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General Instructions 

• The exam will be more like our midterm rather than 
the sample exams 
– The exam will take 3 hours. Thus the amount of 

questions will be basically doubled 

– There won’t be optional questions this time (no “choose 
2 from 3”). You need to complete all questions. But there 
are still extra points questions 

• Comments are not required. However, you may 
earn partial credits from them 
– Don’t give up – you know the exam values 25% 



Computer Basics 

• What is --                
– Bit 

– Byte 

– Instruction 

– Program 

– Algorithm 

– Compiler 

– CPU 

– Memory 
• Memory address 



Primitive Types 

• What are primitive types? 
– int, byte, short, long, float, double, char, boolean 

• What are the arithmetic operations 
– Unary operators 

• -, ++, -- (especially, remember “-” can mean “negative”) 

– Binary arithmetic operators 
• +, -, *, /, % (recall “mod”) 

• Parentheses and precedence 
– Parentheses > unary > binary 



Primitive Types 

• Type casting 
– Implicit converting 

• byte->short->int->long->float->double 

• This can be automatically done 

• Recall: double d = int1 / int2; 

– Explicit casting 
• In the other direction 

• You must explicitly write the casting 

• Recall: int i = (int)(double1 / double2); 



Primitive Types 

• Type casting 
– Java casts types only when they don’t match 

– Sample question: 
int num = 31; 
int val1 = (int) ((float) (num / 31 / 1 * 2 / 9) + (int) 1.0); 



Primitive Types 

• Type casting 
– Java casts types only when they don’t match 

– Sample question: 

 

 

– Answer: val1 is 1 
• num / 31 / 1 * 2 / 9 will keep int type, and the value is 0 

• They are in a pair of parentheses, and include only int variables 

• It is converted to float, but still with value 0 

• The remaining part is easy 

 

int num = 31; 
int val1 = (int) ((float) (num / 31 / 1 * 2 / 9) + (int) 1.0); 



Strings 

• Recall Question 9 and Question 10 in the midterm 
String str = "How are you?"; 
System.out.println(str.length() + ",” + 
 str.equalsIgnoreCase("HOW ARE YOU") + "," + 
 str.indexOf("ou“) + "," +  
 str.lastIndexOf('a') + "," +  
 str.charAt(6) + ",” +  
 str.substring(1, 6)); 



Strings 

• Recall Question 9 and Question 10 in the midterm 

 

 

 

 

 
– The output: 12, false, 9, 4, e, ow ar 

String str = "How are you?"; 
System.out.println(str.length() + ",” + 
 str.equalsIgnoreCase("HOW ARE YOU") + "," + 
 str.indexOf("ou“) + "," +  
 str.lastIndexOf('a') + "," +  
 str.charAt(6) + ",” +  
 str.substring(1, 6)); 



Strings 

• str.length() 
– int type, the value is 12, not 11 

• str.equalsIgnoreCase("HOW ARE YOU") 
– boolean type. The value can only be true or false 

– Think about str.equals(anotherString) 

– The answer is false, because the last ‘?’ is missing.  

– str.equalsIgnoreCase("HOW ARE YOU?") will be true 

 



Strings 

• str.indexOf("ou") 
– int type, the value is 9 

– The value is not 9 and 10  
• An integer can not have two values 

– indexOf() can search for a single character, or a string 

– The first position where “ou” appears is 9 

H o w a r e y o u ? 

0 1 2 3 4 5 6 7 8 9 10 11 



Strings 

• str.lastIndexOf(" ") 
– int type, the value is 7 

• str.charAt(6) 
– char type, the value is ‘e’ 

• str.substring(1,6) 
– String type, the value is “ow ar” 

 H o w a r e y o u ? 

