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Abstract

The scheduling of mixed-criticality implicit-deadline sporadic task systems on
identical multiprocessor platforms is considered. Two approaches, one for global
and another for partitioned scheduling, are described. Theoretical analyses and
simulation experiments are used to compare the global and partitioned scheduling
approaches.
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1 Introduction
In mixed-criticality systems, multiple functionalities that may be of different degrees
of importance or criticalities are implemented upon a common platform. The real-time
systems research community is showing increasing interest in better understanding the
scheduling of such mixed-criticality systems, motivated in large part by the increasing
trend in embedded systems towards platform integration as is evidenced by industry-
wide initiatives such as IMA (Integrated Modular Avionics) for aerospace, and AU-
TOSAR (AUTomotive Open System ARchitecture) for the automotive industry.

Mixed-criticality systems are increasingly being implemented on multiprocessor
platforms. As more functionalities with different degrees of criticality are implemented
on a common multiprocessor platform, mixed-criticality systems are becoming more
complex, less uniform and predictable, and show greater variation in their performance.
Certification of such systems is crucial to their successful deployment. In order to cer-
tify a system as being correct, the certification authority (CA) mandates certain assump-
tions about the worst-case behavior of the system during run-time; these assumptions
are typically far more conservative than the assumptions that the system designer would
use during the process of designing, implementing, and testing the system if subsequent
certification were not required. (For instance, the worst-case execution time (WCET)
estimate used by the CA to characterize a complex piece of code is likely to be more
pessimistic (i.e., larger) than the WCET estimate used by the system designer.) While
the CA is only concerned with the correctness of the safety-critical part of the system
the system designer is responsible for ensuring that the entire system is correct, includ-
ing the non-critical parts. The scheduling problem then becomes one of coming up with
∗Work supported by NSF grants CNS 1218693, CNS 1016954, and CNS 1115284; ARO grant W911NF-

09-1-0535; AFOSR grant FA9550-09-1-0549; and AFRL grant FA8750-11-1-0033.
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a single scheduling strategy that meets two separate goals: (i) certification of the high
criticality jobs under more pessimistic assumptions and (ii) feasibility of all the jobs
(including the low criticality ones) under the designer’s, less pessimistic, assumptions.

In this paper we describe algorithms for global and partitioned scheduling of mixed-
criticality systems that are geared towards achieving goals (i) and (ii) mentioned above.
We compare and contrast the global and partitioning approaches both theoretically and
experimentally.
Organization. The remainder of this paper is organized as follows. We formally define
the workload and platform models that we use in Section 2. In Section 3, we describe
some of the prior work that has been done on mixed-criticality scheduling and explain
how our contributions fit in with this related work. In Section 4, we present a review of
some prior results that are used in this paper. In Sections 5 and 6 respectively we de-
scribe and prove correct our global and partitioned scheduling algorithms respectively,
and derive interesting properties that provide quantitative characterizations of the algo-
rithms’ worst-case behaviors. The results of some simulation experiments comparing
the two approaches are reported in Section 7. In Section 8 we summarize our obser-
vations concerning the relative efficacy of the partitioned and the global approach to
multiprocessor mixed-criticality scheduling.

2 System Model and Definitions
As described in Section 1 above, certification authorities(CAs) and system designers
typically make different assumptions about the worst-case behavior of a system: the
CA’s assumptions are usually more conservative than those of the system designer.
The system model that we assume is cognizant of the differences in the assumptions of
the CA and the system designer and incorporates these differences.

We now formally define the mixed-criticality (henceforth often referred to as MC)
workload model that is used in this paper, and explain terms and concepts used through-
out the remainder of this document. As with traditional (i.e., non MC) real-time sys-
tems, we will model a MC real-time system τ as consisting of a finite specified collec-
tion of MC sporadic tasks, each of which will generate a potentially infinite sequence
of MC jobs.

MC jobs. Each job is characterized by a 5-tuple of parameters:
Ji = (ai, di, χi, ci(LO), ci(HI)), where

• ai ∈ R+ is the release time.

• di ∈ R+ is the deadline. We assume that di ≥ ai.

• χi ∈ {LO, HI} denotes the criticality of the job. A HI-criticality job (a Ji with
χi = HI) is one that is subject to certification, whereas a LO-criticality job (a Ji
with χi = LO) is one that does not need to be certified.

• ci(LO) specifies the worst case execution time (WCET) estimate of Ji that is
used by the system designer (i.e., the WCET estimate at the LO-criticality level).
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• ci(HI) specifies the worst case execution time (WCET) estimate of Ji that is used
by the CA (i.e., the WCET estimate at the HI-criticality level). We assume that

– ci(HI) ≥ ci(LO) (i.e., the WCET estimate used by the system designer is
never more pessimistic than the one used by the CA), and

– ci(HI) = ci(LO) if χi = LO (i.e., a LO-criticality job is aborted if it exe-
cutes for more than its LO-criticality WCET estimate1).

The MC job model has the following semantics. Job Ji is released at time ai, has
a deadline at di, and needs to execute for some amount of time γi. However, the value
of γi is not known beforehand, but only becomes revealed by actually executing the job
until it signals that it has completed execution. If Ji signals completion without ex-
ceeding ci(LO) units of execution, we say that it has exhibited LO-criticality behavior;
if it signals completion after executing for more than ci(LO) but no more than ci(HI)
units of execution, we say that it has exhibited HI-criticality behavior. If it does not
signal completion upon having executed for ci(HI) units, we say that its behavior is
erroneous.

MC implicit-deadline sporadic tasks. Each implicit-deadline sporadic task in the
MC model is characterized by a 4-tuple of parameters: τk = (χk, Ck(LO), Ck(HI), Tk),
with the following interpretation. Task τk generates a potentially infinite sequence of
jobs, with successive jobs being released at least Tk time units apart. Each such job has
a deadline that is Tk time units after its release. The criticality of each such job is χk,
and it has LO-criticality and HI-criticality WCET’s of Ck(LO) and Ck(HI) respectively.

A MC sporadic task system is specified as a finite collection of such sporadic tasks.
As with traditional (non-MC) systems, such a MC sporadic task system can potentially
generate infinitely many different MC instances (collections of jobs), each instance
being obtained by taking the union of one sequence of jobs generated by each sporadic
task.

Utilizations. The utilization of a (regular, i.e., non-MC) implicit-deadline sporadic
task denotes the ratio of its WCET to its period; the utilization of a task system denotes
the sum of the utilizations of all the tasks in the system. We now define analogous
concepts for mixed-criticality sporadic task systems. That is, we letUk(LO) andUk(HI)
denote the LO-criticality and HI-criticality utilizations of task τk:

Uk(LO) := Ck(LO)/Tk and Uk(HI) := Ck(HI)/Tk

Let τ = {τ1, τ2, . . . , τn} denote a MC implicit-deadline sporadic task system. For
each of x and y in {LO, HI}, we define a utilization parameter as follows:

Uyx (τ) =
∑

τi∈τ∧χi=x

Ui(y) (1)

Thus for example, U LO
HI (τ) denotes the sum of the utilizations of the HI-criticality

tasks in τ , under the assumption that each job of each task executes for no more than
its LO-criticality WCET.

1We assume that the run-time system provides support for ensuring that jobs do not execute for more than
a specified amount; see, e.g., [8] for a discussion of this issue.

3



χk Ck(LO) Ck(HI) Tk
τ1 LO 2 2 6
τ2 HI 1 2 10
τ3 HI 2 10 20

Table 1: An example mixed-criticality implicit-deadline sporadic task system.

Example 1 Consider the task system depicted in Table 1. For this task system,

U LO
LO (τ) = 2/6 = 0.33

U HI
LO(τ) = 2/6 = 0.33

U LO
HI (τ) = 1/10 + 2/20 = 0.2

U HI
HI (τ) = 2/10 + 10/20 = 0.7

Scheduling MC sporadic task systems. A particular implicit-deadline sporadic task
system may generate different instances of jobs during different runs. Furthermore,
during any given run each job comprising the instance may exhibit LO-criticality, HI-
criticality, or erroneous behavior. We define an algorithm for scheduling implicit-
deadline sporadic task system τ to be correct if it is able to schedule every instance
generated by τ such that

• If all jobs exhibit LO-criticality behavior, then all jobs receive enough execution
between their release time and deadline to be able to signal completion; and

• If any job exhibits HI-criticality behavior, then all HI-criticality jobs receive
enough execution between their release time and deadline to be able to signal
completion.

