
Mixed-criticality scheduling

S. K. Baruah ∗ V. Bonifaci † G. D’Angelo ‡ H. Li ∗

A. Marchetti-Spaccamela § N. Megow † L. Stougie (Speaker) ¶

There is an increasing trend in embedded systems towards implementing multiple
functionalities upon a single shared computing platform. This can force tasks of differ-
ent criticality to share a processor and interfere with each other. These mixed-criticality
(MC) systems are the focus of our research. We consider the scheduling of finite collec-
tions of jobs to be executed on a single machine (processor), allowing preemption.

A job in an MC system with L criticality levels is characterized by a 4-tuple of pa-
rameters: Jj = (rj , dj , χj , cj), where rj is the release time, dj is the deadline (dj ≥ rj),
χj ∈ {1, . . . , L} is the criticality level of the job and cj is an L-tuple (cj(1), . . . , cj(L))
representing the worst-case execution times (WCET) of job Jj at level 1, . . . , L, respec-
tively. Each job Jj in a collection J1, . . . , Jn should receive execution time Cj within
time window [rj , dj ]. The value of Cj is not known but is discovered by executing job
Jj until it signals completion. A collection of realized values (C1, C2, . . . , Cn) is called
a scenario. The criticality level of a scenario (C1, . . . , Cn) is defined as the smallest
integer ` such that Cj ≤ cj(`), ` = 1, . . . , L. (We only consider scenarios where such
an ` exists.) A schedule for a scenario (C1, . . . , Cn) of criticality ` is feasible if every
job Jj with χj ≥ ` receives execution time Cj during its time window [rj , dj ]. Notice the
crucial aspect of this model that, in a scenario of level `, it is necessary to guarantee only
that jobs of criticality at least ` are completed before their deadlines. In other words,
once a scenario is known to be of level `, the jobs of criticality 1, . . . , ` − 1 can safely
be dropped. Throughout we will assume that cj(`) ≥ cj(k) if ` > k and that for all j,
cj(`) = cj(χj) for all ` > χj .

A clairvoyant scheduling policy knows the scenario of I, i.e., (C1, . . . , Cn), prior to
determining a schedule for I. We call an instance I clairvoyantly-schedulable if for each
scenario of I there exists a feasible schedule.

By contrast, an on-line scheduling policy discovers the value of Cj only by execut-
ing Jj until it signals completion. In particular, the criticality level of the scenario
becomes known only by executing jobs. An on-line scheduling policy is correct for in-
stance I if for any scenario of instance I the policy generates a feasible schedule.

An instance I is MC-schedulable if it admits a correct on-line scheduling policy.

The MC-schedulability problem is to determine whether a given instance I is
MC-schedulable or not. It is easy to see that for deciding MC-schedulability one only

∗baruah@cs.unc.edu, lihaohan@cs.unc.edu. University of North Carolina, USA.
†bonifaci@mpi-inf.mpg.de, nmegow@mpi-inf.mpg.de. Max-Planck-Institut für Informatik,

Saarbrücken, Germany.
‡gianlorenzo.dangelo@univaq.it. University of L’Aquila, Italy.
§alberto@dis.uniroma1.it. Sapienza University of Rome, Italy.
¶lstougie@feweb.vu.nl. Vrije Universiteit Amsterdam & CWI, the Netherlands.

1



needs to consider scenarios in which for each i, Ci = ci(`) for some `.

Example. Consider an instance I of a dual-criticality system: L = 2. I has 2 jobs:

J1 = (0, 2, 1, (1, 1)), J2 = (0, 3, 2, (1, 3))

Here, any scenario in which C1 and C2 are no larger than 1, has criticality 1; all
other scenarios we consider have criticality 2. It is easy to verify that I is clairvoyantly-
schedulable. The following describes an on-line scheduling policy for instance I:

S0: Execute J2 over [0,1]. If J2 has no remaining execution (i.e., C2 is revealed to be no
greater than 1), then continue with scheduling J1 over (1, 2]; else continue by completing
scheduling J2.

It is easy to see that policy S0 is correct for instance I. However, S0 is not correct
if we modify the deadline of J1 obtaining the following instance I ′:

J1 = (0, 1, 1, (1, 1)), J2 = (0, 3, 2, (1, 3))

It is easy to see that I ′ is clairvoyantly schedulable but not MC-schedulable.

With respect to complexity we prove that MC-schedulability is strongly NP-
hard even if L = 2. We do not know if the problem belongs to NP. It does belong to
PSPACE. For L constant the problem is in NP, hence NP-complete. Certain subcases
are polynomial time solvable, for instance the case that all jobs have equal deadlines.