0 1 2 3 4 5 6 7 8 9 10 11 



Strings 

• Sample question: 

String str2 = "Bananas are for monkeys“; 
String val4 = str2.substring(str2.indexOf("n"), 6); 



Strings 

• Sample question: 

 

 

 
– Answer: val4 is “nana” 

• indexOf(“n”) returns 2, which represents the first ‘n’ 

• substring(2,6) returns 4 letters after the first ‘n’ 

• It is easy to get “nana” in this question 

 

String str2 = "Bananas are for monkeys“; 
String val4 = str2.substring(str2.indexOf("n"), 6); 



Strings 

• Sample question: 

 

 
String str2 = "Bananas are for monkeys“; 
String val2 = str2.substring(0, 1) + str2.substring(8, 12) 
 + str2.substring(str2.indexOf("monkeys")); 



Strings 

• Sample question: 

 

 

 
– Answer: val2 is “Bare monkeys” 

• Nothing complicated. Just remember that “+” means “to connect 
Strings” 

 

String str2 = "Bananas are for monkeys“; 
String val2 = str2.substring(0, 1) + str2.substring(8, 12) 
 + str2.substring(str2.indexOf("monkeys")); 



Branch Statements – If and Else 

• You can use only one if statement 
– if (boolean expression) 

 { statements; } 
other statements; 
• Other statements will always be executed 

• You can also use an if-else statement 
– if (boolean expression) 

 { statements 1; } 
else { statement 2; } 
• If the expression is true, run statement 1, otherwise run statement 2 

 



Boolean Expressions 

• A combination of values and variables by 
comparison operators. Its value can only be true or 
false 



Boolean Expressions 

• Sample question: 
 
 
 

int num = 31; 
boolean val3 = ((30 / num != 0) == (num % 15 >= 9)); 



Boolean Expressions 

• Sample question: 
 
 
 
– Answer: val3 is true 

• 30 / num is 0, 0 != 0 is false 
• num % 15 is 1 because 31=15*2+1. 1 >= 9 is false 
• false == false is true 

 

int num = 31; 
boolean val3 = ((30 / num != 0) == (num % 15 >= 9)); 



Loop Statements 

• While, do-while, for 
– You must expect that all loop-related questions now 

include arrays 

– There won’t be complicated manipulations. However, 
you must be familiar with the execution orders of all 
parts in a loop 



Loop Statements 

• Sample question: 
– Write the output for: 

int x = 7; 
boolean found = false; 
 
do { 
 System.out.print(x + " "); 
 if (x <= 2) 
  found = true; 
 else 
  x = x - 5; 
} while (x > 0 && !found); 



Loop Statements 

• Sample question: 
– Write the output for: 

 

– Answer: 7,2 
• In the first iteration, no  

condition is tested. 7 is the  
output, and x is set to 2 

• x > 0 and found is false, the  
second iteration starts, output 2 and set found as true 

• x > 0 but found is true. No more iteration will be executed 

int x = 7; 
boolean found = false; 
 
do { 
 System.out.print(x + " "); 
 if (x <= 2) 
  found = true; 
 else 
  x = x - 5; 
} while (x > 0 && !found); 



Loop Statements 

• Sample question: 
– Write some code that will declare, initialize, and fill in an 

array of type int.  After your code executes, the array 
should look as follows 

 0 2 4 6 8 10 12 14 16 18 



Loop Statements 

• Sample question: 
– Write some code that will declare, initialize, and fill in an 

array of type int.  After your code executes, the array 
should look as follows 

 

 
• A “cheating” answer 

 

0 2 4 6 8 10 12 14 16 18 

int[] a = { 0, 2, 4, 6, 8, 10, 12, 14, 16, 18 }; 



Loop Statements 

• Sample question: 
– Write some code that will declare, initialize, and fill in an 

array of type int.  After your code executes, the array 
should look as follows 

 

 
• Expected answer: 