Note that if any job exhibits HI-criticality behavior, we do not require any LO-
criticality jobs (including those that may have arrived before this happened) to com-
plete by their deadlines. This is an implication of the requirements of certification:
informally speaking, the system designer fully expects that all jobs will exhibit LO-
criticality behavior, and hence is only concerned that they behave as desired under
these circumstances. The CA, on the other hand, allows for the possibility that some
jobs may exhibit HI-criticality behavior, and requires that all HI-criticality jobs never-
theless meet their deadlines.

In Sections 5 and 6 we describe our global and partitioning algorithms for schedul-
ing MC task systems for the system model we assume. We also derive speedup bounds
for these algorithms. Following is a brief discussion on the relevance of speedup bound
in the context of mixed-criticality scheduling.

Speedup bound. Since the simpler problems of scheduling “regular” (i.e., non-MC)
task systems on multiprocessor platforms is already known to be very difficult, it is
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evident that MC scheduling is also very difficult. Hence it is very unlikely that we will
be able to design efficient algorithms for MC scheduling on multiprocessors that are
optimal; instead, we seek efficient algorithms that, while not optimal, exhibit behavior
that has bounded deviation from optimality. One metric we use for quantifying such
deviation from optimal behavior is the speedup bound of an algorithm:

Definition 1 (Speedup bound) A scheduling algorithm A is said to have a speedup
bound b (b ≥ 1) if any task system that can be correctly scheduled by an optimal algo-
rithm on m speed-1 processors is correctly scheduled by A on m speed-b processors.

Other things being equal, we seek scheduling algorithms with a smaller speedup bound:
the smaller the speedup bound of an algorithm, the closer to optimal its behavior is.

3 Context and Related work
A large body of recent research has addressed mixed-criticality scheduling for certifia-
bility, primarily for systems implemented upon uniprocessor platforms (see, e.g., [32,
14, 24, 23, 16, 28, 18, 21, 8, 9, 18, 31, 20, 21, 5, 25, 33, 29, 30, 17] – this list is by no
means exhaustive). However, safety-critical (and other) embedded systems are increas-
ingly coming to be implemented on multicore CPU’s. There is thus a need for research
in the implementation and analysis of mixed-criticality systems on multiprocessor plat-
forms. To our knowledge, there has however not been much work done on studying
multiprocessor mixed-criticality scheduling. We briefly list the only prior publications
that we are aware of on this topic.

• The paper [29] considers global fixed-priority scheduling of MC task systems;
in contrast, our global scheduling algorithm (Section 5) is EDF-based.

• A few papers [27, 20] deal primarily with implementation issues, while consid-
ering a very simple workload model (all jobs have the same release time and
deadline).

• Another paper [33] addresses some pragmatic issues concerning non-interference
in memory access when tasks of different criticality co-exist on a multiprocessor
platform.

• Some parts of [6] consider (1) the global multiprocessor scheduling of a finite
collection of independent jobs (Section 4.1); and (2) the partitioned multiproces-
sor scheduling of implicit-deadline sporadic task systems (Section 4.2).

From among these papers, [6, Section 4.2] contains results most closely related to
the research presented in this paper. We will therefore briefly describe these results.

The research in [6, Section 4.2] identifies a relationship between the mixed-criticality
partitioning problem and a restriction of the well-known vector scheduling problem,
and applies a polynomial-time approximation scheme (PTAS) for this vector schedul-
ing problem from [13] to obtain, for any given constant ε, a polynomial-time partition-
ing algorithm that has a speedup bound no larger than

(
Φ + ε

)
, where Φ is the math-

ematical constant equal to (
√

5 + 1)/2 ≈ 1.618, commonly known as the Golden
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Ratio.2 Although this result is theoretically significant, it is not of much relevance
from an implementation perspective since all techniques known for implementing the
PTAS from [12, 13] have run-times that are unacceptably high-degree polynomials in
the number of tasks and the number of processors – to our knowledge, these PTAS’s
have never been implemented. In contrast, the partitioning algorithm that we derive in
this paper can be implemented very efficiently to have a run-time that is proportional
to the product of the number of tasks and the number of processors.

4 Review of related results
In this section we briefly discuss some algorithms and their properties that are relevant
to the work presented in this paper. The algorithms we describe are the uniprocessor
mixed-criticality scheduling algorithm EDF-VD [5] (Section 4.1), and the EDF-based
multiprocessor global scheduling algorithm fpEDF [4], which schedules “regular” (i.e.,
non mixed-criticality) task systems (Section 4.2).

4.1 Algorithm EDF-VD
Algorithm EDF-VD (for Earliest Deadline First with Virtual Deadlines) of [5] is an al-
gorithm for scheduling mixed-criticality implicit-deadline sporadic task systems upon
a preemptive uniprocessor. We now provide a high-level description of EDF-VD.

Let τ = {τ1, . . . , τn} denote the MC implicit-deadline sporadic task system that is
to be scheduled on a preemptive unit-speed processor. EDF-VD’s approach to schedul-
ing τ can be thought of as a three-phased one:

1. An initial pre-processing phase occurs prior to run-time.

2. During run-time, jobs are initially dispatched in the expectation that the behavior
of the system is going to be a LO-criticality one: no job will execute for more
than its LO-criticality WCET.

3. If some job does execute beyond its LO-criticality WCET without signaling that
it has completed execution, the dispatching algorithm is modified accordingly
and the algorithm enters its optional third phase.

We now discuss each of the three phases.
During pre-processing, a schedulability test is performed to determine whether τ

can be guaranteed to be successfully scheduled. If it is determined that τ can indeed be
guaranteed to be successfully scheduled, then an additional parameter, called a modi-
fied period denoted T̂i, is computed for each HI-criticality task τi ∈ τ . It is always the
case that T̂i ≤ Ti.

Initial run-time scheduling is done according to the earliest-deadline first (EDF)
algorithm [26, 15]. Since EDF is defined for regular, rather than mixed-criticality, task

2By applying some results from [5], this result can easily be improved to show that the speedup bound is
actually no more than

(
(4/3) + ε

)
.
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systems, we map the mixed-criticality tasks in τ to regular tasks as follows: each LO-
criticality task τk = (χk, Ck(LO), Ck(HI), Tk) is mapped to a regular implicit-deadline
task (Ck(LO), Tk), while each HI-criticality task τk = (χk, Ck(LO), Ck(HI), Tk) is
mapped to a regular implicit-deadline task (Ck(LO), T̂k), where the T̂k’s are the modi-
fied periods computed during the pre-processing phase.

If some job does execute beyond its LO-criticality WCET without signaling that it
has completed execution, we enter the third phase of the algorithm, and the following
changes occur.

1. All currently-active LO-criticality jobs are immediately discarded; henceforth,
no LO-criticality job will receive any execution.

2. Subsequent run-time scheduling of the HI-criticality tasks (including their jobs
that are currently active) are done according to EDF. This is done by mapping:
each HI-criticality MC task τk = (χk, Ck(LO), Ck(HI), Tk) in τ to a regular
implicit-deadline task (Ck(HI), Tk).

4.1.1 EDF-VD: Properties

The following properties of Algorithm EDF-VD, derived in [5]; will be used in later
sections of this paper.

Theorem 1 (from [5]) Any mixed-criticality implicit-deadline sporadic task system τ
satisfying the property

max
(
U LO

LO (τ) + U LO
HI (τ), U

HI
HI (τ)

)
≤ 3/4

is successfully scheduled by EDF-VD on a preemptive unit-speed processor.

