
Load-based Schedulability Analysis of Certifiable
Mixed-criticality Systems

Haohan Li
Department of Computer Science
The University of North Carolina

Chapel Hill, NC. USA
lihaohan@cs.unc.edu

Sanjoy Baruah
Department of Computer Science
The University of North Carolina

Chapel Hill, NC. USA
baruah@cs.unc.edu

ABSTRACT
Many safety-critical embedded systems are subject to certi-
fication requirements. However, only a subset of the func-
tionality of the system may be safety-critical and hence
subject to certification; the rest of the functionality is non
safety-critical and does not need to be certified. Certifi-
cation requirements in such mixed-criticality systems give
rise to some interesting scheduling problems, that cannot
be satisfactorily addressed using techniques from conven-
tional scheduling theory. In prior work, we have proposed a
priority-based algorithm for scheduling such mixed-criticality
systems on preemptive uniprocessor platforms. In this pa-
per, we derive a sufficient schedulability condition for effi-
ciently determining whether a given mixed-criticality system
can be successfully scheduled by this algorithm. We show
that this algorithm (and the associated schedulability test) is
strictly superior to prior algorithms that have been used for
scheduling mixed-criticality systems needing certification.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—
Real-time systems and embedded systems ; G.4 [Mathematical
software]: Certification and testing

General Terms
Verification

Keywords
Preemptive uniprocessor scheduling; certification; priority-
based scheduling; load bounds.

1. INTRODUCTION
Many embedded systems perform safety-critical functions

that must be certified correct by statutory organizations.
However, the current trend towards integrating multiple func-
tionalities on a common platform, driven by cost and“SWaP”

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’10, October 24–29, 2010, Scottsdale, Arizona, USA.
Copyright 2010 ACM 978-1-60558-904-6/10/10 ...$10.00.

(Size, Weight , and Power– i.e., energy– consumption) con-
siderations means that even in highly safety-critical systems,
typically only a relatively small fraction of the overall sys-
tem is actually of critical functionality and hence needs to
be certified. The remainder of the system is comprised
of non-critical code that enhances the overall performance
of the system, but does not effect safety and is therefore
not subject to certification. Such mixed criticality systems
are becoming increasingly common in embedded systems;
in fact, mixed criticalities have been identified as among
the core foundational concepts in the emerging discipline of
Cyber Physical Systems. Coming up with procedures that
will allow for the cost-effective certification of such mixed-
criticality systems has been identified as a unique, partic-
ularly challenging, collection of problems [4]. Recognizing
these challenges, several US government R&D organizations
including AFRL, NSF, NSA, NASA, etc., have led initia-
tives such as the Mixed Criticality Architecture Require-
ments (MCAR) program aimed at streamlining the certi-
fication process for safety-critical embedded systems; these
initiatives have brought together participants from industry,
academia, and standards bodies to seek out more advanced,
efficient, and cost-effective certification processes. It is this
aspect of mixed criticalities arising as a consequence of such
certification requirements, that is the focus of the research
described in this paper .

In order to certify a system as being correct, the certifica-
tion authority (CA) must make certain assumptions about
the worst-case behavior of the system during run-time. In
this paper, we focus on one particular aspect of run-time
behavior: the worst-case execution time (WCET) of pieces
of code. CA’s tend to be very conservative, and hence it is
often the case that the WCET estimates used by the CA
will be far more pessimistic than those the system designer
would typically use during the system design process. On
the other hand, while the CA is only concerned with the cor-
rectness of the safety-critical part of the system the system
designer wishes to ensure that the entire system is correct,
including the non-critical parts. We illustrate by a contrived
example.

Example 1. Consider a system to be implemented on a
preemptive uniprocessor, that is comprised of three jobs J1,
J2, and J3. All three jobs are released at time zero. Job J1

has a deadline at time-instant 2, while the other two jobs
have their deadlines at time-instant 3.5. Jobs J2 and J3

are high-criticality and subject to certification, whereas J1

is low-criticality and hence not.

• The system designer is confident that each job has a

WCET not exceeding 1. Hence executing the jobs in
earliest deadline first (EDF) order will ensure that all
three complete by their deadlines.

• However, the CA chooses to use more pessimistic WCET
estimates during the certification process, and claims
that jobs J2 and J3 may each need 1.5 time units of
execution1.

If the system were indeed scheduled using EDF, the CA
would determine that in the worst case, J1 executes over
[0, 1) and the job from among J2 and J3 that is next chosen
for execution will execute for 1.5 time units, thereby causing
the other high-criticality job to miss its deadline at time
3.5. The system scheduled using EDF would therefore fail
certification.

On the other hand if we were to assign greater priority
to the high-criticality jobs, then they would both meet their
deadlines even under the worst-case scenarios envisioned by
the CA. However the low-criticality job J1 will miss its dead-
line even when each job executes for at most 1 time unit (as
predicted by the system designer).

It turns out that a “correct” scheduling strategy2 for this
system is as follows:

• Execute J2 over [0, 1).

• If J2 completes execution at time-instant 1, then exe-
cute J1 over [1, 2) and J3 over [2, 3.5), thereby ensuring
that all deadlines are met.

• If J2 does not complete execution by time-instant 1,
then discard J1 and continue the execution of J2, fol-
lowing that with the execution of J3 over [1.5, 3). Both
the high-criticality jobs will complete by their dead-
lines in the worst-case scenario envisioned by the CA.

Under this scheduling strategy, it may be verified that the
system both passes certification, and meets all deadlines
when it behaves as expected to by the system designer.