0 2 4 6 8 10 12 14 16 18 

int[] b = new int[10]; 
for (int i = 0; i < 10; i++) { 
 b[i] = 2 * i; 
} 



Arrays 

• Sample question: 
– Given an array whose elements are in range [1,10]. Write 

a method to output how many each number appears in 
the array 
• Example: if the array is a = {3, 5, 3, 6, 8, 1, 1, 3}; 

• count(a) should output:  
– 1 appears 2 times in the array 

3 appears 3 times in the array 
5 appears 1 times in the array 
6 appears 1 times in the array 
8 appears 1 times in the array 



Arrays 

• One possible answer: 
– Enumerate all possible values using nested loop 

public static void count(int[] a) { 
 for (int i = 1; i <= 10; i++) { 
  int count = 0; 
  for (int j = 0; j < a.length; j++) { 
   if (a[j] == i) { 
    count++; 
   } 
  } 
  if (count > 0) { 
   System.out.println(i + " appears " + count 
    + " times in the array."); 
  } 
 } 
} 



Arrays 

• Another possible answer: 
– Count all numbers with respect to an array count[i] 

public static void count(int[] a) { 
 int[] count = new int[11]; 
 for (int i = 1; i < 11; i++) { 
  count[i] = 0; 
 } 
 for (int j = 0; j < a.length; j++) { 
  count[a[j]]++; 
 } 
 for (int i = 1; i < 11; i++) { 
  if (count[i] > 0) { 
   System.out.println(i + " appears " + count[i] 
    + " times in the array."); 
  } 
 } 
} 



Methods 

• Sample question (parameters and return type): 
– Write a method header for methods that do each of the 

following things. Their headers start with the keywords 
public and static.  Do not write the body of the method. 

– A method named printX() that just displays the String “X” to the 
output window. 

– A method named doubleValue() that takes in an argument of type 
int and returns twice the argument’s value. 

– A method named piCount() that takes in an array of doubles and 
returns the number of elements that are greater than Pi. 

– A method named largerThan() that takes in one int and one double 
and returns true if the int is larger than the double, and false 
otherwise. 

 



Methods 

• Answer: 
– public static void printX() 

– public static int doubleValue(int n) 

– public static int piCount(int[] a) 

– public static boolean largerThan(int i, double d) 



Methods 

• Sample question (local variables and return values): 
– Show the output produced by the following code 

public class MyClass { 
 
 public static void changeX() { 
  int x = 20; 
  System.out.println(x); 
 } 
 
 public static void incrementX(int x) { 
  x++; 
  System.out.println(x); 
 } 

public static int returnX(int x) { 
 x = 0; 
 System.out.println(x); 
 return x; 
} 
 
public static void main(String[] args) { 
 int x = 10; 
 changeX(); 
 System.out.println(x); 
 incrementX(x); 
 System.out.println(x); 
 x = returnX(x); 
 System.out.println(x); 
 } 
} 



Methods 

• Sample question (local variables and return values): 
– Show the output produced by the following code 

public class MyClass { 
 
 public static void changeX() { 
  int x = 20; 
  System.out.println(x); 
 } 
 
 public static void incrementX(int x) { 
  x++; 
  System.out.println(x); 
 } 

public static int returnX(int x) { 
 x = 0; 
 System.out.println(x); 
 return x; 
} 
 
public static void main(String[] args) { 
 int x = 10; 
 changeX(); // 20 
 System.out.println(x); // 10 
 incrementX(x); // 11 
 System.out.println(x); // 10 
 x = returnX(x); // 0 
 System.out.println(x); // 0 
 } 
} 



Next Lecture on Thursday 

• Classes 

• Inheritance 

• Program 4 



Classes 

• Classes vs. objects 

• Instance variables vs. static variables 

• Methods with/without return values 

• public/protected/private 

• Class type variables (reference type) 

• Constructors 

• Method parameters – overloading 

• Static variables and methods 

 