Theorem 1 above asserts that any MC implicit-deadline sporadic task system for
which both the LO-criticality utilization (U LO

LO (τ) + U LO
HI (τ)) and the HI-criticality uti-

lization (U HI
HI (τ)) are ≤ 3/4 is successfully scheduled by EDF-VD on a preemptive

unit-speed processor. Since utilization not exceeding processor speed is a necessary
condition for schedulability, a speedup bound of 4/3 for EDF-VD immediately fol-
lows:

Corollary 1 EDF-VD has a speedup bound no greater than 4/3.

Theorem 1 guarantees schedulability when both LO-criticality and HI-criticality
utilizations are bounded by 3/4; a more general test for when one of the utilizations is
greater than 3/4, and the other less than 3/4, has also been derived:

Theorem 2 ((from [5])) Any mixed-criticality implicit-deadline sporadic task system
τ satisfying the property

U LO
LO (τ) ≤

1− UHI
HI (τ)

1−
(
UHI

HI (τ)− U LO
HI (τ)

)
is successfully scheduled by EDF-VD on a preemptive unit-speed processor.
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4.2 Algorithm fpEDF [4]
Algorithm fpEDF [4] is a global EDF-based algorithm for scheduling systems of non
mixed-criticality implicit-deadline sporadic tasks upon identical multiprocessor plat-
forms. The global mixed-criticality scheduling algorithm that we present in Section 5
below is based on Algorithm fpEDF; therefore, we describe it here and provide a brief
overview of some results from [4].

Suppose that “regular” (i.e., non-MC) implicit-deadline sporadic task system τ is
to be scheduled on m unit-speed processors. During run-time all jobs of tasks in τ that
have utilization greater than one-half are assigned highest priority, and the remaining
tasks’ jobs are assigned priorities according to their deadlines (as in “regular” EDF).

Let Usum(τ) (respectively, Umax(τ)) denote the sum of the utilizations (resp., the
largest utilization) of the tasks in τ . The schedulable utilization of a multiprocessor
scheduling algorithm on m speed-s processors is defined to be the largest number such
that any task system τ with Usum(τ) no larger than this number and Umax(τ) no larger
than s, is correctly scheduled by the algorithm on the m processors. The following
result characterizes the performance guarantees made by Algorithm fpEDF:

Theorem 3 (Theorem 4 in [4]) Algorithm fpEDF has a schedulable utilization of (m+
1)/2 upon m unit-speed processors.

Since preemptive uniprocessor EDF is known [26] to have a schedulable utilization
equal to the speed of the processor on which it is implemented, the contrapositive of
Theorem 3 yields the following corollary.

Corollary 2 If a task system cannot be scheduled by Algorithm fpEDF on m unit-
speed processors, then it cannot be scheduled by preemptive uniprocessor EDF on a
processor of speed (m+ 1)/2.

5 Global Scheduling
Our global mixed-criticality scheduling approach extends the EDF-VD [5] uniproces-
sor mixed-criticality scheduling algorithm to multiprocessors, by applying the multi-
processor global scheduling algorithm fpEDF, described above, to mixed-criticality
systems. This algorithm was first presented in [25]; we provide a detailed descrip-
tion in this section. In Section 5.1 we provide a high-level overview, and attempt to
communicate the intuition behind the algorithm design by means of a very simple ex-
ample. We will fill in the details with a more comprehensive description in Section 5.2,
prove some important properties in Section 5.3, and in Section 5.4 we describe some
pragmatic improvements that can be made to the algorithm.

5.1 Overview
In this section we provide a high-level overview of the global mixed-criticality schedul-
ing algorithm. Let τ = {τ1, . . . , τn} denote the MC implicit-deadline sporadic task
system that is to be scheduled on m unit-speed preemptive processors. Our approach
to scheduling τ can be thought of as a three-phased one:
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1. There is a pre-processing phase that occurs prior to run-time.

2. During run-time, jobs are initially dispatched in the expectation that the behavior
of the system is going to be a LO-criticality one: no job will execute for more
than its LO-criticality WCET.

3. If some job does execute beyond its LO-criticality WCET without signaling that
it has completed execution, the dispatching algorithm is modified accordingly
and the algorithm enters its optional third phase.

We now discuss each of the three phases.
During the pre-processing phase, a schedulability test is performed to determine

whether τ can be successfully scheduled by our algorithm or not. If τ is deemed
schedulable, then an additional parameter, which we call a modified period denoted T̂i,
is computed for each HI-criticality task τi ∈ τ . We will see that it is always the case
that T̂i ≤ Ti.

Run-time scheduling is initially done according to Algorithm fpEDF [4] described
in 4.2. Since fpEDF is defined for regular, rather than mixed-criticality, task sys-
tems, we must map the mixed-criticality tasks in τ to regular tasks. This is done
as follows: each LO-criticality task τk = (χk, Ck(LO), Ck(HI), Tk) in τ is mapped
to a regular implicit-deadline task (Ck(LO), Tk), while each HI-criticality task τk =
(χk, Ck(LO), Ck(HI), Tk) in τ is mapped to a regular implicit-deadline task (Ck(LO), T̂k),
where the T̂k’s are the modified periods computed during the pre-processing phase.
It follows from the sustainability property [7, 3] of Algorithm fpEDF that if Algo-
rithm fpEDF is able to schedule this regular implicit-deadline sporadic task system
then it is able to schedule all LO-criticality behaviors of the MC implicit-deadline task
system τ . If some job does execute beyond its LO-criticality WCET without signal-
ing that it has completed execution, we enter the third phase of the algorithm, and the
following changes occur.

1. All currently-active LO-criticality jobs are immediately discarded; henceforth,
no LO-criticality job will receive any execution.

2. Subsequent run-time scheduling of the HI-criticality tasks (including their jobs
that are currently active) are done according to Algorithm fpEDF. In order to
do so, we must once again map these HI-criticality tasks to regular implicit-
deadline tasks. This is done as follows: each HI-criticality MC task τk =
(χk, Ck(LO), Ck(HI), Tk) in τ is mapped to a regular implicit-deadline task (Ck(HI), Tk−
T̂k).

We now demonstrate these three phases via a simple example: scheduling a system
of three implicit-deadline mixed-criticality tasks on a single preemptive processor. 3

Example 2 Suppose we wish to schedule the mixed-criticality implicit-deadline spo-
radic task system depicted in Table 1, on a single unit-speed processor. We will see later

3Although this is not a multiprocessor example, it serves to illustrate the steps taken by the algorithm in
a relatively simple manner.
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that the pre-processing phase determines that this task system is schedulable by our al-
gorithm on a single processor (m = 1), and computes the following T̂k parameters for
the HI-criticality tasks τ2 and τ3:

T̂2 ← 3; T̂3 ← 6 .

During run time, jobs are initially scheduled by handing off the regular task sys-
tem {(2, 6), (1, 3), (2, 6)} to Algorithm fpEDF. Observe that Usum = 2/6 + 1/3 +
2/6 = 1 for this system; hence according to the optimality of preemptive uniprocessor
EDF [26], it is successfully scheduled on a single processor by Algorithm fpEDF.

Now suppose some job executes for more than its LO-criticality WCET. All currently-
active jobs of the LO-criticality task τ1 are immediately discarded, and no future jobs
of this task are admitted. Run-time dispatching is done by handing off the regu-
lar task system {(2, 10 − 3 = 7), (10, 20 − 6 = 14)} to Algorithm fpEDF. Since
Umax = 10/14 ≈ 0.72 and Usum = 2/7 + 10/14 = 1 for this system it is also suc-
cessfully scheduled on a single processor by Algorithm fpEDF. In particular, any cur-
rently active job of τ2 (τ3 respectively) is immediately scheduled as a job with WCET
C2(HI) = 2 (C3(HI) = 10, resp.) and a deadline that is T2 − T̂2 = 7 (T3 − T̂3 = 14,
resp.) time-units in the future.

5.2 A detailed description
We now provide a detailed description of our algorithm, specifying what happens dur-
ing the pre-processing phase –how a system is deemed schedulable or not and how
the modified period parameters (the T̂k’s) are computed for schedulable systems– and
precisely how run-time job-dispatching decisions are made.

