
	Methods
	Methods
	Methods
	Methods
	Next Lecture on Thursday
	Classes
	Classes vs. Objects
	Defining a class
	Methods
	Methods with Parameters
	Local Variable Rule
	public/private Modifier
	public/private Modifier
	Well Encapsulation
	Variables of a Class Type
	Array is Also a Class Type
	Arrays of Class Types
	Key Message of Class Types
	Constructor
	Example: Pet class
	Constructors with Parameters
	Method Overloading
	Methods Overloading
	Static Variables/Methods
	Example: Static Variables and Methods
	Inheritance
	Polymorphism and Overriding
	The is-a Relationship
	Sample Question
	Sample Question
	Solution to Sample Question
	Solution to Sample Question
	Solution to Sample Question
	Closing Note

