
February 19, 2013

COMP 110-003
Introduction to Programming
Classes

Haohan Li
TR 11:00 – 12:15, SN 011
Spring 2013

What We’ve Learned So Far?

• Types and variables
– int, double, char, String

• Branching statements
– If, if-else, switch

• Loop Statements
– While, do-while, for

Still, Procedural Programming

• Types and variables
– How to save data

• Branching statements
– If…then…

• Loop Statements
– Repeat

• Basically, we’ve learned how to manipulate data
by programming – in a procedural manner

Object-Oriented Programming

• Object-oriented programming (OOP) helps people
to organize code and programs
– How to organize data?

– How to organize manipulations of data?

• OOP uses classes and objects to get good
organization

Reusability

• How does good organization (or usually called
“good design”) help you?
– If I can make it work, it is a good design?

• Good design means better reusability
– You can use part of your program in another program

– You can use part of your program in a new version
• You can change only one part if you know other parts are good

– Others can use part of, or the whole of your program
• They don’t even have to know the details if they trust you

• That’s how programmers collaborate

Reusability

• You have seen many program components that you
can use without knowing the details
– Scanner

• next(), nextLine(), nextInt()

– String
• length(), indexOf(), substring(), trim()

• Scanner class has more than 1500 lines of code
– But you can use it without copying a single line

Reusability

• Do you have to rewrite all you code if you need a
program that can deal with 3 operands?
– 2.5 + 3 + 3.5 = ?

• What if you have a piece of code that always
returns the next word in the input string?

• What if you have a piece of code that records the
current result and can calculate new results with
new operators?

• Can you easily support 4 operands then?

Reusability

• The rules of reusability
– Generic design

• A component (a class in Java) should perform a general function

– High cohesion
• What’s in a class (data and methods) should be closely related to

each other

– Low coupling
• Classes should be independent of other classes

Classes and Objects

• Java programs (and programs in other object-
oriented programming languages) consist of objects
of various class types
– Objects can represent objects in the real world

• Automobiles, houses, employee records

– Or abstract concepts
• Colors, shapes, words

• When designing a program, it’s important to figure
out what is a class/object in your program – again,
you can never copy a real world

Class

• A class is the definition of a kind of object
– A blueprint for constructing specific objects

Class Name: Automobile

Data:
 amount of fuel
 speed
 license plate

Methods (actions):
 accelerate:
 Action: increase speed
 decelerate:
 Action: decrease speed

Objects (Instances)

• Instances of the class Automobile

Object Name: patsCar

amount of fuel: 10 gallons
speed: 55 miles per hour
license plate: “135 XJK”

Object Name: suesCar

amount of fuel: 14 gallons
speed: 0 miles per hour
license plate: “SUES CAR”

Object Name: ronsCar

amount of fuel: 2 gallons
speed: 75 miles per hour
license plate: “351 WLF”

Objects

• Important: classes do not have data; individual
objects have data

• Classes specify what kind of data objects have

Objects

• Only objects have the actual data

Object Name: patsCar

amount of fuel: 10 gallons
speed: 55 miles per hour
license plate: “135 XJK”

Object Name: suesCar

amount of fuel: 14 gallons
speed: 0 miles per hour
license plate: “SUES CAR”

Object Name: ronsCar

amount of fuel: 2 gallons
speed: 75 miles per hour
license plate: “351 WLF”

UML (Universal Modeling Language)

Automobile

- fuel: double
- speed: double
- license: String

+ accelerate(double pedalPressure): void
+ decelerate(double pedalPressure): void

Class name

Data

Methods
(actions)

Class Files and Separate Compilation

• Each Java class definition goes in its own .java file

• For a class named ClassName, you should save the
file as ClassName.java

• Student.java shall and must include the class
Student

Class Files and Separate Compilation

• What happens when you compile a .java file?
– .java file gets compiled into a .class file

• Contains Java bytecode (instructions)

• Same filename except for .class instead of .java

• You can compile a Java class before you have a
program that uses it

• You can send the .class file to people who use it,
without revealing your actual code

Class Student

• A general UML class
specification

Class Name: Student

- Name
- Year
- GPA
- Major
- Credits
- GPA sum

+ getName
+ getMajor
+ printData
+ increaseYear
 Action: increase year by 1

Class Student

• A detailed UML class
specification (in Java)

Class Name: Student

- name: String
- year: int
- gpa: double
- major: String
- credits: int
- gpaSum: double

+ getName(): String
+ getMajor(): String
+ printData(): void
+ increaseYear(): void

Defining a class

public class Student
{
 public String name;
 public int classYear;
 public double GPA;
 public String major;
 // ...

 public String getMajor()
 {
 return major;
 }

 public void increaseYear()
 {
 classYear++;
 }
}

Class name

Data
(instance variables)

Methods

Creating an Object

• Syntax rule
– ClassName ObjectName = new ClassName();

• What does the statement do?
– The computer will create a new object, and assign its

memory address to ObjectName

– ObjectName is sometimes called an class type variable
• It is a variable of class type ClassName

• Why do we need new?
– So we know ClassName() is not executing a method but

creating an object

Creating an object

Create an object jack of class Student

Student jack = new Student();