Classes vs. Objects 

• Classes: 
– What we can create 

– Specify the data  
to save 

• Objects: 
– What have been  

created 

– Save actual data 



Defining a class 

public class Student 
{ 
    public String name; 
    public int classYear; 
    public double GPA;  
    public String major; 
    // ... 
 
    public String getMajor() 
    { 
        return major; 
    } 
 
    public void increaseYear() 
    { 
        classYear++; 
    } 
} 

Class name 

Instance Variables 

Methods 



Methods 

 
 
 
 
public String getMajor() 
{ 
    return major; 
} 
 
 
public void increaseYear() 
{ 
    classYear++; 
} 

returns a String 

returns nothing 

return type 



Methods with Parameters 

public class Student 
{ 
    public String name; 
    public int classYear; 
    // … 
    public void setName(String studentName) 
    { 
        name = studentName; 
    } 
    public void setClassYear(int year) 
    { 
        classYear = year; 
    } 
} 

 



Local Variable Rule 

• Usually, a variable is only accessible in its 
surrounding brackets 

 public class Variable { 
 String a = "a"; 
 
 public void f() { 
  String b = "b"; 
  if (a.equals("b")) { 
   String c = "c"; 
  } 
 } 
} 



public/private Modifier 

• public: there is no restriction on how you can use 
the method or instance variable 

• private: can not directly use the method or instance 
variable’s name outside the class 

• protected: can not directly use the method or 
instance variable’s name outside the class, except in 
the class’s subclasses 

 



public/private Modifier 

public class Student 

{ 

    public int classYear; 

    private String major; 

} 

public class StudentTest{ 

 public static void main(String[] args){ 

  Student jack = new Student(); 

  jack.classYear = 1; 

  jack.major = “Computer Science”; // ERROR!!! 

 } 

} 

OK, classYear is public 

Error!!!  major is private 



Well Encapsulation 

• Imagine a wall between (other) programmers and 
(your) implementation 
– It’s called interface 

Implementation: 
 
Private instance variables 
Private constants 
Private Methods 
Bodies of all methods 
Method definitions 

Programmer 
Interface: 
Comments 
Headings of public methods 
Public defined constants 



Variables of a Class Type 

• What goes in these variables? 
– In a class type variable, the address pointing to the actual 

object is saved (not the object itself) 

   s 
 
jack 
 
 

0 1 2 2 3 3 0 5 

0 1 0 2 2 8 7 4 

U N C   i s G 

r e a t ! 

0 3 9 6 3 1 4 7 

0 0 0 2 3. 5 0 0 

0 0 0 0 

J a c k S m i 

t h 



Array is Also a Class Type 

var name score[0] score[1] score[2] score[3] score[4] 

data 62 51 88 70 74 

m address 25131 25132 25133 25134 25135 

• Index numbers start with 0. They do NOT start with 1 
or any other number. 

• The array name represents a memory address, and 
the ith element can be accessed by the address plus i 

score score+1 score+2 



Arrays of Class Types 

Smiley[] smilies = new Smiley[3]; 
for (int i = 0; i < smilies.length; i++) { 
    smilies[i] = new Smiley(); 
} 

1045 2584 2836 

true 
GREEN 
3 

false 
BLUE 
1 

false 
CYAN 
4 



Key Message of Class Types 

• A primitive type can never be changed by being 
passed to a method as a parameter 
– It is impossible to change x like this: 

• int x = 10; 
incrementX(x); 

• A class type’s contents can be changed by passing 
to a method 

• int[] a = new int[5]; 
swap(i,j,a); 

 

 



Constructor 

• A special method with the same name as the class, 
and no return type 

• Called only when an object is created 

• It can take parameters to initialize instance variables 

• You can define multiple constructors with different 
parameter lists 



Example: Pet class 

public class Pet 
{ 
    private String name; 
    private int age; 
    private double weight; 
 
    public Pet() 
    { 
        name = “No name yet.”; 
        age = 0; 
        weight = 0; 
    } 
 
  public static void main(String[] args)  
  { 
   Pet p = new Pet(); 
  } 
} 

Default constructor 

Call constructor 



Constructors with Parameters 

• If you define at least one constructor, a default 
constructor will not be created for you 