This research.
The central thesis of this research is that the efficient uti-

lization of computing resources in mixed-criticality systems
that are subject to certification requirements requires the
development of new scheduling theory. The insight we seek
to exploit in developing such theory is this. Certification is
performed under conservative assumptions: the CA makes
very pessimistic assumptions about the run-time behavior
of the system, and requires that it be demonstrated correct
under these pessimistic assumptions. In order to perform
system certification under such pessimism one must, infor-
mally speaking, severely over-provision computing resources
to the part of the system needing certification. Some of this
over-provisioned capacity could then be reclaimed , during
system design and analysis time itself, to make performance
guarantees to the remainder of the system, since such guar-
antees are made under a correspondingly lower degree of
pessimism.

1The CA may also determine that the low-criticality job J1

needs more than 1 time unit to complete execution; however,
let us assume for now that the system is implemented to
abort the execution of J1 if it “times out” and executes for
more than 1 time-unit.
2The notion of a correct scheduling strategy is formally de-
fined in Section 2.

Organization of this paper.
In Section 2, we present the formal model for represent-

ing mixed-criticality real-time systems that is used in this
research. This formal model extends the conventional model
of a real-time job by allowing for the specification of two dif-
ferent WCET’s, one at each criticality level, for a single job.
In Section 3 we briefly survey some other work on mixed-
criticality real-time systems, focusing in particular on the
results that we will be using in later sections. In Section 4 we
derive our new sufficient schedulability condition, and prove
that it is strictly more general than a previously proposed
schedulability condition. In Section 5 we demonstrate that
the results derived here are superior to some other widely-
used approaches towards certification-cognizant scheduling
of mixed-criticality systems.

2. MODEL AND DEFINITIONS
In this section we formally define the mixed-criticality job

model that is used in this paper, and explain terms and
concepts used throughout the remainder of this document.

Although our eventual interest is in the scheduling of col-
lections of recurrent mixed-criticality task systems poten-
tially comprised of an infinite number of jobs3, many fun-
damental questions remain unanswered regarding even the
simpler case of finite collections of jobs. Hence we focus in
this paper on the simpler case where a system is comprised
of a finite number of jobs. Our results may be considered as
a step towards a more comprehensive analysis of systems of
mixed-criticality recurrent tasks. In addition, these results
have immediate applicability for the scheduling of frame-
based recurrent real-time systems, in which the recurrent
nature of the behavior is expressed as the infinite repetition
of a finite collection of jobs of the kind considered here.

For the purposes of this paper, a mixed-criticality (MC)
job is characterized by a tuple of five parameters: Ji =
(Ai, Di, χi, Ci, C

′
i), where

• Ai ∈ R+ is the release time.

• Di ∈ R+ is the deadline. We assume that Di ≥ Ai.

• χi ∈ {lo,hi} denotes the criticality of the job. A hi-
criticality job (a Ji with χi = hi) is one that is subject
to certification, whereas a lo-criticality job (a Ji with
χi = lo) is one that does not need to be certified.

• Ci specifies the worst case execution time (WCET)
estimate of Ji that is used by the system designer (i.e.,
the WCET estimate at the lo criticality level).

• C′i specifies the worst case execution time (WCET) es-
timate of Ji that is used by the certification authorities
(i.e., the WCET estimate at the hi criticality level).We
assume that

– C′i ≥ Ci (i.e., the WCET estimate used by the
system designer is never more pessimistic than
the one used by the CA), and

– C′i = Ci if χi = lo (i.e., a lo-criticality job
is aborted if it executes for more than its lo-
criticality WCET estimate).

3Some partial results concerning the scheduling of such task
systems may be found in [14, 8].

Where do these values Ci and C′i come from, and why are
they different? It is well known that determining exact
worst-case execution times of pieces of code is a very dif-
ficult problem; instead, systems engineers work with upper
bounds on the exact value. However, for many non-trivial
kinds of code strict upper bounds are extremely pessimistic,
and represent scenarios that are highly unlikely to occur in
practice. For such code, less pessimistic upper bounds on
their WCET’s may be obtained at lower degrees of confi-
dence than absolute certainty. Based on the observation
that“the more confidence one needs in a task execution time
bound, the larger and more conservative that bound tends to
be in practice,” Vestal [14] proposed that multiple different
WCET values be specified, with the different values being
determined at a different level of assurance. These different
values may be obtained by using different execution-time
analysis tools; we expect that the tool used by the CA is
more conservative than the one used by the system engi-
neer, and hence the CA’s WCET estimates (the C′i values)
are larger than the estimates used during the design process
(the Ci values).

§2.1. MC instance.
An MC instance is specified as a finite collection of such

MC jobs: I = {J1, J2, . . . , Jn}. Given such an instance, we
are concerned here with determining how to schedule it to
obtain correct behavior; in this document, we restrict our at-
tention to scheduling on preemptive uniprocessor platforms.

§2.2. Loads `lo and `hi.
In classical real-time scheduling theory (see, e.g.,[12, page

81]), the load of an instance denotes the maximum over all
time intervals, of the cumulative execution requirement by
jobs of the instance over the interval, normalized by the in-
terval length. Informally, the load of an instance represents
a lower bound on the speed of any processor upon which it
can meet all deadlines.

