
February 5, 2013

COMP 110-003
Introduction to Programming
If-Else Statement, Switch Statement and Loops

Haohan Li
TR 11:00 – 12:15, SN 011
Spring 2013

Announcement

• Office hour is permanently changed
– Wednesday, 12:30PM – 2:30PM

– I’ll try to be at office before 3:30PM

Review: If-Else Statement

• If statement
– if (boolean expression)

 { statements; }
other statements;

• If-else statement
– if (boolean expression)

 { statements 1; }
else { statement 2; }

Review: If-Else Statement

• Pay attention to the brackets {}
– You can discard them if there is only one statement in them

– if (inputInt > 0)
 System.out.println(“Positive”);
else
 System.out.println(“Negative or zero”);

Review: If-Else Statement

• Pay attention to the brackets {}
– You can discard them if there is only one statement in them

– Discarding it may cause problems

– if (inputInt > 0)
 System.out.println(“Positive”);
else
 System.out.println(“Negative or zero”);
 System.out.println(“What’s happening?”);
 // will always be executed

Review: If-Else Statement

• Pay attention to the brackets {}
– You can discard them if there is only one statement in them

– Discarding it may cause problems

– if (inputInt > 0)
 System.out.println(“Positive”);
 System.out.println(“What’s happening now?”);
 // Will cause a syntax error
else
 System.out.println(“Negative or zero”);

Review: If-Else Statement

• Pay attention to the brackets {}
– You can discard them if there is only one statement in them

– Discarding it may cause problems

– As a good habit, don’t discard them, even if you have only
one statement in it
• The only exception: multibranch if-else

Review: If-Else Statement

• Never put a semicolon after if or else
– if (inputInt > 0);

 System.out.println(“What’s happening now?”);

• Compiler will interpret it as
– if (inputInt > 0)

{ ;}
System.out.println(“What’s happening now?”);

Review: If-Else Statement

• Never put a semicolon after if or else
– if (inputInt > 0)

 System.out.println(“Positive”);
else;
 System.out.println(“What’s happening?”);

• Compiler will interpret it as
– if (inputInt > 0)

 { System.out.println(“Positive”);}
else { ;}
System.out.println(“What’s happening?”);

Review: Boolean Expression

• Assignment vs. equal to
– if (n1 = n2)

• Error!!!! It’s an assignment statement!

– if (n1 == n2)
• Correct. It’s a boolean expression now.

• Use equals() to compare Strings
– One_String.equals(Other_String)

– One_String.equalsIgnoreCase(Other_String)

Nested If-Else Statement

• Without brackets, every else will automatically
match the nearest if

• Is this piece of code correct?

if (time < 7)

 if (!fridge.isEmpty())

 grab something from the fridge;

else

 go to school;

Nested If-Else Statement

• Without brackets, every else will automatically
match the nearest if

• Use brackets to avoid such errors

if (time < 7){

 if (!fridge.isEmpty())

 grab something from the fridge;

 else

 go to school;

} // Otherwise?

Multibranch If-Else Statement

• Example
– Write a program that takes as input your year in college

(as an integer) and outputs your year as freshman,
sophomore, junior, senior, or super senior

Multibranch If-Else Statement

• Flow chart:

Which year? 1

Prompt user for year

freshman sophomore

2 3

junior

4

senior

5

super senior

Multibranch If-Else Statement

• We can write a program like this
if (year == 1)
System.out.println("freshman");
 else {
 if (year == 2)
 System.out.println("sophomore");
 else {
 if (year == 3)
 System.out.println("junior");
 else {
 if (year == 4)
 System.out.println("senior");
 else {
 if (year == 5)
 System.out.println("super senior");
 else
 System.out.println("huh?");
 }
 }
 }
 }

Multibranch If-Else Statement

• Because the previous version is too ugly, we use the
multibranch statement instead
– It is not a new syntax rule. We only ignore the brackets so

that the logical structure is clear.

 if (year == 1)
 System.out.println("freshman");
else if (year == 2)
 System.out.println("sophomore");
else if (year == 3)
 System.out.println("junior");
else if (year == 4)
 System.out.println("senior");
else if (year == 5)
 System.out.println("super senior");
else
 System.out.println("huh?");