• Now you must create a Pet object like this: 
– Pet odie = new Pet(“Odie”, 3, 8.5); 
– Pet odie = new Pet(); // WRONG! No default constructors! 

public class Pet { 
    private String name; 
    private int age; 
    private double weight; 
    public Pet(String initName, int initAge, double initWeight) 
    { 
        name = initName; age = initAge; weight = initWeight; 
    } 
} 



Method Overloading 

• Overloading means several methods share the 
same name but have different parameters 

• Java calls the methods according to the parameter 
numbers and types  
– The name, parameter number and parameter type form 

the method signature 

• Make sure that they do the same thing. Otherwise 
the user will be confused 



Methods Overloading  

• We’ve seen that a class can have multiple 
constructors. Notice that they have the same name 

public class Pet { 
    public Pet() {…} 
    public Pet(String initName, int initAge, double initWeight)  
  {…}   
  public Pet(String initName) {…} 
  public static void main(String[] args) { 
   Pet p = new Pet(); // First constructor will be called 
   Pet q = new Pet(“Garfield”, 3, 10); // Second constructor 
   Pet w = new Pet(“Odie”); // Third constructor 
   Pet u = new Pet(“Nermal”, 2); // Wrong – no matching method 
  } 



Static Variables/Methods 

• Static variables and methods belong to a class 
instead of an object 

• Every object has its own instance variables; all 
objects in the same type share the same static 
variables 

• Pay attention to: what can be accessed in different 
methods 



Example: Static Variables and Methods 
public class Pet { 
 private String name; 
 private static int totalNumber = 0; 
 // totalNumber is initialized when the first object is created 
 
 public Pet(String initName) { 
  this.name = initName; 
  // Recommended: use "this" to call instance variables 
  totalNumber++; // totalNumber can be accessed in an instance method 
  System.out.println("Total pet number is " + Pet.getTotalNumber()); 
  // Recommended: use class name to call static variables 
 }  
 
 public static int getTotalNumber() { 
  return totalNumber; 
  // You can not access "name" or "this" in a static method 
 } 
 
 public static void main(String[] args) { 
  Pet a = new Pet("Odie"); 
  Pet b = new Pet("Garfield"); 
  Pet c = new Pet("Nermal"); 
  // Three objects are created, so totalNumber is increased for three times 
  System.out.println("Total pet number is " + a.getTotalNumber()); 
  System.out.println("Total pet number is " + b.getTotalNumber()); 
  // You can invoke a static method from an object. However they perform the same. 
  // You are recommended to call it as Pet.getTotalNumber(); 
 } 
} 



Inheritance 

• What is inheritance 
– Subclasses inherit all public and protected variables and 

methods from superclass 

• What is overriding 
– If a subclass defines a method of the same signature as 

the super class, this is overriding 

• What is polymorphism 
– A subclass object can be assigned to a superclass variable 

– It can perform its own action from overridden methods 

 



Polymorphism and Overriding 

public class Animal { 
 private String animalName; 
 public void speak() { 
 // default method -- can be empty 
 } 
 
 public static void main(String[] args) 
 { 
  Animal a[] = new Animal[3]; 
  a[0] = new Cat(); 
  a[1] = new Dog(); 
  a[2] = new Duck(); 
  for (int i = 0; i < 3; i++) { 
   a[i].speak(); 
  } 
 } 
} 

public class Cat extends Animal { 
 public void speak() { 
  System.out.println("MEW"); 
 } 
} 
 
public class Dog extends Animal { 
 public void speak() { 
  System.out.println("WOOF"); 
 } 
} 
 
public class Duck extends Animal { 
 public void speak() { 
  System.out.println("QUACK"); 
 } 
} 