The pre-processing step Consider some execution of the mixed-criticality implicit-
deadline task system τ that exhibits HI-criticality behavior, i.e., some job executes be-
yond its LO-criticality WCET without signaling that it has completed execution. Let t∗

denote the first time-instant at which some job executes for more than its LO-criticality
WCET without signaling that it has completed — at t∗, therefore, the run-time system
gets to know that the current behavior of the system is a HI-criticality one.

The idea behind our algorithm is to ensure that there is sufficient computing capac-
ity available between this time-instant t∗ and the deadline of each currently-active HI-
criticality job, to be able to execute all these jobs for up to their HI-criticality WCET’s
by their respective deadlines. This is ensured by the manner in which the modified
periods (the T̂k parameters) are computed. We will compute modified period values to
ensure that the following two properties P1-P2 are satisfied:

P1. All jobs of all tasks will meet their modified deadlines in any LO-criticality behav-
ior of the system (i.e., if no job executes beyond its LO-criticality WCET). That is,
the collection of “regular” (non-MC) tasks( ⋃

χi=LO

{
(Ci(LO), Ti)

})⋃( ⋃
χi=HI

{
(Ci(LO), T̂i)

})
(2)
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Figure 1: A HI-criticality job arrives at time a, with deadline at d. It is scheduled by
Algorithm fpEDF using the modified deadline d̂, which is ≤ d. If no job executes for
more than its LO-criticality WCET, then this job can complete by d̂. If only the HI-
criticality jobs execute and each executes for up to its HI-criticality WCET, then this
job, if a HI-criticality one, can meet its deadline by only executing over [d̂, d).

is scheduled by Algorithm fpEDF to always meet all deadlines on the available m
unit-speed processors.

P2. If each HI-criticality job executes for no more than its HI-criticality WCET and
each LO-criticality job does not execute at all then each HI-criticality job can meet
its (original) deadline by beginning execution at or after its modified deadline. This
is ensured by ensuring that the collection of “regular” (non-MC) tasks⋃

χi=HI

{
(Ci(HI), Ti − T̂i)

}
(3)

can be scheduled by Algorithm fpEDF to always meet all deadlines on the avail-
able m unit-speed processors.

In Section 5.1, we had stated that run-time scheduling during both the second and
the (optional) third phase are done according to Algorithm fpEDF. We observe that in
the regular implicit-deadline task systems being scheduled by Algorithm fpEDF during
the second and third phases (i.e., prior to, and after, time-instant t∗), the periods of these
regular tasks are smaller than or equal to the periods of the MC tasks that are mapped
onto them. Hence it follows from the sustainability property of Algorithm fpEDF that
all deadlines are met prior to time-instant t∗, and all deadlines are met at “steady state”
well after t∗ — i.e., once enough time has elapsed beyond t∗ that only jobs of HI-
criticality tasks that arrived well after t∗ are active in the system. It remains to show
that jobs that are active at time-instant t∗ (see Figure 1), as well as jobs that have arrived
soon after t∗, are correctly scheduled as well.

To see why this must be so, we note that each HI-criticality job that had its modified
deadline < t∗ must have already signaled completion upon executing for at most its
LO-criticality WCET, since otherwise the HI-criticality nature of the behavior would
have been signaled prior to t∗ when such a job failed to signal completion despite
having executed for its LO-criticality WCET. Therefore the modified deadline of each
HI-criticality job that is active —arrived but not yet signaled completion— at time-
instant t∗ must be ≥ t∗. By our choice of modified deadlines and the sustainability
property [7, 3] of Algorithm fpEDF, Property P2 ensures that all such HI-criticality
jobs meet their original deadlines. As for the jobs of each HI-criticality task τi that

11



Algorithm GLOBAL. Task system τ = {τ1, τ2, . . . τn} to be scheduled on m proces-
sors.

1. If the regular task system ⋃
i

{
(Ci(χi), Ti)

}
is deemed schedulable on the m processors by Algorithm fpEDF, then declare
success and return.

2. x← max
(
U LO

HI (τ)/
(
m+1
2 − U LO

LO (τ)
)
,maxχi=HI

{
Ui(LO)

})
3. If the regular task system ⋃

χi=HI

{
(Ci(HI), (1− x)Ti)

}
is deemed schedulable on the m processors by Algorithm fpEDF, then

T̂i ← xTi for each HI-criticality task τi
declare success and return.

else declare failure and return.

Figure 2: The preprocessing phase.

arrive after t∗, they, too are scheduled with a scheduling deadline that is (Ti − T̂i)
after their release times; since they can meet these deadlines under Algorithm fpEDF,
it follows that they meet their actual deadlines, which occur Ti time-units after their
release times, as well.

That, then, is the gist of the idea behind the preprocessing phase. It remains to
fill in the details, in particular by explaining how the modified deadlines are computed
such that the two properties P1 and P2 are satisfied.

The pre-processing phase is described in pseudo-code form in Figure 2. We provide
an explanation of this pseudo-code below.

Step 1 checks to see whether Algorithm fpEDF can schedule the system if each
LO-criticality job executes for up to its LO-criticality WCET, and each HI-criticality
job executes for up to its HI-criticality WCET. If so, then the system can be scheduled
directly by Algorithm fpEDF; else, Steps 2-3 are executed.

In Step 2, a minimum “scaling factor” x is determined, such that if all the HI-
criticality tasks have their periods scaled by this factor x then the regular implicit-
deadline task system obtained by combining these tasks with the LO-criticality tasks
would be successfully scheduled by Algorithm fpEDF. The derivation of the value of
x is as follows. According to Theorem 3, Algorithm fpEDF can schedule any task sys-
tem with total utilization ≤ (m+ 1)/2 (recall that m denotes the number of unit-speed
processors). Since scaling the period of each HI-criticality task by a factor x is equiva-
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lent to inflating its utilization by a factor 1/x, for ensuring LO-criticality schedulability
by fpEDF we therefore need

U LO
LO (τ) +

U LO
HI (τ)

x
≤ m+ 1

2

⇔ U LO
HI (τ)

x
≤ m+ 1

2
− U LO

LO (τ)

⇔ x ≥ U LO
HI (τ)/

(m+ 1

2
− U LO

LO (τ)
)

This accounts for the first term in the “max.” The second term is to ensure that
scaling down the period of any HI-criticality task by this factor x does not result in the
task having its LO-criticality WCET exceed its scaled-down period (equivalently, the
term Ci(LO)

xTi
becoming > 1 for some HI-criticality task τi).

Step 3 determines whether the HI-criticality tasks can be scheduled to meet all
deadlines by Algorithm fpEDF once the behavior of the system transits to HI-criticality
(i.e., after the time-instant t∗ at which some job is identified to have executed for more
than its LO-criticality WCET). If so, the modified deadline parameters – the T̂i’s – are
computed.

Run-time dispatching During the execution of the system, jobs are selected for ex-
ecution according to the following rules:

1. There is a criticality level indicator Γ, initialized to LO.

2. While (Γ ≡ LO),

(a) Suppose a job of some task τi ∈ τ arrives at time t,.

• if χi ≡ LO, the job is assigned a deadline equal to t+ Ti.
• if χi ≡ HI, the job is assigned a deadline equal to t+ T̂i.

(b) At each instant the waiting job with earliest deadline is selected for execu-
tion (ties broken arbitrarily).

(c) If the currently-executing job executes for more than its LO-criticality WCET
without signaling completion, then the behavior of the system is no longer
a LO-criticality behavior, and Γ := HI.

3. Once (Γ ≡ HI),

(a) The deadline of each HI-criticality job that is currently active is changed
to its release time plus the unmodified relative deadline of the task that
generated it. That is, if a job of τi that was released at some time t is active,
its deadline, for scheduling purposes, is henceforth t+ Ti.