Multibranch If-Else Statement

• Though all the
branches look
equal, there is a
precedence order
among them
– Only the first

satisfied branch
will be executed

Multibranch If-Else Statement

• You can think the program flow as a highway.
When you are driving on it, you always check
the first exit – and then exit if possible.
– If the exists are not

listed properly, you
will be lost

Multibranch If-Else Statement

• What’s wrong with this piece of code?

if (time < 7)

 grab something from the fridge;

else if (time < 6)

 cook hams and scramble eggs;

else

 go to school;

Multibranch If-Else Statement

• What’s wrong with this piece of code?

if (time < 7)

 grab something from the fridge;

else if (time < 6)

 cook hams and scramble eggs;

else

 go to school;

Will this branch get executed?

Switch Statement

if (year == 1)
 System.out.println("freshman");
else if (year == 2)
 System.out.println("sophomore");
else if (year == 3)
 System.out.println("junior");
else if (year == 4)
 System.out.println("senior");
else if (year == 5)
 System.out.println("super
senior");
else
 System.out.println("huh?");

switch (year) {
 case 1:
 System.out.println("freshman");
 break;
 case 2:
 System.out.println("sophomore");
 break;
 case 3:
 System.out.println("junior");
 break;
 case 4:
 System.out.println("senior");
 break;
 case 5:
 System.out.println("super senior");
 break;
 default:
 System.out.println("unknown");
 break;
}

Switch Statement

• Syntax rules:
– If controlling expression ==

case_label_n, then execute
statements_n;

– The break means jumping
out of the statement.
Without the break, next
statement will also be
executed

switch (controlling expression
 /variable)
{
 case case_label_1:
 statements_1;
 break;
 case case_label_2:
 statements_2;
 break;
 default:
 statements;
 break;
}

Switch Statement

• Without a break (after
case ‘A’ and case ‘C’),
the program will continue
to the next case and
execute that statement

• Pay attention to colons
and semicolons

switch (eggGrade) {
 case 'A':
 case 'a':
 System.out.println("Grade A");
 break;
 case 'C':
 case 'c':
 System.out.println("Grade C");
 break;
 default:
 System.out.println("We only buy
grade A and grade C.");
 break;
}

Switch Statement

• The default case is optional
– It means “everything else”

• The case labels must be of the same type as
controlling expression

• The controlling expression can only be int, short,
byte or char
– Why not float or double?

– Why not String?
• Hint: Think about “==”

Switch Statement

• The controlling expression can only be int, short,
byte or char
– Why not float or double?

• float and double are only approximate values

• They are inaccurate for “==”

– Why not String?
• You can not use “==” to compare Strings

Multibranch vs. Switch

• Switch statement is more straightforward if you
only use “==” to check a single expression/variable
– Using proper break can have shorter code

• Multibranch if-else statement is more powerful
– You can use it to check the range of a variable

– You can use it to check the value of float/double/String

– You can check more than one variable

Loop Statement

• Loop statements are designed to repeat instructions
– Think about the requirement: Print number 1 to 10

• It’s easy
– System.out.println(“1”);

– System.out.println(“2”);

– ……

– Think about the requirement: Print number 1 to 100
• We can still do this

– Let the user input a value n, then print 1 to n
• We are in trouble……

Loop Statement

• What is the pseudo code to fulfill the requirement?
• Count to 1, if 1<=n, write it down, otherwise stop

• Count to 2, if 2<=n, write it down, otherwise stop

• Count to 3, if 3<=n, write it down, otherwise stop

• ……

• Count to i, if i<=n, write it down, otherwise stop

• Count to i+1, if i+1<=n, write it down, otherwise stop

• ……

– While a counter<=n, write it down, increase the counter.
Otherwise stop

While Statement

• Flow of while statement
– Start from expression

evaluation

– As long as it’s true, repeat
instructions in brackets

while (count <= number) {
 System.out.println(count);
 count++;
}

While Statement

• You have to do some initialization before the
statement

• The loop body typically contains an action that
ultimately causes the controlling boolean
expression to become false.