Output: MEW, WOOF, QUACK 



The is-a Relationship 

public class Animal { 
 public void eat() { 
  System.out.println("Get  
   anything to eat"); 
 } 
} 
 
public class Mammal extends Animal { 
} 
 
public class Bear extends Mammal { 
 public void eat() { 
  System.out.println("Find a  
   fish to eat"); 
 } 
 public void hibernate() { 
  System.out.println("Zzzzzz"); 
 } 
} 

public static void main(String[] 
args) { 
 Animal a = new Mammal();  
 // YES! A Mammal is an Animal 
 Animal b = new Bear();  
 // YES! A Bear is an Animal 
 Mammal c = new Bear();  
 // YES! A Bear is a Mammal 
 // Bear d = new Mammal(); NO! A 
 // Mammal may not be a Bear! 
 a.eat(); // OK. Mammal doesn't 
 // override eat(). Eat anything. 
 b.eat(); // OK. Bear overrides 
 // eat(). Eat fish. 
 // c.hibernate(); WRONG! Mammal 
 // doesn't have this method! 
} 



Sample Question 

• Write two classes to inherit a given class Person 
– Person represents a person working in the university 

• It has 3 protected instance variables: hourlyRate, hoursPerWeek 
and insuranceCost 

• Also, one static variable: WEEKSPERSEMESTER 

– Student represents a student who works in part-time 

– Employee represents a permanent employee 

– You must override getIncome() and getOutcome() 
methods to generate correct output 

 



Sample Question 

• Write two classes to inherit a given class Person 
– You must override getIncome() and getOutcome() 

methods to generate correct output 
• A student’s income is: hourly rate * hours per week * week per 

semester 

• A student’s outcome is: tuition cost + insurance cost 

• An employee’s income is: base salary + hourly rate * hours per 
week * week per semester 

• An employee’s outcome is: insurance cost 

– Write getTotalBalance() to calculate income – outcome 

– The expected output is given 



Solution to Sample Question 

• The getTotalBalance() method in Person 

public double getTotalBalance() { 
 return this.getIncome() - this.getOutcome(); 
 // getIncome() and getOutcome() are implemented  
  in subclasses -- but it is fine 
} 



Solution to Sample Question 

• The Student class 
class Student extends Person { 
 private double tuitionCost; 
 
 public Student(double tuition, double rate, int hours, double insurance) { 
  super(rate, hours, insurance);  
  // You must use super() to call superclass's constructor 
  this.tuitionCost = tuition; 
  // tuitionCost must be initialized 
 } 
 
 // getIncome() and getOutcome() must be implemented 
 public double getIncome() { 
  return this.hourlyRate * this.hoursPerWeek * Person.WEEKSPERSEMESTER; 
  // hourlyRate and hoursPerWeek are inherited. WEEKSPERSEMESTER can be called directly 
 } 
 
 public double getOutcome() { 
  return this.tuitionCost + this.insuranceCost; 
  // tuitionCost is newly defined.  
 } 
} 



Solution to Sample Question 

• The Employee class 
class Employee extends Person { 
 private double baseSalary; 
 
 public Employee(double base, double rate, int hours, double insurance) { 
  super(rate, hours, insurance); 
  this.baseSalary = base; 
 } 
 
 public double getIncome() { 
  return this.baseSalary + this.hourlyRate * this.hoursPerWeek 
   * Person.WEEKSPERSEMESTER; 
 } 
 
 public double getOutcome() { 
  return this.insuranceCost; 
 } 
} 



Closing Note 

• It is my great pleasure to have all of you in the class 
– I hope that you enjoyed this course 

• I will appreciate if you take the online evaluation 

• My doctorate dissertation defense is on 9:00am 
tomorrow, at FB 141 
– I will start working as a senior software engineer at 

MathWorks in this summer 

• Thank you for taking this course! 

https://www.digitalmeasures.com/login/unc/student�
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