(b) When a future job of τi arrives at some time t, it is assigned a deadline
equal to t+ Ti.
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(c) LO-criticality jobs will not receive any further execution. Therefore at each
instant the earliest-deadline waiting job generated by a HI-criticality task is
selected for execution(ties broken arbitrarily).

4. An additional rule could specify the circumstances when Γ gets reset to LO.
This could happen, for instance, if no HI-criticality jobs are active at some in-
stant in time. (We will not discuss the process of resetting Γ := LO any further
in this document, since this is not relevant to the certification process — LO-
criticality certification assumes that the system never exhibits any HI-criticality
behavior, while HI-criticality certification is not interested in the behavior of the
LO-criticality tasks.)

5.3 Properties
Our algorithm is essentially a generalization to multiprocessors of the uniprocessor
mixed-criticality scheduling algorithm EDF-VD of [6].
Algorithm EDF-VD, like our algorithm, also computes a modified period T̂i = xTi
for every HI-criticality task τ , by determining the smallest value for x such that the
following two collections of regular (non-MC) implicit-deadline sporadic tasks

1.
(⋃

χi=LO

{
(Ci(LO), Ti)

})⋃(⋃
χi=HI

{
(Ci(LO), T̂i)

})
, and

2.
⋃
χi=HI

{
(Ci(HI), Ti − T̂i)

}
are each (separately) EDF-schedulable on a unit-speed processor.4 If such an x

cannot be determined, then EDF-VD declares failure; else, it was shown in [6] that τ
can be scheduled using the run-time dispatching algorithm that we have described in
Section 5.2.

The following theorem concerning EDF-VD is a generalization to Theorem 1 in [6].

Theorem 4 Any task system τ , with U HI
HI (τ) ≤ s, satisfying

U LO
LO (τ) + min

(
U HI

HI (τ),
U LO

HI (τ)

1− U HI
HI (τ)/s

)
≤ s (4)

is successfully scheduled by Algorithm EDF-VD on a preemptive speed-s processor.

Proof:
If a task system τ satisfies that∑

∀τi:χi=LO

Ci(LO)

Ti
+

∑
∀τi:χi=HI

Ci(LO)

xTi
≤ s,

which is
4Observe that these conditions are exactly the ones that we have generalized in order to come up with the

conditions P1-P2 (Equations 2 and 3) in Section 5.2.
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U LO
LO (τ) +

U LO
HI (τ)

x
≤ s

or equivalently

x ≥ U LO
HI (τ)

s− U LO
LO (τ)

, (5)

then the task collection( ⋃
χi=LO

{(Ci(LO), Ti)}

)⋃( ⋃
χi=HI

{
(Ci(LO), T̂i)

})
is EDF-schedulable on a preemptive speed-s processor;

If the task system τ satisfies that∑
∀τi:χi=HI

Ci(HI)

(1− x)Ti
≤ s,

which is

U HI
HI (τ)

1− x
≤ s

or equivalently

x ≤ 1− U HI
HI (τ)

s
, (6)

then the task collection ⋃
χi=HI

{
(Ci(HI), Ti − T̂i)

}
is EDF-schedulable on a preemptive speed-s processor.

According to Property P1 and P2, if these both task collections are EDF-schedulable,
the original task system τ is schedulable by Algorithm EDF-VD on a preemptive speed-
s processor.

Noticing inequality (5) and (6), it’s clear that if

U LO
HI (τ)

s− U LO
LO (τ)

≤ 1− U HI
HI (τ)

s
, (7)

then the existence of x is secured. Therefore, by transforming (7) to

U LO
LO (τ) +

U LO
HI (τ)

1− U HI
HI (τ)/s

≤ s, (8)

we’ve shown that the inequality (8) is a sufficient condition to schedule the task system
τ by Algorithm EDF-VD on a preemptive speed-s processor.
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It is trivial to show that a task system τ satisfying

U LO
LO (τ) + U HI

HI (τ) ≤ s (9)

is schedulable on a preemptive speed-s processor. The combination of inequality (8)
and (9) completes the proof.

Using this theorem and Corollary 2, the following sufficient schedulability condi-
tion can be derived for our multiprocessor mixed-criticality scheduling algorithm:

Theorem 5 Any task system τ , with U HI
HI (τ) ≤ m+1

2 , satisfying

U LO
LO (τ) + min

(
U HI

HI (τ),
U LO

HI (τ)

1− U HI
HI (τ) · 2/(m+ 1)

)
≤ m+ 1

2
(10)

is successfully scheduled by our algorithm on m preemptive unit-speed processors.

The following theorem is a generalization to Theorem 2 in [6].

Theorem 6 Any task system τ satisfying

max
(
U LO

LO (τ) + U LO
HI (τ), U HI

HI (τ)
)
≤ s (11)

is successfully scheduled by Algorithm EDF-VD on a preemptive speed-
(√

5+1
2 s

)
pro-

cessor.

Proof: Denoting φ = (
√

5 + 1)/2, if U LO
LO (τ) + U HI

HI (τ) ≤ φs, then it is trivial
to show that the task system τ is successfully scheduled by Algorithm EDF-VD on a
preemptive speed-φs processor. Otherwise, we need to show that

U LO
LO (τ) +

U LO
HI (τ)

1− U HI
HI (τ)/φs

≤ φs,

or equivalently

U LO
LO (τ) + U LO

HI (τ) + U HI
HI (τ)− U LO

LO (τ)U HI
HI (τ)

φs
≤ φs.

By respectively applying max (U LO
LO (τ) + U LO

HI (τ), U HI
HI (τ)) ≤ s, U LO

LO (τ) ≤ s < φs
and U LO

LO (τ) > φs− U HI
HI (τ) ≥ (φ− 1)s, we have

U LO
LO (τ) + U LO

HI (τ) + U HI
HI (τ)− U LO

LO (τ)U HI
HI (τ)

φs

≤s+

(
1− U LO

LO (τ)

φs

)
U HI

HI (τ)

≤s+

(
1− U LO

LO (τ)

φs

)
s

<s+

(
1− φ− 1

φ

)
s = φs.
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By Theorem 4, the task system τ is successfully scheduled by Algorithm EDF-VD
on a preemptive speed-φs processor.

Once again, it follows as a consequence of this theorem and Corollary 2 that

Theorem 7 Any task system τ satisfying

max
(
U LO

LO (τ) + U LO
HI (τ), U HI

HI (τ)
)
≤ m (12)

is successfully scheduled by our algorithm on m preemptive speed-
(√

5 + 1
)

proces-
sors.

We can use Theorem 7 above to obtain a processor speedup bound [22] for our
multiprocessor scheduling algorithm:

Corollary 3 The processor speedup factor of our algorithm is no larger than (
√

5+1).
That is, any mixed-criticality task system that can be scheduled in a certifiably correct
manner on m unit-speed processors by an optimal clairvoyant scheduling algorithm
can be scheduled by our algorithm on m speed-

(√
5 + 1

)
processors.

Proof: Suppose that τ can be scheduled in a certifiably correct manner on m unit-
speed processors by an optimal clairvoyant scheduling algorithm. It is necessary that
its LO-criticality utilization (U LO

LO (τ) + U LO
HI (τ)) be ≤ m, and that its HI-criticality uti-

lization (U HI
HI (τ)) also be ≤ m. The speedup result immediately follows, by Theorem 7

above.

5.4 Pragmatic improvements
The algorithm in Figure 2 describes a technique for computing a scaling factor x; The-
orem 5 details sufficient conditions under which this scaling factor is guaranteed to
yield a certifiably correct scheduling strategy.