Analogous to this concept, we find it convenient to define
two loads, `lo(I) and `hi(I), of a MC instance I:

Definition 1. The lo-criticality load `lo(I) and the hi-
criticality load `hi(I) of a mixed-criticality instance I are
defined according to the following two formulas:

`lo(I) = max
0≤t1<t2

∑

Ji : t1≤Ai∧Di≤t2

Ci

t2 − t1

`hi(I) = max
0≤t1<t2

∑

Ji : χi=hi∧t1≤Ai∧Di≤t2

C′i

t2 − t1

Informally, `lo(I) is the largest load that the system designer
expects to have to deal with during run-time while executing
instance I, whereas `hi(I) denotes the load of the part of I
that the CA seeks to certify. Clearly, it is necessary (albeit
not sufficient) that both `lo(I) and `hi(I) be no larger than
the speed of the processor on which I is to be executed, if
all deadlines are to be met (from the designer’s perspective)
and the system is to be certified correct.

Both `lo(I) and `hi(I) for an MC instance I with n jobs
can be determined in time that is polynomial in n. To see
this, we observe that only such values of t1 and t2 need be

considered where t1 is equal to some Ai and t2 is equal to
some Di. There are no more than n2 possible such [t1, t2)
intervals, and computing the sum of the WCET estimates
over each interval takes O(n) time. Thus even with the
brute-force method, we can compute both loads in O(n3)
time.

§2.3. Behaviors.
The MC job model has the following semantics. Each job

Ji is released at time-instant Ai, needs to execute for some
amount of time γi, and has a deadline at time-instant Di.
The values of Ai and Di are known from the specification
of the job. However, the value of γi is not known from the
specifications of Ji, but only becomes revealed by actually
executing the job until it signals that it has completed exe-
cution. γi may take on very different values during different
execution runs: we will refer to each collection of values
(γ1, γ2, . . . , γn) as a possible behavior of instance I.

Definition 2 (the criticality level of a behavior).
The criticality level of the behavior (γ1, γ2, . . . , γn) of I is de-
fined to be lo if γi ≤ Ci for all i, 1 ≤ i ≤ n, and hi if it is
not lo but γi ≤ C′i for all i. (If γi > C′i for any i, then we
define that behavior to be erroneous.)

Informally speaking, the system designer fully expects that
all behaviors will be at criticality level lo, and would like all
jobs to complete by their deadlines. The CA, on the other
hand, allows for the possibility that some behaviors may be
of criticality level hi, and requires that all hi-criticality jobs
meet their deadlines in the event of such behavior.

§2.4. Scheduling strategies.
A scheduling strategy for an instance I specifies, in a com-

pletely deterministic manner for all possible behaviors of I,
which job (if any) to execute at each instant in time. A
clairvoyant scheduling strategy knows the behavior of I —
i.e., the value of γi for each Ji ∈ I — prior to generating a
schedule for I. By contrast, an on line scheduling strategy
does not have a priori knowledge of the behavior of I: for
each Ji ∈ I, the value of γi only becomes known by execut-
ing Ji until it signals that it has completed execution. Since
these actual execution times – the γi’s – only become re-
vealed during run-time, an on-line scheduling strategy does
not a priori know what the criticality level of any particular
behavior is going to be; at each instant, scheduling decisions
are made based only on the partial information revealed thus
far.

§2.5. Correctness.
A scheduling strategy is said to be a correct MC scheduling

strategy if it satisfies the following criteria:

• when scheduling any behavior of criticality level lo it
ensures that every job Ji receives sufficient execution
during the interval [Ai, Di) to signal that it has com-
pleted execution.

• when scheduling any behavior of criticality level hi, it
ensures that every job Ji with χi = hi receives suffi-
cient execution during the interval [Ai, Di) to signal
that it has completed execution.

Informally, a correct scheduling strategy is one that “satis-
fies” both the system designer and the CA under their re-
spective, different, assumptions: the designer believes that

all deadlines will be met, while the CA can verify that all
hi-criticality jobs will meet their deadlines.

§2.6. MC schedulability.
Let us define an instance I to be MC schedulable if there

exists a correct on-line scheduling strategy for it. The MC
schedulability problem then is to determine whether a given
MC instance is MC schedulable or not.

It has been shown [5] that determining whether a given
MC instance is MC schedulable or not is highly intractable:

Theorem 1 (From [5]). The MC schedulability prob-
lem — given an MC instance, determine whether it is MC-
schedulable — is NP-hard in the strong sense. This hardness
result holds even in the restricted case where all jobs in the
MC instance have the same arrival times.

This intractability implies that under the assumption that
P 6= NP, there can be no polynomial or pseudo-polynomial
time algorithm for solving the MC schedulability problem,
even in the restricted case of equal arrival times. (Of course,
in practice we are interested not merely in determining whether
a given instance is MC schedulable or not, but in actually
constructing a correct scheduling strategy in the event that
it is MC schedulable.)

3. RELATED WORK
As we have stated in Section 1, the strategic significance

of mixed criticality certification is widely recognized and has
been the subject of multiple workshops and working-group
meetings, some of the findings of which are highlighted in
a white paper [4]. Several interesting and innovative ap-
proaches for addressing this issue have recently been pro-
posed. While providing a complete and comprehensive sur-
vey of all this research is beyond the scope of this document,
we would like to highlight a few specific works that we con-
sider particularly important and innovative.

To our knowledge, the scheduling problem that arises from
multiple certification requirements, at different criticality
levels, was first identified and formalized by Vestal in [14],
in the context of the fixed-priority preemptive uniprocessor
scheduling of recurrent task systems.

Current practice in safety-critical embedded systems de-
sign for certifiability is centered around the technique of
“space-time partitioning,” as codified in, e.g., the ARINC-
653 standard [1, 15]. Loosely speaking, space partitioning
means that each application is granted exclusive access to
some of the physical resources on board the platform, and
time partitioning means that the time-line is divided into
slots with each slot being granted exclusively to some (pre-
specified) application. Interactions among the partitioned
applications may only occur through a severely limited col-
lection of carefully-designed library routines.

