COMP 110-003
Introduction to Programming
Branding Statements and Boolean Expressions

January 29, 2013

Haohan Li
TR 11:00 – 12:15, SN 011
Spring 2013
Announcements

• Lab 1 grading and comments on Sakai
• Office hour for Wednesday Jan. 30
 – 1:30PM – 3:30PM
Today

• Review worksheet
• Formatting decimals
• If/Else statements
• Boolean Expressions
Review Worksheets

• Print
 – `System.out.println(“COMP110 is my favorite class”);`

• Read input
 – `Scanner keyboard = new Scanner(System.in);`
 – `int myInt = keyboard.nextInt();`
Declare a Variable

- Declare a variable of type float with the identifier, *myFloat*, and initialize the value to 4.6
 - `float myFloat = 4.6;`
 - `float myFloat;`
 - `myFloat = 4.6;`
public class MyProgram
{
 public static void main(String[] args)
 {
 String myString = "This is a string";
 int len = myString.length();
 System.out.println("the length is " + len);
 String shortString = myString.substring(10);
 }
}
Integer Division

- `double myDouble = (1 / 2) * 5.0;`
- It means:
 - `int temp = (1 / 2);`
 - Because 1 and 2 are both integers, the value type of `1/2` is also an integer
 - Its value should be the integer part of 0.5, which is 0
 - `double myDouble = (double) temp * 5.0;`
 - Because 5.0 is a double, then temp is casted to double
 - However, the result will still be 0.0
Floating-Point Division

- `double myDouble = (1.0 / 2.0) * 5.0;`
- It means:
 - `double temp = (1.0 / 2.0);`
 - Because 1 and 2 are both floating-points, the return type of `1 / 2` is also a floating-point
 - Its value should be 0.5
 - `double myDouble = temp * 5.0;`
 - The result will still be 2.5
char Type

• ‘x’ represents a character in char type
 • char a, b;
 • a = ‘b’; // assign the value ‘b’ to char variable a
 • System.out.println(a);
 • b = ‘c’; // assign the value ‘c’ to char variable b
 • System.out.println(b);
 • a = b; // assign the value of char variable b (which is ‘c’) to
 // the value of char variable a (which was ‘b’)
 • System.out.println(a); // the value of a is ‘c’ now

– Output would be: b, c, c
Suppose that *mary* is an object of class *Person*, and suppose that *increaseAge* is a method of class *Person* that uses one argument, an integer. Write the invocation of the method *increaseAge* for the object *mary* using the argument 5.

- Syntax: `ObjectName.Method(arguments);`
- `mary.increaseAge(5);`
Today

- Review worksheet
- **Formatting decimals**
- If/Else statements
- Boolean Expressions
Formatting Decimals

• Use the class `DecimalFormat`
 – `import java.text.DecimalFormat;`
 – `DecimalFormat df = new DecimalFormat("0.00");`
 – `double d = 12.345678;`
 – `System.out.println("my double with two decimal places: " + df.format(d));`
 • The method is called by `df.format(d)`
 • It will output: my double with two decimal places: 12.35
Today

• Review worksheet
• Formatting decimals
• If/Else statements
• Boolean Expressions
Flow Chart

Student.getUp();
if (time < 7) {
 Student.haveBreakfast();
}
else { // time >= 7
 Student.bringBreakfast();
}
Student.takeBus();
import java.util.*;

public class FlowChart {
 public static void main(String[] args) {
 System.out.println("Give me an integer:");
 Scanner keyboard = new Scanner(System.in);
 int inputInt = keyboard.nextInt();
 if (inputInt > 5) {
 System.out.println("Big number");
 } else {
 System.out.println("Small number");
 }
 }
}

What if your input is 5?
Java Comparison Operators

FIGURE 3.4 Java comparison operators

<table>
<thead>
<tr>
<th>Math Notation</th>
<th>Name</th>
<th>Java Notation</th>
<th>Java Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td>Equal to</td>
<td>==</td>
<td>balance == 0, answer == 'y'</td>
</tr>
<tr>
<td>≠</td>
<td>Not equal to</td>
<td>!=</td>
<td>income != tax, answer != 'y'</td>
</tr>
<tr>
<td>></td>
<td>Greater than</td>
<td>></td>
<td>expenses > income</td>
</tr>
<tr>
<td>≥</td>
<td>Greater than or equal to</td>
<td>>=</td>
<td>points >= 60</td>
</tr>
<tr>
<td><</td>
<td>Less than</td>
<td><</td>
<td>pressure < max</td>
</tr>
<tr>
<td>≤</td>
<td>Less than or equal to</td>
<td><=</td>
<td>expenses <= income</td>
</tr>
</tbody>
</table>
Boolean Expressions

• Expression?
 – An **expression** can be a variable, a value, or a combination made up by variables, values and operators
 – An expression **has a value**
 – **Arithmetic expression**: a combination of numbers with a number value
 • $10, \frac{\text{taxRate}}{100}, (\text{cost} + \text{tax}) \times \text{discount}$
 – **String expression**: a combination of Strings with a String value
 • “Hello”, “The total cost is ” + totalCost
Boolean Expressions

• A combination of values and variables by comparison operators. Its value can only be true or false

• Example expressions
 – 5 == 3; // false
 – variable <= 6; // depending on the value of variable
 • What if variable is 5? What if variable is 6?
 – myInt != temp; // depending on both values
 • What if myInt is 0 and temp is 2? Am I lying?