What happens, however, if the task system to be scheduled does not satisfy the
conditions of Theorem 5? In this case, the algorithm in Figure 2 may fail to find
a value for x that results in a certifiably correct scheduling strategy. However, such
failure does not necessarily imply that an appropriate value of x does not exist; we may
apply heuristic strategies to attempt to determine such an x. One strategy would be to
apply exhaustive search: consider all values of x (at an appropriate level of granularity),
searching for one that causes the properties P1 and P2 to be satisfied. A somewhat less
naive but computationally more efficient heuristic is described in pseudo-code form in
Figure 3, as the Algorithm GLOBAL-PRAGMATIC. According to this heuristic, we
iterate through only those values for x that, for each τi with χi = HI, would make the
regular task (Ci(LO), xTi) or (Ci(HI), (1− x)Ti) have utilization 1/2; for each such
value of x, we test whether properties P1 and P2 are satisfied. The algorithm returns
success upon finding the first such x for which P1 and P2 are both satisfied; if all
these values of x fails either P1 or P2, the algorithm returns failure. The statements in
Section 5.2 on properties P1 and P2 guarantees the correctness of Algorithm GLOBAL-
PRAGMATIC.
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Algorithm GLOBAL-PRAGMATIC. Task system τ = {τ1, τ2, . . . τn} to be sched-
uled on m processors.

1. If the regular task system ⋃
i

{
(Ci(χi), Ti)

}
is deemed schedulable on the m processors by Algorithm fpEDF, then declare
success and return.

2. for each τi with χi = HI

(a) x← 2Ci(LO)/Ti

(b) If x < minχi=HI

(
Ci(LO)
Ti

)
or x ≥ 1 or x ≤ 0 then continue // Consider

the next task

(c) If both the regular task systems( ⋃
χi=LO

{
(Ci(LO), Ti)

})⋃( ⋃
χi=HI

{
(Ci(LO), xTi)

})
and ⋃

χi=HI

{
(Ci(χi), (1− x)Ti)

}
are deemed schedulable on the m processors by Algorithm fpEDF, then
T̂i ← xTi for each HI-criticality task τi
declare success and return

else continue// Consider the next task

3. for each τi with χi = HI

(a) x←
(
1− 2Ci(HI)/Ti

)
(b) repeat Step 2b and Step 2c

4. Declare failure and return

Figure 3: The improved preprocessing phase.
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The idea of considering only those specific candidate values for x can be briefly
motivated as follows: In Algorithm fpEDF, if the tasks whose jobs get highest prior-
ity are fixed, the schedulability of the task system depends entirely on the values of
Usum and Umax. It can be shown that if the tasks whose jobs are assigned highest pri-
ority are fixed, then these two values change monotonically with x. Therefore we only
check the values on the boundary of monotonic intervals, which are specifically, the
values that change the assignment of the tasks whose jobs are assigned highest prior-
ity. It is evident that those are the values that make the regular task (Ci(LO), xTi) or
(Ci(HI), (1− x)Ti) have utilization 1/2, as we described above. Thus in Algorithm
GLOBAL-PRAGMATIC, we check these values to see if it is a valid assignment of
x; although this is not necessarily guaranteed to always find an x that renders the sys-
tem schedulable even if one exists, it is computationally more efficient than exhaustive
search and the simulation evaluations described in [25] indicate that it seems to perform
quite well.

6 Partitioned Scheduling
We start with an overview of our partitioning algorithm. It proceeds in two phases:

1. During the first phase each HI-criticality task is assigned to some processor while
ensuring that the cumulative HI-criticality utilization assigned to each processor
does not exceed 3/4.

2. During the second phase each LO-criticality task is assigned to some proces-
sor while ensuring that the cumulative LO-criticality utilization assigned to each
processor also does not exceed 3/4.

Observe that by Theorem 1, such an assignment procedure ensures that each pro-
cessor remains schedulable by EDF-VD. The algorithm reports failure if it fails to
successfully assign every task.

We now fill in the details. Let τ denote the implicit-deadline sporadic task sys-
tem that is to be partitioned amongst m processors. Let us assume that there are n
tasks in τ , of which n1 are HI-criticality tasks. Without loss of generality, assume that
τ1, τ2, . . . , τn1

are the HI-criticality tasks, and τn1+1, . . . , τn the LO-criticality ones.
Let π1, π2, . . . , πm denote the m processors. Figure 4 gives a pseudo-code representa-
tion of our algorithm, MC-PARTITION.

Let us suppose that tasks τ1, τ2, . . . , τi−1 have been successfully assigned. We now
explain how the task τi is assigned to a processor.

For any processor πk, let τ(πk) denote the tasks from amongst τ1, τ2, . . . , τi−1 that
have already been assigned to it. Algorithm MC-PARTITION assigns the task τi to any
processor πk satisfying the following condition. If i ≤ n1 (i.e., if τi is a HI-criticality
task) then Ui(HI) +

∑
τj∈τ(πk)

Uj(HI)

 ≤ 3

4
(13)
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MC-PARTITION(τ,m)

� τ = {τ1, . . . , τn} is to be partitioned on m identical, unit-capacity pro-
cessors denoted π1, . . . , πm. Tasks τ1, . . . , τn1

are HI-criticality tasks; tasks
τn1+1, . . . , τn are LO-criticality tasks. The set of tasks assigned to processor
πk is denoted as τ(πk); initially, τ(πk)← ∅ for all k.

1 for i← 1 to n1 � Phase 1: HI-criticality tasks
2 for k ← 1 to m
3 if τi satisfies Condition 13 on processor πk

then� assign τi to πk;
4 τ(πk)← τ(πk)

⋃
{τi}

5 break;
6 end (of inner for loop)
7 if (k > m) return PARTITIONING FAILED
8 end (of outer for loop)
9 for i← (n1 + 1) to n� Phase 2: LO-criticality tasks

10 for k ← 1 to m
11 if τi satisfies Condition 14 on processor πk

then� assign τi to πk;
12 τ(πk)← τ(πk)

⋃
{τi}

13 break;
14 end (of inner for loop)
15 if (k > m) return PARTITIONING FAILED
16 end (of outer for loop)
17 return PARTITIONING SUCCEEDED

Figure 4: Pseudo-code for partitioning algorithm

else (i.e., i > n1 and τi is hence a LO-criticality task)Ui(LO) +
∑

τj∈τ(πk)

Uj(LO)

 ≤ 3

4
(14)

If no such πk exists, then Algorithm MC-PARTITION declares failure: it is unable
to partition τ upon the m-processor platform.

The following lemma asserts that, in assigning a task τi to a processor πk, Algo-
rithm MC-PARTITION does not adversely affect the schedulability of the tasks previ-
ously assigned to the processors.

Lemma 1 If the tasks previously assigned to each processor were schedulable on that
processor by EDF-VD and Algorithm MC-PARTITION assigns task τi to processor πk,
then the tasks assigned to each processor (including processor πk) remain schedulable
on that processor by EDF-VD.
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Proof: Observe that the schedulability of the processors other than processor πk is
not affected by the assignment of task τi to processor πk. It remains to demonstrate
that, if the tasks assigned to each processor were schedulable by EDF-VD on πk prior
to the assignment of τi and Algorithm MC-PARTITION assigns τi to πk, then the tasks
on πk remain schedulable by EDF-VD after adding τi. To see that this is true, we
consider two cases.

• If i ≤ n1, Condition 13 must hold for Algorithm MC-PARTITION to assign τi
to πk. This condition ensures that the sum of the HI-criticality utilizations of all
HI-criticality tasks assigned to processor πk remains ≤ 3/4; since each task’s
LO-criticality utilization is no greater than its HI-criticality utilization, this also
means that the sum of the LO-criticality utilizations of all tasks assigned to pro-
cessor πk also remains ≤ 3/4.

• If i > n1, Condition 14 must hold for Algorithm MC-PARTITION to assign τi
to πk. And, this condition ensures that the sum of the LO-criticality utilizations
of all tasks assigned to processor πk remains ≤ 3/4 while the sum of the HI-
criticality utilizations of HI-criticality tasks does not change.

It is thus the case that both the sum of the HI-criticality utilizations and the sum of
the LO-criticality utilizations upon each processor remains ≤ 3/4; the correctness of
the lemma then follows from Theorem 1.

The correctness of Algorithm MC-PARTITION can now be established by repeated
applications of Lemma 1.

Theorem 8 If Algorithm MC-PARTITION returns PARTITIONING SUCCEEDED on task
system τ , then the resulting partitioning is schedulable by EDF-VD.