Scanner keyboard = new Scanner(System.in);
Create an object keyboard of class Scanner

Create an object Return memory
address of object

Assign memory
address of object to
variable

Instance Variables

• Data defined in the class are called instance
variables

 public String name;
 public int classYear;
 public double GPA;
 public String major;

public: no restrictions on how
these instance variables are used
(more details later – public is
actually a bad idea here)

type: int, double, String…

variable names

Using Instance Variables Inside a Class

public class Student
{
 public String name;
 public int classYear;
 public double GPA;
 public String major;
 // ...

 public String getMajor()
 {
 return major;
 }

 public void increaseYear()
 {
 classYear++;
 }
}

Any instance
variables can be

freely used inside the
class definition

(without invoking)

Using public Instance Variables Outside a Class

public static void main(String[] args)
{
 Student jack = new Student();
 jack.name = “Jack Smith”;
 jack.major = “Computer Science”;

 System.out.println(jack.name + “ is majoring in ” + jack.major);

 Student apu = new Student();
 apu.name = “Apu Nahasapeemapetilon”;
 apu.major = “Biology”;

 System.out.println(apu.name + “ is majoring in ” + apu.major);
}

• jack.name and apu.name are two different instance
variables because they belong to different objects

Public instance variables can
be used outside the class

You must use the object name to
invoke the variable

Methods

• Two kinds of methods
– Methods that return a value

• Examples: String’s substring() method, String’s indexOf()
method, etc.

– Methods that return nothing
• Example: System.out.println()

• “Return” means “produce”
– A method can produce a value so that other parts of the

program can use it, or simply perform some actions

Methods

public String getMajor()
{
 return major;
}

public void increaseYear()
{
 classYear++;
}

returns a String

returns nothing

return type

Defining Methods That Return a Value

• Method heading: keywords
– public: no restriction on how to use the method (more

details later)

– Type: the type of value the method returns

• Method body: statements executed
– Must be inside a pair of brackets

– Must have a return statement

 public String getMajor()
 {
 return major;
 }

return Statement

• A method that returns a value must have at least
one return statement

• Terminates the method, and returns a value

• Syntax:
– return Expression;

• Expression can be any expression that produces a
value of type specified by the return type in the
method heading

Methods that Return a Value

As usual, inside a block (defined by braces), you can
have multiple statements

public String getClassYear()
{
 if (classYear == 1)
 return “Freshman”;
 else if (classYear == 2)
 return “Sophomore”;
 else if ...
}

Calling Methods that Return a Value

• Object, followed by dot, then method name, then ()
– ObjectName.MethodName();

• Use them as a value of the type specified by the
method’s return type

Student jack = new Student();
jack.major = “Computer Science”;

String m = jack.getMajor(); // Same as String m = “Freshman”

System.out.println(“Jack’s full name is ” + jack.getName());
// Same as System.out.println(“Jack’s full name is ” + “Jack Smith”);
System.out.println(“Jack’s major is ” + m);

Defining Methods That Return Nothing

• Method heading: keywords
– public: no restriction on how to use the method (more

details later)

– void: the method returns nothing

• Method body: statements executed when the
method is called (invoked)
– Must be inside a pair of brackets

public void increaseYear()
{
 classYear++;
}

Methods That Return Nothing

public void printData()
{
 System.out.println(“Name: ” + name);
 System.out.println(“Major: ” + major);
 System.out.println(“GPA: ” + gpa);
}

Calling Methods That Return Nothing

• Object, followed by dot, then method name, then ()
– The same as a method that returns a value

– ObjectName.MethodName();

• Use them as Java statements

Student jack = new Student();
jack.classYear = 1;

jack.increaseYear();

System.out.println(“Jack’s class year is ” + jack.classYear);

return Statement

• Can also be used in methods that return nothing

• Simply terminates the method

• Syntax:
– return;

public void increaseYear()
{
 if (classYear >= 4)
 return;
 classYear++;
}

Announcement

• Make sure to run Student.java to understand
today’s content

• Finish Strings and Loops Review Worksheet before
next lecture on Thursday
– Next lecture will be a general discussion of problem

solving skills in programming, and the explanations of the
worksheet

• Program 3 will be released soon

http://www.cs.unc.edu/Courses/comp110-003-s13/StringLoopReview.doc�

	幻灯片编号 1
	What We’ve Learned So Far?
	Still, Procedural Programming
	Object-Oriented Programming
	Reusability
	Reusability
	Reusability
	Reusability
	Classes and Objects
	Class
	Objects (Instances)
	Objects
	Objects
	UML (Universal Modeling Language)
	Class Files and Separate Compilation
	Class Files and Separate Compilation
	Class Student
	Class Student
	Defining a class
	Creating an Object
	Creating an object
	Instance Variables
	Using Instance Variables Inside a Class
	Using public Instance Variables Outside a Class
	Methods
	Methods
	Defining Methods That Return a Value
	return Statement
	Methods that Return a Value
	Calling Methods that Return a Value
	Defining Methods That Return Nothing	
	Methods That Return Nothing
	Calling Methods That Return Nothing
	return Statement
	Announcement