Since MC-schedulability is intractable we concentrate here on sufficient (rather
than exact) MC-schedulability conditions that can be verified in polynomial time. We
study two widely-used scheduling policies that yield such sufficient conditions and com-
pare their capabilities under the resource augmentation metric: the minimum speed of
the processor needed for the algorithm to schedule all instances that are MC-schedulable
on a unit-speed processor. We show that the second policy we present outperforms the
first one in terms of the resource augmentation metric.

The first, straightforward, approach is to map each MC job Jj into a “traditional”
job with the same arrival time rj and deadline dj and processing time cj = cj(χj) =
max` cj(`) (by monotonicity), and determine whether the resulting collection of tradi-
tional jobs is schedulable using some preemptive single machine scheduling algorithm
such as the Earliest Deadline First (EDF) rule. This test can clearly be done in polyno-
mial time. We will refer to mixed-criticality instances that are MC-schedulable by this
test as worst-case reservations schedulable (WCR-schedulable) instances.

Theorem 1. If an instance is WCR-schedulable on a processor, then it is MC-
schedulable on the same processor. Conversely, if an instance I with L criticality levels
is MC-schedulable on a given processor, then I is WCR-schedulable on a processor that
is L times as fast, and this factor is tight.

The second approach is a fixed priority policy: Off-line, before the actual execution
times are known, a priority list of the jobs is determined and at each moment in time
the available job with the highest priority is scheduled. The priority list is constructed
recursively using the approach commonly referred to in the real-time scheduling literature
as the “Audsley approach” [1, 2]; it is also related to a technique introduced by Lawler [6].
First determine the lowest priority job: Job Ji has lowest priority if there is at least ci(χi)
time between rj and dj its release time and its deadline available when every other job Jj
is executed before Ji for cj(χi) time units (the WCET of job Jj according to the criticality
level of job i). The procedure is repeatedly applied to the set of jobs excluding the lowest

2



priority job, until all jobs are ordered, or at some iteration a lowest priority job does not
exist.

Because the priority of a job is based only on its own criticality level, the instance I is
called Own Criticality Based Priority (OCBP)-schedulable if we find a complete ordering
of the jobs. If at some recursion in the algorithm no lowest priority job exists, we say the
instance is not OCBP-schedulable. Clearly, if a priority list exists, it can be determined
in polynomial time.

Theorem 2. If an instance is OCBP-schedulable on a processor, then it is MC-
schedulable on the same processor. Conversely, if instance I with L criticality levels
is MC-schedulable on a given processor, then I is OCBP-schedulable on a processor that
is sL times as fast, with sL equal to the root of the equation xL = (1 + x)L−1, and this
factor is tight. Furthermore, it holds that sL = Θ(L/ lnL).

We note that for L = 2 in the above theorem, s2 = (1 +
√

5)/2 is equal to the golden
ratio φ. We show that under fixed priority policies OCBP is in a sense best possible, by
proving that instances with L criticality levels exist, that are clairvoyantly schedulable,
but not Π-schedulable for any fixed priority policy Π on a machine that is less that sL
times as fast, with sL being the root of the equation xL = (1 + x)L−1.
Related work. The mixed-criticality model presented here has first been proposed and
analyzed by Baruah, Li and Stougie [4]. Most of the results presented appear in Baruah
et al. [3]. The mixed-criticality model has been extended to task systems by Li and
Baruah [7] and by Bonifaci et al. [5].

References

[1] N. C. Audsley. Optimal priority assignment and feasibility of static priority tasks
with arbitrary start times. Technical report, The University of York, England, 1991.

[2] N. C. Audsley. Flexible Scheduling in Hard-Real-Time Systems. PhD thesis, Depart-
ment of Computer Science, University of York, 1993.

[3] S. K. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, N. Megow,
and L. Stougie. Scheduling real-time mixed-criticality jobs. In P. Hliněný and
A. Kučera, editors, Proc. 35th Symp. on Mathematical Foundations of Computer
Science, volume 6281 of Lecture Notes in Computer Science, pages 90–101. Springer,
2010.

[4] S. K. Baruah, H. Li, and L. Stougie. Towards the design of certifiable mixed-criticality
systems. In Proc. 16th IEEE Real-Time and Embedded Technology and Applications
Symposium, pages 13–22. IEEE, 2010.

[5] V. Bonifaci, G. D’Angelo, A. Marchetti-Spaccamela, S. van der Ster, and L. Stougie.
Mixed-criticality scheduling of sporadic task systems. Submitted to 10th Workshop
on Models and Algorithms for Planning and Scheduling Problems, 2011.

[6] E. L. Lawler. Optimal sequencing of a single machine subject to precedence con-
straints. Management Science, 19(5):544–546, 1973.

[7] H. Li and S. K. Baruah. An algorithm for scheduling certifiable mixed-criticality
sporadic task systems. In Proc. 16th IEEE Real-Time Systems Symposium, pages
183–192. IEEE, 2010.

3