Proof: Observe that Algorithm MC-PARTITION returns PARTITIONING SUCCEEDED if
and only if it has successfully assigned each task in τ to some processor.

Prior to the assignment of task τ1, each processor has been assigned no tasks, and
is therefore trivially schedulable by EDF-VD. It follows from Lemma 1 that all pro-
cessors remain schedulable by EDF-VD after each task assignment as well. Hence,
all processors are schedulable by EDF-VD after all tasks in τ have been successfully
assigned.

Run-time complexity. Algorithm MC-PARTITION can be implemented to maintain,
for each processor, the cumulative HI-criticality and LO-criticality utilizations of all
the tasks that have been assigned to that processor thus far. For each task τi and each
processor πk, Condition 13 or Condition 14 can then be evaluated in constant time.
Therefore the i’th task can be assigned in O(m) time, for each i; this yields an overall
run-time of O(n×m).

6.1 A speedup bound for Algorithm MC-PARTITION

We now derive a sufficient schedulability condition for Algorithm MC-PARTITION in
Lemma 2 below, and use this schedulability condition to derive a speedup bound for
Algorithm MC-PARTITION in Theorem 9.
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We would like to stress that Lemma 2 is not intended to be used as a schedulabil-
ity test to determine whether Algorithm MC-PARTITION would successfully schedule
a given sporadic task system – since the algorithm itself runs efficiently in polynomial
time, the “best” (i.e., most accurate) polynomial-time schedulability test for determin-
ing whether a particular task system is successfully scheduled by it is to actually run
Algorithm MC-PARTITION.

Lemma 2 Suppose that Algorithm MC-PARTITION fails to assign some task τi. One
or both of the following conditions must hold:

UHI
HI (τ) >

(3
4
m− (m− 1)Ui(HI)

)
(15)(

U LO
LO (τ) + U LO

HI (τ)
)

>
(3
4
m− (m− 1)Ui(LO)

)
(16)

Proof: Let us first consider the case when i ≤ n1. Since τi cannot be accommo-
dated on any processor, Condition 13 must be violated for task τi on each of the m
processors. Summing the negation of Condition 13 across all m processors, we have

(3
4
− Ui(HI)

)
×m <

i−1∑
j=i

Uj(HI)

⇔ 3

4
m−mUi(HI) + Ui(HI) <

i−1∑
j=i

Uj(HI) + Ui(HI)

⇔ 3

4
m− (m− 1)Ui(HI) <

i∑
j=i

Uj(HI)

⇒ 3

4
m− (m− 1)Ui(HI) < UHI

HI (τ)

which is as claimed.
Now let us consider when i > n1. Since τi cannot be accommodated on any

processor, Condition 14 must be violated for task τi on each of the m processors.
Summing the negation of Condition 14 across all m processors, we have

(3
4
− Ui(LO)

)
×m <

i−1∑
j=i

Uj(LO)

⇔ 3

4
m−mUi(LO) + Ui(LO) <

i−1∑
j=i

Uj(LO) + Ui(LO)

⇔ 3

4
m− (m− 1)Ui(LO) <

i∑
j=i

Uj(LO)

⇒ 3

4
m− (m− 1)Ui(LO) < U LO

LO (τ) + U LO
HI (τ)

which, too, is as claimed in the lemma.
Using Lemma 2 above, we now derive a speedup bound for our partitioning algo-

rithm.
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Theorem 9 The speedup bound of Algorithm MC-PARTITION on anm-processor plat-
form is ( 8m−4

3m ).

Proof: To prove this, we must show that any MC implicit-deadline sporadic task system
that can be partitioned upon an m-processor platform by an optimal algorithm can be
partitioned by Algorithm MC-PARTITION upon anm-processor platform in which each
processor is ( 8m−4

3m ) times as fast.
Let us assume that τ = {τ1, τ2, . . . , τn} can be scheduled by an optimal scheduling

algorithm on m processors each of computing capacity equal to ξ. It must therefore be
the case that

Ui(LO) ≤ ξ for each i, 1 ≤ i ≤ n
Ui(HI) ≤ ξ for each i, 1 ≤ i ≤ n1

U LO
LO (τ) + U LO

HI (τ) ≤ mξ

UHI
HI (τ) ≤ mξ

Suppose that Algorithm MC-PARTITION fails to partition τ onm unit-capacity proces-
sors. By Lemma 2 above, it must be the case that at least one of Conditions 15 or 16
holds. If Condition 15 holds, it must be the case that

UHI
HI (τ) >

(3
4
m− (m− 1)Ui(HI)

)
⇔ mξ >

3

4
m− (m− 1)ξ

⇔ (2m− 1)ξ >
3

4
m

⇔ ξ >
3m

4(2m− 1)

Similarly if Condition 16 holds, it must be the case that

U LO
LO (τ) + U LO

HI (τ) >
(3
4
m− (m− 1)Ui(LO)

)
⇔ mξ >

3

4
m− (m− 1)ξ

⇔ (2m− 1)ξ >
3

4
m

⇔ ξ >
3m

4(2m− 1)

We have shown that for either of Conditions 15 or 16 to hold, ξ must exceed 3m
4(2m−1) .

Hence if ξ ≤ 3m
4(2m−1) then τ is successfully scheduled by Algorithm MC-PARTITION

on m unit-speed processors; equivalently, if ξ ≤ 1 then τ is successfully scheduled by
Algorithm MC-PARTITION on a speed- 4(2m−1)3m processors, as claimed by the theorem.

We note that 4(2m−1)
3m < 8/3 for all m ≥ 1, asymptotically approaching 8/3 as

m → ∞. Hence, 8/3 ≈ 2.67 is an upper bound on the speedup of Algorithm MC-
PARTITION, for all values of m.

For the global scheduling algorithm of [25], a speedup bound of (
√

5 + 1) ≈ 3.24
was derived [25, Corollary 2]. Since smaller speedup bounds correspond to better
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(closer to optimal) behavior, from the perspective of the speedup bounds computed
thus far, Algorithm MC-PARTITION has better behavior than the global scheduling al-
gorithm of [25]. However, the speedup bound of the global scheduling algorithm may
be improved and we leave that as future work.

6.2 Pragmatic improvements
We now describe a series of modifications to Algorithm MC-PARTITION; although
these modifications do not change the speedup bound, they do represent improvements
in the sense that the modified algorithm is able to successfully schedule some task
systems that the original algorithm could not.

6.2.1 Algorithm MC-PARTITION-UT-0.75

This version incorporates two modifications:

§1: Preprocessing tasks with Ui(HI) > 3/4. Algorithm MC-PARTITION is modified
to incorporate the partitioning of tasks with 3/4 < Ui(HI) ≤ 1. The modification
assigns one such high criticality task per processor prior to partitioning other tasks (we
call this the pre-processing phase.) Each processor upon which a task was assigned
during this pre-processing phase will only be assigned HI-criticality tasks; hence during
Phase 1 of Algorithm MC-PARTITION each such processor πk is assigned tasks so long
as the resulting HI-criticality utilization on πk does not exceed 1:Ui(HI) +

∑
τj∈τ(πk)

Uj(HI)

 ≤ 1 (17)

(For the remaining processors, Condition 13 remains the requirement for assigning
tasks during phase 1.)

§2: Improved utilization during phase 2. Condition 14 is based upon Theorem 1; as
stated in Section 4.1 Theorem 2 is a superior sufficient schedulability test to the one in
Theorem 1. We therefore replace Condition 14 with the following condition:Ui(LO) +

∑
τj∈τ(πk)∧χi=LO

Uj(LO)


≤ 1− UHI

HI (τ(πk))

1−
(
UHI

HI (τ(πk))− U LO
HI (τ(πk))

) (18)

It follows from Theorem 2 that satisfying Condition 18 will ensure that the system is
schedulable. Furthermore, it is possible that tasks with LO-criticality utilization > 3/4
will be accommodated upon some processor (on which the cumulative HI-criticality
utilization assigned during phase 1 is strictly less than 3/4).
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6.2.2 Algorithm MC-PARTITION-UT-1

This is obtained by replacing Condition 13 by the following:Ui(HI) +
∑

τj∈τ(πk)

Uj(HI)

 ≤ 1

Also, Condition 14 for low criticality tasks is replaced by Condition 18. Note,
that with this modification we do not need the pre-processing phase for high criticality
tasks.