 number = keyboard.nextInt();
count = 1;
while (count <= number) {
 System.out.println(count);
 count++;
}

While Statement

• Usually there is a counter variable in the statement
– You can use it in different ways

• Requirement: print the odd numbers from 1 to 10000

int count = 1;
while (count < 10000) {
 System.out.println(count);
 count += 2;
}

int count = 1;
while (count * 2 - 1 < 10000) {
 System.out.println(count * 2 - 1);
 count++;
}

Do-While Statement

• Another pseudo code to fulfill the requirement?
• Write down 1 and count to 2, continue if 2<=n, otherwise stop

• Write down 2 and count to 3, continue if 3<=n, otherwise stop

• Write down 3 and count to 4, continue if 4<=n, otherwise stop

• ……

• See the difference?
• Count to 1, if 1<=n, write it down, otherwise stop

• Count to 2, if 2<=n, write it down, otherwise stop

• Count to 3, if 3<=n, write it down, otherwise stop

• ……

Do-While Statement

• The main difference: do-while statement will at
least execute the body statements once
– If start from count = 1 and number = 0

– While statement will output nothing

– Do-While statement will output 1, then stop

while (count <= number) {
 System.out.println(count);
 count++;
}

do {
 System.out.print(count);
 count++;
} while (count <= number);

Do-While Statement

• Flow of do-while statement
– Start from body statements

– Repeat instructions in
brackets as long as the
expression is true

do {
 System.out.print(count);
 count++;
} while (count <= number);

Do-While Statement

• Don’t forget the semicolon after the whole
statement

• Not recommended, unless you really need the body
statement to be executed once

do {
 System.out.print(count);
 count++;
} while (count <= number);

While and Do-While Statements

• These two pieces of code perform identically

initialization;
do {
 body_statments
} while (boolean_expression);

initialization;
body_statements;
while (boolean_expression) {
 body_statements;
}

Infinite Loops

• Q: How did the programmer die in the shower?
A: He read the shampoo bottle instructions:
 Lather, Rinse, Repeat.

• If the controlling boolean expression never
becomes false, a while loop or a do-while loop will
repeat without ending

Infinite Loops

• Always make sure that your loop will end
– Never forget to change the counter

while (count <= number) {
 System.out.println(count);
}

while (count <= number); {
 System.out.println(count);
}

while (count <= number)
{ ; }
 System.out.println(count);

Infinite Loops

• Always make sure that your loop will end
– Never forget to change the counter

– Use comparison instead of “==” or “!=”in the control
expression

– Know whether your counter is increasing or decreasing

while (count != number) {
 System.out.println(count);
 count+=2;
}

while (count < number) {
 System.out.println(count);
 count--;
}

Infinite Loops

• If you wrote an infinite
loop and executed it

• Use the terminate button
of eclipse
– If it is red, the program

is running

Infinite Loops

• Infinite loop is not a syntax error. It’s a logical error

• eclipse will not help you in this case

• Write pseudo code, think, and rethink before coding

	幻灯片编号 1
	Announcement
	Review: If-Else Statement
	Review: If-Else Statement
	Review: If-Else Statement
	Review: If-Else Statement
	Review: If-Else Statement
	Review: If-Else Statement
	Review: If-Else Statement
	Review: Boolean Expression
	Nested If-Else Statement
	Nested If-Else Statement
	Multibranch If-Else Statement
	Multibranch If-Else Statement
	Multibranch If-Else Statement
	Multibranch If-Else Statement
	Multibranch If-Else Statement
	Multibranch If-Else Statement
	Multibranch If-Else Statement
	Multibranch If-Else Statement
	Switch Statement
	Switch Statement
	Switch Statement
	Switch Statement
	Switch Statement
	Multibranch vs. Switch
	Loop Statement
	Loop Statement
	While Statement
	While Statement
	While Statement
	Do-While Statement
	Do-While Statement
	Do-While Statement
	Do-While Statement
	While and Do-While Statements
	Infinite Loops
	Infinite Loops
	Infinite Loops
	Infinite Loops
	Infinite Loops