• Syntax rule for if statement:
 – if (boolean expression)
 { statements; }
&&: and

• What if you need multiple expressions to be true?
• Syntax rule:
 – `(expression) && (expression) && ...`
 • Expressions go in ()
 – `(Time < 7) && (I’ve prepared breakfast)`
• Will only be true if **ALL** statements are true
||: or

- What if you need ONE expression to be true out of many expressions
- Syntax rule:
 - `(expression) || (expression) || ...`
 - Again, expressions go in ()
 - `(I’ve had breakfast) || (Time > 7)`
- Will be true if **ONE** expression is true
!: not

• Syntax rule:
 – !(expression)
 • Again, expressions go in ()
 – !(I’ve had breakfast)
• Will be true if the expression is false
• ! is not recommended
 – You will get confused. Try to write expressions straightforward
 • Use (cost != 3) instead of !(cost == 3)
 • Use (time <= 7) instead of !(time > 7)
Logical Operators

FIGURE 3.7 The Effect of the Boolean Operators `&&` (*and*), `||` (*or*), and `!` (*not*) on Boolean Values

<table>
<thead>
<tr>
<th>Value of A</th>
<th>Value of B</th>
<th>Value of $A && B$</th>
<th>Value of $A \mid\mid B$</th>
<th>Value of $\neg (A)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>true</td>
<td>true</td>
<td>true</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>true</td>
<td>false</td>
<td>false</td>
<td>true</td>
<td>false</td>
</tr>
<tr>
<td>false</td>
<td>true</td>
<td>false</td>
<td>true</td>
<td>true</td>
</tr>
<tr>
<td>false</td>
<td>false</td>
<td>false</td>
<td>false</td>
<td>true</td>
</tr>
</tbody>
</table>
Comparison vs. Logical Operators

• Comparison operators connect values or variables
 – After connection, it’s a boolean expression
 – \(a > b \)
 – \(c == d \)

• Logical operators connect boolean expressions
 – \((a > b) \&\& (c == d)\)
More Complex Boolean Expressions

• Combination of && and ||
 – (((3 < 7)|| (2==5)) && ((4!=2) && (1 <= 1)))
 – (((true)|| (false)) && ((true) && (true))
 – (true) && (true)
 – true

• if (((I’m at Subway) && (You’re at Subway)) ||
 ((I’m at Starbucks) && (You’re at Starbucks)))
 {
 I will meet you;
 }
Boolean Variable

- A boolean variable saves a boolean value

```java
boolean systemsAreOK =
    ((temperature <= 100) && (thrust >= 12000) && (cabinPressure > 30));
// You can use "=" to assign a boolean value to a boolean variable
if (systemsAreOK){
    // It's the same as if (systemsAreOK == true)
    System.out.println("Initiate launch sequence.");
}
else{
    System.out.println("Abort launch sequence.");
}
```
Assignment vs. Equal To

- \(if \ (n1 = n2) \)
 - **Error!!!!** It’s an assignment statement!

- \(if \ (n1 == n2) \)
 - Correct. It’s a boolean expression now.
String Comparison

• String comparison
 – `string1 == string2; //BAD`
 – `string1.equals(string2); //GOOD`

• Syntax
 – `String.equals(Other_String)`
 – `String.equalsIgnoreCase(Other_String)`
If and Else

• You can use only one if statement
 – *if* (*boolean expression*)
 { *statements*; }
 other statements;
 • *Other statements* will always be executed

• You can also use an if-else statement
 – *if* (*boolean expression*)
 { *statements 1*; }
 else { *statement 2*; }
 • If the *expression* is true, run *statement 1*, otherwise run *statement 2*
Nested If and Else

```java
if (time < 7){
  if (time < 6){
    cook hams and scramble eggs;
  }
  else{
    grab something from the fridge;
  }
}
else{
  go to school;
}
```

- What’s the logic flow?
 - If the time is smaller than 6, we cook breakfast;
 - If the time is between 6 and 7, we get something cold
 - If the time is greater than 7, we go to school
Nested If and Else

```java
if (time < 6){
    cook hams and scramble eggs;
}
else{
    if (time < 7){
        grab something from the fridge;
    }
    else{
        go to school;
    }
}
```

- What’s the logic flow?
 - If the time is smaller than 6, we cook breakfast;
 - If the time is between 6 and 7, we get something cold
 - If the time is greater than 7, we go to school
Same Logic, Different Code

```c
if (time < 6) {
    cook hams and scramble eggs;
}
else {
    if (time < 7) {
        grab something from the fridge;
    }
    else {
        go to school;
    }
}
```

```c
if (time < 7) {
    if (time < 6) {
        cook hams and scramble eggs;
    }
    else {
        grab something from the fridge;
    }
    else {
        go to school;
    }
}
```
Without Else?

```java
if (time < 6) {
    cook hams and scramble eggs;
}
else {
    if (time < 7) {
        grab something from the fridge;
    }
    else {
        go to school;
    }
}
```

`Exactly the same?`
Without Else?

```java
if (time < 6) {
    cook hams and scramble eggs;
}
else {
    if (time < 7) {
        grab something from the fridge;
    }
    else {
        go to school;
    }
}
```

```java
if (time < 6) {
    cook hams and scramble eggs;
}
else if (time > 6 && time < 7) {
    grab something from the fridge;
}
else if (time > 7) {
    go to school;
}
```

What if time is precisely 7?
if (time < 6){
 cook hams and scramble eggs;
}
else{
 if (time < 7){
 grab something from the fridge;
 }
 else{
 go to school;
 }
}
Using If and Else

• Use if-else statement
• Do not use two if statements
• Always pay attention to boundaries
 – Is it “>” or “>=”?
 – Is it “<” or “<=”?
 – Do you need a “==”?
If Thirsty

```plaintext
if ($thirsty==TRUE)
{
}
else
{
}
```