This ARINC-653 approach is one of several reservation-
based approaches, in which a certain amount of the capac-
ity of the shared platform is reserved for each application,
that have been considered for designing certifiable mixed-
criticality systems. Although this approach works, as is ev-
idenced by the fact that large, complex safety-critical em-
bedded systems have been designed, built, and certified, and
are currently widely deployed, it is known that reservation-
based approaches tend to be pessimistic (in the sense of
under-utilizing platform resource). This is a consequence of

the very principle of isolation between criticality levels upon
which reservations-based design techniques are based: such
isolation rules out the possibility of reusing the resource ca-
pacity that must be assigned to high-criticality applications
in order that they pass certification, but which they are un-
likely to need in practice, to make performance guarantees
to low-criticality applications. In Section 5 we explore more
precisely the relationship between space-time partitioning
and the approach to mixed-criticality scheduling that is ad-
vocated in this paper.

Priority-based scheduling is the other technique commonly
used by systems engineers in dealing with mixed criticali-
ties. Unless carefully designed, such priority-based schedul-
ing schemes can be even more pessimistic than reservations-
based approaches. In a typical priority-based scheduling
approach, for example, jobs belonging to higher-criticality
applications are accorded greater priority in deciding which
job to execute at each instant in time. It is not too diffi-
cult to construct simple examples in which such criticality-
monotonic scheduling will perform arbitrarily poorly. For
instance, consider a 2-job system in which the lo-criticality
job has a much earlier deadline, and a far smaller WCET,
than the hi-criticality job. Although a criticality-monotonic
schedule would pass certification in the sense that the hi-
criticality job would complete by its deadline, the lo-criticality
job would tend to miss its deadline during lo-criticality be-
haviors, even though there may be far more than adequate
computing capacity to meet both jobs’ WCET’s at their
specified criticality levels. These and other drawbacks of
such a criticality-monotonic approach are highlighted in [9].

However, not all priority-based scheduling algorithms per-
form quite so poorly; in a recently published paper [7], a
priority-based algorithm called OCBP has been proposed for
mixed-criticality scheduling, that does not suffer from these
shortcomings of criticality-monotonic scheduling. A quanti-
tative evaluation of the effectiveness of OCBP was derived
in [7, Lemma 5] in terms of its processor speedup factor ; this
result can be stated as follows. Given any instance that is
MC-schedulable upon a unit-speed processor (by Theorem 1,
determining this fact is NP-hard in the strong sense), OCBP
successfully schedules it in polynomial time, upon a proces-
sor of speed (

√
5 + 1)/2 (i.e., ≈ 1.618). In other words, a

processor speedup factor of approximately 1.618 is sufficient
for OCBP to deal with the intractability (NP-hardness in the
strong sense) of MC-schedulability . In subsequent work, we
have [6] generalized this processor speedup result to MC sys-
tems with more than two criticality levels, deriving bounds
on the maximum processor speedup necessary in order for
(a generalization of) OCBP to schedule, in polynomial time,
MC instances that may be subject to multiple different cer-
tification requirements.

Processor speedup factors are a useful conceptual charac-
terization of the effectiveness of a scheduling algorithm, and
may provide valuable insight into the algorithm’s proper-
ties. However, it is not directly obvious how these processor
speedup factors should be used by systems designers dur-
ing the process of designing and implementing systems. In
this paper, we therefore extend the work in [7] in a differ-
ent direction, by seeking an alternate characterization of the
schedulability properties of OCBP. This characterization is
in terms of the parameters of the instances I that OCBP is
able to schedule (specifically, the lo-criticality load `lo(I)
and the hi-criticality load `hi(I)). Since, as explained in

Section 2 above, these parameters are easily and efficiently
computed for any instance I, such a characterization of the
schedulability properties of OCBP makes it easy to deter-
mine whether a given instance is schedulable or not using
OCBP.

Some other research on mixed-criticality scheduling.
Although many other real-time scheduling papers deal

with mixed-criticality systems, they do not really deal with
scheduling for certification. De Niz et al. [9] deal with a
different aspect of mixed-criticality systems from the one
we focus on here, in that they do not directly address the
certification issue. Nevertheless, [9] contains very interesting
and novel ideas that merit mention. This work observes that
the complete inter-criticality isolation offered by the reserva-
tions approach may cause criticality inversion: preventing a
higher-criticality job from meeting its deadline while allow-
ing lower-criticality jobs to complete. On the other hand,
assigning priorities according to criticality may result in very
poor processor utilization. An innovative slack-aware ap-
proach is proposed that builds atop priority-based schedul-
ing (with priorities not necessarily assigned according to crit-
icality), to allow for asymmetric protection of reservations
thereby helping to lessen criticality inversion while retaining
reasonable resource utilization.

Pellizzoni et al. [13], use a reservations-based approach
to ensure strong isolation among sub-systems of different
criticalities; this paper proposes innovative design and ar-
chitectural techniques for preserving such isolation despite
some necessary interaction (e.g., in the sharing of additional
non-preemptable resources) between jobs of different criti-
calities. The focus is not on optimizing resource utilization,
but on ensuring isolation; hence, this research does not at-
tempt to avoid the criticality-inversion that is inherent to
the reservations-based approach.

3.1 The OCBP scheduling algorithm
In prior work [7], we have derived a priority-based algo-

rithm called OCBP (Own Criticality-Based Priorities) for
mixed-criticality scheduling. The high-level description of
the OCBP algorithm is as follows. Given a dual-criticality
instance I, we determine off-line (i.e., prior to run-time) a
total priority ordering of the jobs of I such that schedul-
ing the jobs according to this priority ordering guarantees
a correct schedule, where scheduling according to a priority
ordering means that at each moment in time the highest-
priority available job is executed.

The priority ordering is constructed recursively using the
approach commonly referred to in the real-time scheduling
literature as the “Audsley approach” [2, 3]. We first deter-
mine the lowest priority job: Job Ji may be assigned the
lowest priority if

• it is a lo-criticality job (χi = lo), and there is at
least Ci time between its release time and its deadline
available if every other job Jj has higher priority and
is executed for Cj time units; or

• it is a hi-criticality job (χi = hi), and there is at least
C′i time between its release time and its deadline avail-
able if every other job Jj has higher priority and is
executed for C′j time units4.

4Recall that we assume that C′j = Cj for every Jj with

The above procedure is then repeated to the set of jobs ex-
cluding the lowest priority job, until all jobs are ordered,
or at some iteration a lowest priority job does not exist. (If
this happens, the priority-assignment algorithm reports fail-
ure and we say that the instance is not OCBP-schedulable.)
We illustrate the operation of the OCBP priority assignment
algorithm by an example:

Example 2. Consider the instance comprised of the fol-
lowing three jobs. J1 is not subject to certification, whereas
J2 and J3 must be certified correct.

Ji Ai Di χi Ci C′i
J1 0 4 lo 2 2
J2 0 5 hi 2 4
J3 0 10 hi 2 4

Let us determine which, if any, of these jobs could be
assigned lowest priority according to the OCBP priority as-
signment algorithm:

• If J1 were assigned lowest priority, J2 and J3 could
consume C1+C2 = 2+2 = 4 units of processor capacity
over [0, 4), thus leaving no execution for J1 prior to its
deadline.

• If J2 were assigned lowest priority, J1 and J3 could
consume C′1+C′3 = 2+4 = 6 units of processor capacity
over [0, 6), thus leaving no execution for J2 prior to its
deadline at time-instant 5.

• If J3 were assigned lowest priority, J1 and J2 could
consume C′1+C′2 = 2+4 = 6 units of processor capacity
over [0, 6). This leaves 4 units of execution for J3 prior
to its deadline at time-instant 10, which is sufficient
for J3 to execute for C′3 = 4 time units. Job J3 may
therefore be assigned the lowest priority.

Next, the OCBP priority assignment algorithm would con-
sider the instance {J1, J2}, and seek to assign one of these
jobs the lower priority:

• If J1 were assigned lower priority, J2 could consume
C2 = 2 units of processor capacity over [0, 2). This
leaves 2 units of execution for J1 prior to its deadline
at time-instant 4, which is sufficient for J1 to execute
for C1 = 2 time units. Job J1 may therefore be assigned
the lowest priority from among {J1, J2}.

• It may be verified that J2 cannot be assigned the lowest
priority from among {J1, J2}. If we were to do so, then
J1 could consume C′1 = 2 units of processor capacity
over [0, 2). This leaves 3 units of execution for J1 prior
to its deadline at time-instant 5, which is not sufficient
for J2 to execute for the C′2 = 4 time units it needs to
complete on time.

The final OCBP priority ordering is therefore as follows.
Job J2 has the greatest priority, job J1 has the next-highest
priority, and J3 has the lowest priority. It may be veri-
fied that scheduling according to these priorities is a correct
MC scheduling strategy for the instance {J1, J2, J3}, (recall
from Section 2 the definition of “correct” scheduling strate-
gies).

χj = lo; i.e., no lo-criticality job is permitted to execute
for more than its lo-criticality WCET.

The following properties of OCBP were proved in [7] (or
follow directly from results that were proved there):

1. The OCBP priority assignment algorithm has a run
time that is polynomial in the representation of the
instance being scheduled.

2. If the OCBP priority assignment algorithm succeeds in
assigning priorities to the jobs of an instance I, then
priority-based scheduling of I according to these pri-
orities is a correct MC scheduling strategy.

3. The OCBP priority assignment algorithm succeeds in
assigning priorities to the jobs of any instance I that
satisfies

`lo(I) ≤
√

5− 1

2
and `hi(I) ≤

√
5− 1

2

(Recall that (
√

5 − 1)/2 ≈ 0.62 is the famous mathe-
matical constant commonly called the“Golden ratio”,
and often denoted Φ.)

4. LOAD-BASED SCHEDULABILITY ANAL-
YSIS

As stated above, results from [7] can be used to conclude
that any instance I for which both `lo(I) and `hi(I) are
bounded from above at about 0.62, is guaranteed to be suc-
cessfully scheduled by OCBP on a unit-speed processor. In
this section, we consider systems in which these conditions
are not satisfied: one of the two loads is larger than 0.62,
while the other is smaller than this bound. This is a reason-
able case to consider: it is unlikely that the lo-criticality and
the hi-criticality loads of an instance will both be similarly
constrained. We instead expect that `hi(I) would usually
be rather small compared to `lo(I), since it is typically the
case that a relatively small fraction of the code on board an
integrated embedded platform is devoted to safety-critical
(and hence certifiable) functionality. We would like to be
able to determine the schedulability by OCBP of such in-
stances. This is done in Theorem 2 below, which shows that
`lo(I)2 + `hi(I) ≤ 1 is sufficient to ensure that I is success-
fully scheduled by OCBP. (Note that for “regular” – i.e., non
MC – instances, this condition reduces to the trivial result
that load ≤ 1 is sufficient for schedulability, since a non-MC
instance can be considered to be a MC instance with one of
`lo(I) or `hi(I) set equal to zero.)

Theorem 2. The OCBP priority assignment algorithm
generates a priority ordering that yields a correct MC schedul-
ing strategy for any MC instance I satisfying

`lo(I)2 + `hi(I) ≤ 1 . (1)

Proof: Let I denote a minimal instance for which the
OCBP priority assignment fails to generate a priority order-
ing. We will prove that it must be the case that `lo(I)2 +
`hi(I) > 1. The theorem follows, by contradiction.

Without loss of generality, let us assume that minJi∈I Ai

= 0 (i.e., the earliest release time is zero).
Observe that it must be the case that there is no time-

instant t ∈ [0, maxJi∈I Di) such that no job’s scheduling
window5 contains t. If there were such a t, it would fol-
low that either the instance comprised of only those jobs

5The scheduling window of a job Ji is the interval [Ai, Di).

with scheduling windows before t, or the instance comprised
of only those jobs with scheduling windows after t, is not
OCBP-schedulable; this contradicts the assumed minimal-
ity of I.

Observation 2.1. If the job[s] in I with the latest dead-
line are not [all] hi-criticality jobs, then Equation 1 is vio-
lated by I.

Proof: If a lo-criticality job has the latest deadline but
nevertheless cannot therefore be assigned lowest priority, it
follows from the optimality of EDF for scheduling “regular”
(non-MC) real-time workloads that the lo-criticality behav-
ior of I in which each job Ji executes for Ci time units is not
schedulable. This requires that `lo(I) > 1, which in turns
implies that Equation 1 is violated.

We have thus proved the theorem for those instances I in
which the latest-deadline jobs are not all hi-criticality jobs.
In the remainder of this proof we will consider the remaining
case, when all the latest-deadline jobs in I are hi-criticality
jobs. Let j2 denote such a latest-deadline job with deadline
d2, and let j1 denote the lo-criticality job with the latest
deadline, this deadline being at d1(d1 < d2).

Some additional notation: let clo denote the total lo-
criticality WCET of all lo-criticality jobs in I, and let chi(lo)
and chi(hi) respectively denote the total lo-criticality and
the total hi-criticality WCET’s of all the hi-criticality jobs:

clo =
∑

Ji∈I|χi=lo

Ci

chi(lo) =
∑

Ji∈I|χi=hi

Ci

chi(hi) =
∑

Ji∈I|χi=hi

C′i

Consider now any work-conserving schedule of I where
each job Ji requests exactly Ci time units of execution. Let
Λ1, Λ2, · · · denote the intervals, during which the processor
is idle in this schedule. We define their cumulative length as
λ.

Since we’re assuming that I is not OCBP-schedulable, it
must be the case that j1 cannot be the lowest-priority job
on such a processor. Hence, it is necessary that

clo + chi(lo) > (d1 − λ) (2)

Observation 2.2. For each j ≥ 1, no Ji with criticality
χi = lo has a scheduling window that overlaps with Λj.

Proof: Suppose that some lo-criticality job Ji were to over-
lap with Λj . This means that in a lo-criticality behavior,
all the jobs which arrive prior to Λj complete by the be-
ginning of Λj . Hence, Ji would complete by its deadline in
any behavior of criticality level one, if it were assigned low-
est priority. But this contradicts the assumed non-OCBP-
schedulability of I.

Since we assume that j1 is the latest-deadline lo-criticality
job, we know that every lo-criticality job has a deadline
earlier than d1. Thus by Observation 2.2 above and the
definition of `lo(I) we get

clo ≤ `lo(I)× (d1 − λ) (3)

This follows from the observation that in every time inter-
val [t1, t2) that overlaps with a lo-criticality job’s scheduling

window , we know that the summation of time demand over
[t1, t2) is no greater than `lo(I) × (t2 − t1). Therefore the
accumulation of time demand over all possible intervals will
be no greater than `lo(I)× (d1 − λ).

From the definition of `lo and `hi,we get the following two
inequalities:

clo + chi(lo) ≤ `lo(I)× d2 (4)

chi(hi) ≤ `hi(I)× d2 (5)

Observation 2.3. Consider any work-conserving sched-
ule of I, when each lo-criticality job Ji requests exactly Ci

units of execution, and each hi-criticality job jj requests ex-
actly C′j units of execution6. There are no idle intervals in
this schedule.

Proof: If there were an idle interval, any job whose schedul-
ing window spans the idle interval would meet its deadline
if it were assigned lowest priority. But this contradicts the
assumed non-OCBP-schedulability of I.

Since we are assuming that I is not OCBP-schedulable, it
must be the case that j2 cannot be the lowest-priority job.
Given Observation 2.3 above, it must then be the case that

clo + chi(hi) > d2 (6)

From Inequalities 2 and 4, we can get

`lo(I) d2 > d1 − λ (7)

We can simplify Inequality 6 above:

clo + chi(hi) > d2

⇒ From Inequalities 3, 5

`lo(I) (d1 − λ) + `hi(I) d2 > d2

⇒ By Inequality 7

`lo(I) (`lo(I) d2) + `hi(I) d2 > d2

≡ `lo(I)2 + `hi(I) > 1

We have just proved that any minimal instance I for which
the OCBP priority assignment algorithm fails to generate
s priority ordering must have `lo(I)2 + `hi(I) > 1. Hence
OCBP successfully assigns priorities to any instance I sat-
isfying `lo(I)2 + `hi(I) ≤ 1, and our theorem is proved.

Discussion.
We had pointed out in Section 3.1 that results in [7] allow

us to conclude that any instance I, for which both `lo(I)
and `hi(I) are no larger than (

√
5 − 1)/2, is successfully

scheduled by OCBP. We will now show that this follows
from Theorem 2. To see this, observe that for a system in
which both `lo(I) and `hi(I) are no larger than (

√
5− 1)/2,

`lo(I)2 + `hi(I)

≤ (√5− 1

2

)2
+

√
5− 1

2

=
(√5− 1

2

)(√5− 1

2
+ 1

)

=
(√5− 1

2

)(√5 + 1

2

)

=
4

4
= 1

6As in Observation 2.2, we are not attempting to meet dead-
lines in this schedule.

-

6

(0,0) 1`hi(I)

1

`lo(I)

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@

.
...........................

...........................
.........

........................
.......................

..
.....................

.....................
..............

....................
............

..............
...................
..................

...
.........

...............
..

................
...............
..
...............

.............
.......

.............
..........

.............
.............

.............
.............
...

.............
.............
.....

0.62

0.62

Figure 1: Bound on the lo-criticality load (`lo) as a
function of hi-criticality load (`hi).

and such an I hence satisfies Condition 1 of Theorem 2.

5. RELATIONSHIP TO PRIOR APPROACHES
To better explain how the result of Theorem 2 compares

to prior work, we have plotted in Figure 1 the bound on
the lo-criticality load of an instance I as a function of its
hi-criticality load `hi(I), in order for I to be successfully
scheduled.

• The straight line connecting the points (1, 0) and (0, 1)
has equation `lo(I) + `hi(I) = 1, and represents the
schedulability condition for the space-time partition-
ing and other reservations-based approaches: since we
must reserve a fraction `hi(I) of the processor for hi-
criticality tasks in such an approach, that leaves a frac-
tion 1− `hi(I) of the processor capacity for accommo-
dating additional lo-criticality jobs. Hence any in-
stance that maps on to a point below this line is guar-
anteed schedulable by space-time partitioning.

• The square with vertices at (0, 0), (0, 0.62), (0.62, 0.62),
and (0.62, 0) represents the schedulability condition
that is implied by prior work [7]: any instance that
maps on to a point within this square is guaranteed,
by the results in [7], to be schedulable by OCBP.

• The curve that connects the points (1, 0) and (0, 1)
has equation `lo(I)2 + `hi(I) = 1, and represents the
OCBP schedulability condition derived in Theorem 2.
Any instance that maps on to a point beneath this
curve is guaranteed, as a consequence of Theorem 2,
to be schedulable by OCBP.

It is immediately evident from the figure that the schedula-
bility region for the condition of Theorem 2 strictly domi-
nates the schedulability regions of both space-time partition-
ing and of the result in [7], in the sense that those schedu-
lability regions are both contained within the schedulability
region for the condition of Theorem 2.

As an example illustrating the implications of this fact,
suppose that a system designer were designing an embed-
ded system I in which the hi-criticality workload — those
subject to certification — is determined to have a load equal
to 25% of the processor capacity (i.e., `hi(I) = 0.25). The
question to be answered is this: how much lo-criticality
functionality that does not need certification may be added
to this processor?

• Under space-time partitioning, any instance with lo-
criticality load not exceeding (1−0.25), or 75%, of the
processor capacity is guaranteed to be schedulable.

• Since 0.25 is ≤ (
√

5 − 1)/2, we may apply the result
from [7]. According to this result, any instance with
lo-criticality load not exceeding (

√
5−1)/2, or ≈ 62%,

of the processor capacity is guaranteed to be success-
fully scheduled by OCBP.

• Using the result of Theorem 2, we are able to conclude
that any instance with lo-criticality load not exceed-
ing

√
1− 0.25, or ≈ 86%, is successfully scheduled by

OCBP.

We now prove a stronger result that does not directly fol-
low from Theorem 2, showing that any MC instance that is
schedulable using space-time partitioning is guaranteed to
be schedulable by OCBP:

Theorem 3. Any MC instance I that is schedulable using
space-time partitioning is also schedulable using OCBP.

Proof: Suppose that instance I is schedulable on a preemp-
tive unit-speed uniprocessor under space-time partitioning.
This fact implies that there it is possible to construct a
schedule for the jobs in I in which each job Ji ∈ I with
χi = lo receives Ci units of execution, and each job Ji ∈ I
with χi = hi receives C′i units of execution.

By the optimality property of EDF on preemptive unipro-
cessors [11, 10], it follows that EDF would successfully sched-
ule the behavior of I in which each lo-criticality job Ji exe-
cutes for Ci units, and each hi-criticality job Ji executes for
C′i units. Let us refer to this EDF schedule as S.

We will now show that the OCBP priority assignment
algorithm can construct the priority ordering for the jobs in
I, in which jobs are ordered according to deadline with later-
deadline jobs receiving lower priority7. To see why this is
the case, consider the latest-deadline job Ji in I. When the
OCBP priority assignment algorithm considers this job as a
potential lowest-priority job, there are two cases to consider:

• Suppose that Ji is a hi-criticality job (χi = hi). It
follows from our previous argument (above) about the
existence of the EDF schedule S that Ji gets C′i units
of execution between its release time and its deadline
if all other jobs in I execute at greater priority than Ji,
and each such job Jj executes for C′j time units. Hence,
the OCBP priority assignment scheme may assign Ji

lowest priority.

7That is, although OCBP may find some other correct pri-
ority ordering if one exists, it will certainly find the deadline
ordering if no other priority ordering is correct. Therefore
the OCBP priority cannot declare failure on I if I can be
scheduled by space-time partitioning.

• Suppose that Ji is a lo-criticality job (χi =). Once
again from the existence of the EDF schedule S, it
follows that Ji gets Ci units of execution between its
release time and its deadline if all other jobs in I exe-
cute at greater priority than Ji, and each such job Jj

executes for Cj time units if χj = lo and C′j time units
if χj = hi. Since Cj is assumed to be ≤ C′j for all j, it
follows that Ji gets Ci units of execution between its
release time and its deadline if all other jobs in I exe-
cute at greater priority than Ji, and each such job Jj

executes for Cj time units. Hence, the OCBP priority
assignment scheme may assign Ji lowest priority.

We thus see that the latest-deadline job may be assigned
lowest priority according to the OCBP priority assignment
scheme. Repeatedly going through the above argument on
the instance obtained by removing the latest-deadline job,
we see that a total ordering may be obtained on all the jobs
in I. Therefore, the OCBP priority assignment scheme is
able to successfully schedule any MC instance which can be
scheduled using space-time partitioning, and out theorem is
proved.

It is relatively easy to construct MC instances that are
OCBP-schedulable, that space-time partitioning cannot sched-
ule in a correct manner. Thus in addition to having a schedu-
lability region on the `lo × `hi plane that strictly contains
the schedulability region of space-time partitioning (as illus-
trated in Figure 1), it is also the case that OCBP scheduling
strictly dominates space-time partitioning.

6. CONTEXT AND CONCLUSIONS
Due to the rapid increase in the complexity and diver-

sity of functionalities that are performed by safety-critical
embedded systems, the cost and complexity of obtaining
certification for such systems is fast becoming a serious con-
cern [4]. We believe that in mixed-criticality systems, these
certification considerations give rise to fundamental new re-
source allocation and scheduling challenges which are not
adequately addressed by conventional real-time scheduling
theory. In prior work [7], we have therefore proposed a
job model that is particularly appropriate for representing
mixed-criticality workloads, and have studied basic prop-
erties of this model. We had also derived an algorithm,
called OCBP, for scheduling such mixed-criticality work-
loads. In this paper, we have conducted a thorough inves-
tigation of the schedulability properties of OCBP. We have
obtained quantitative bounds on these schedulability prop-
erties, derived a load-based sufficient schedulability condi-
tion, and demonstrated that OCBP scheduling is superior to
the space-time partitioning approach to scheduling in mixed-
criticality systems.

7. ACKNOWLEDGEMENTS
This research has been supported in part by AT&T, IBM,

and Sun Corps.; NSF grants CNS 0834270 and CNS 0834132;
ARO grant W911NF-09-1-0535; and AFOSR grant FA9550-
09-1-0549.

8. REFERENCES
[1] ARINC. ARINC 653-1 Avionics application software

standard interface, October 2003.

[2] N. C. Audsley. Optimal priority assignment and
feasibility of static priority tasks with arbitrary start
times. Technical report, The University of York,
England, 1991.

[3] N. C. Audsley. Flexible Scheduling in Hard-Real-Time
Systems. PhD thesis, Department of Computer
Science, University of York, 1993.

[4] J. Barhorst, T. Belote, P. Binns, J. Hoffman,
J. Paunicka, P. Sarathy, J. S. P. Stanfill, D. Stuart,
and R. Urzi. White paper: A research agenda for
mixed-criticality systems, April 2009. Available at
http://www.cse.wustl.edu/˜ cdgill/CPSWEEK09 MCAR.

[5] S. Baruah. Mixed criticality schedulability analysis is
highly intractable. Available at
http://www.cs.unc.edu/~baruah/Pubs.shtml, 2009.

[6] S. Baruah, H. Li, and L. Stougie. Mixed-criticality
scheduling: improved resource-augmentation results.
In Proceedings of the ICSA International Conference
on Computers and their Applications (CATA). IEEE,
April 2010.

[7] S. Baruah, H. Li, and L. Stougie. Towards the design
of certifiable mixed-criticality systems. In Proceedings
of the IEEE Real-Time Technology and Applications
Symposium (RTAS). IEEE, April 2010.

[8] S. Baruah and S. Vestal. Schedulability analysis of
sporadic tasks with multiple criticality specifications.
In Proceedings of the EuroMicro Conference on
Real-Time Systems, Prague, Czech Republic, July
2008. IEEE Computer Society Press.

[9] D. de Niz, K. Lakshmanan, and R. R. Rajkumar. On
the scheduling of mixed-criticality real-time task sets.
In Proceedings of the Real-Time Systems Symposium,
pages 291–300, Washington, DC, 2009. IEEE
Computer Society Press.

[10] M. Dertouzos. Control robotics : the procedural
control of physical processors. In Proceedings of the
IFIP Congress, pages 807–813, 1974.

[11] C. Liu and J. Layland. Scheduling algorithms for
multiprogramming in a hard real-time environment.
Journal of the ACM, 20(1):46–61, 1973.

[12] J. W. S. Liu. Real-Time Systems. Prentice-Hall, Inc.,
Upper Saddle River, New Jersey 07458, 2000.

[13] R. Pellizzoni, P. Meredith, M. Y. Nam, M. Sun,
M. Caccamo, and L. Sha. Handling mixed criticality
in SoC-based real-time embedded systems. In
Proceedings of the International Conference on
Embedded Software (EMSOFT), Grenoble, France,
2009. IEEE Computer Society Press.

[14] S. Vestal. Preemptive scheduling of multi-criticality
systems with varying degrees of execution time
assurance. In Proceedings of the Real-Time Systems
Symposium, pages 239–243, Tucson, AZ, December
2007. IEEE Computer Society Press.

[15] J. Windsor and K. Hjortnaes. Time and space
partitioning in spacecraft avionics. Space Mission
Challenges for Information Technology, IEEE
International Conference on, pages 13–20, 2009.