6.2.3 Algorithm MC-PARTITION-UT-INC

This is obtained by replacing Condition 13 by:Ui(HI) +
∑

τj∈τ(πk)

Uj(HI)

 ≤ val (19)

where val is variable that iteratively takes on values in the range [0.5, 1] (in pre-
determined steps). The intuition behind this modification is that depending upon the
value of val the high criticality tasks are assigned to processors differently, which in
turn affects the partitioning of the low criticality tasks. As a result, different values of
val might result in a success or failure in partitioning different task systems. In the
pre-processing phase of Algorithm MC-PARTITION-UT-INC one high criticality task
with utilization greater than val is assigned per processor. If m′ is the number of pro-
cessors to which tasks were assigned in the pre-processing phase then the remaining
high criticality are assigned to the processors while ensuring that Condition 17 is sat-
isfied on the m′ processors and Condition 19 is satisfied on the processors excluding
the m′ processors. Also, Condition 14 for low criticality tasks is replaced by Condi-
tion 18. Algorithm MC-PARTITION-UT-INC returns PARTITIONING FAILED only if
partitioning fails for all the values of val that are considered.

It is evident that Algorithm MC-PARTITION-UT-INC dominates both Algorithms MC-
PARTITION-UT-0.75 and MC-PARTITION-UT-1, since MC-PARTITION-UT-INC checks
with different values of val, including 0.75 and 1, and returns PARTITIONING FAILED
only if the partitioning failed for all the values that were considered.

7 Evaluation via Simulation
In this section we experimentally compare the global and partitioning approaches pre-
sented in Sections 5 and 6 respectively. Our experiments were conducted upon randomly-
generated task systems that were generated using the task generation algorithm de-
scribed in [25] which is a slight modification of the workload-generation algorithm
introduced by Guan et al. [19]. The input parameters for our workload generation
algorithm are as follows:
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• Ubound: The desired value of the larger of LO-criticality and HI-criticality uti-
lization of the task system:

max
(
U LO

LO (τ) + U LO
HI (τ), U HI

HI (τ)
)

= Ubound (20)

• [UL, UU ]: The high criticality utilizations of tasks are uniformly drawn from this
range; 0 ≤ UL ≤ UU ≤ 1.

• [ZL, ZU ]: The ratio of the HI-criticality utilization of a task to its LO-criticality
utilization is uniformly drawn from this range; 1 ≤ ZL ≤ ZU .

• P : The probability that a task is a HI-criticality task; 0 ≤ P ≤ 1. If a task
becomes a low criticality task then the high criticality utilization of the task is
set to 0.

Given these parameters, the task-generation algorithm initializes the task system τ
to be empty and repeatedly adds tasks τi, i = 1, 2, . . ., until the utilization bound is
met.

After generating the task sets, we determined the fraction of randomly-generated
task systems that are deemed to be schedulable by the algorithm under consideration,
as a function of the ratio (Ubound/m), where m denotes the number of unit-speed
processors in the platform (i.e., this ratio is the system utilization normalized by the
number of processors). Some of our results are depicted graphically in Figures 5-9.

In each graph, the fraction of systems that were determined to be schedulable is de-
picted on the y-axis, and the normalized utilization on the x-axis. Each data-point was
obtained by randomly generating 1000 task systems, testing each for schedulability ac-
cording to the appropriate algorithm, and calculating the fraction of systems deemed
schedulable. The parameters used in generating these task systems (other than the nor-
malized system utilization, which is depicted on the x-axis) are provided in the caption
of the graph; e.g., the task systems for Figure 5 were generated using the parameters
UL = 0.05, UU = 0.75, ZL = 1, ZU = 8, and P = 0.3. For each set of parameters,
we conducted simulations on 2-processor, 4-processor, 8-processor, and 16-processor
platforms. Three algorithms were compared:

1. WORST-CASE-PARTITION, (i.e., partition the task system
⋃
i{(Ci(χi), Ti)}) –

this corresponds to partitioning the high criticality tasks as per their high critical-
ity utilization and the low criticality tasks as per their low criticality utilization
such that for each processor πk∑

τj∈τ(πk)

Cj(χj)/Tj ≤ 1.

2. Algorithm MC-PARTITION (as depicted in Figure 4)

3. Algorithm GLOBAL from [25]5.
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Figure 5: UL = 0.05, UU = 0.75, ZL = 1, ZU = 8, P = 0.3
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Partitioning vs global. The graphs in Figure 5 plot the acceptance fractions for the
three algorithms being compared, for m = 4 and m = 16 processors; it is evident
from these graphs that Algorithm MC-PARTITION performs better than WORST-CASE-
PARTITION and both the partitioning algorithms perform significantly better than Al-
gorithm GLOBAL.

This same phenomenon was observed for all the parameter-settings we consid-
ered. We stress that these results are comparing the performance of MC-PARTITION
without any pragmatic improvements incorporated, with the performance of a version
of GLOBAL that incorporates all pragmatic improvements proposed for it in [25].

Effectiveness of the pragmatic improvements. We separately compared Algorithm WORST-
CASE-PARTITION and MC-PARTITION with the pragmatic improvements described in
Section 6.2, namely:

1. Algorithm MC-PARTITION-UT-0.75

2. Algorithm MC-PARTITION-UT-1

3. Algorithm MC-PARTITION-UT-INC, in our experiments we iterate the values
for val from 0.5 to 1.0 in increments of 0.01.

The graphs in Figure 6 plot the acceptance fractions form = 4 andm = 16 proces-
sors for the algorithms being compared. As expected, we observe that Algorithm MC-
PARTITION-UT-INC does better than Algorithm WORST-CASE-PARTITION, Algo-
rithm MC-PARTITION, and the other pragmatic improvements described in Section 6.2.

The graphs in Figures 7-9 show the effect on Algorithm MC-PARTITION-UT-INC,
of varying different parameter settings in the workload-generation procedure.

We considered different values of ZU (ZL was set equal to one in all our ex-
periments), thus considering different ratios between HI-criticality WCET and LO-
criticality WCET for HI-criticality tasks. We noticed that the effect of different values
of ZU is most prominent when the task system is balanced (in a balanced task system
the total HI-criticality utilization of the task system is equal to the total LO-criticality
utilization of the task system, i.e. UHI = ULO). For generating balanced task systems
we omitted the parameter P from the task generation algorithm described above. In-
stead we generated all the high criticality tasks until UHI was equal to Ubound, defined
in Equation 20, and then generated all the low criticality tasks until ULO was equal to
Ubound.

To explore the effect of having different total HI-criticality and LO-criticality uti-
lizations for the system (i.e. an imbalanced task system), we set P such that the expec-
tation of LO-criticality utilization and HI-criticality utilization are in the desired ratio.

We also varied the values of UU and UL to observe the affect of different utilization
ranges of tasks.

Several trends are revealed by our simulation experiments.

1. For balanced task systems, as ZU increases, i.e. as the ratio between the HI-
criticality and LO-criticality WCET for HI-criticality tasks increases, the fraction

5There are two global scheduling algorithms described in [25]. One of the algorithms is experimentally
shown to be better than the other. In this experiment we use the better of the two algorithms.
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Figure 6: UL = 0.05, UU = 0.75, ZL = 1, ZU = 8, P = 0.3
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Figure 7: MC-PARTITION-UT-INC, UL = 0.05, UU = 0.75, ZL = 1

of schedulable task systems increases. This can be observed in the graphs in
Figure 7. Theorem 2 can be used to explain this observation. In Theorem 2
we notice that as ULOHI (τ) decreases, the equation is satisfied for larger values
of ULOLO (τ); i.e., as the sum of the LO-criticality utilizations of the HI-criticality
tasks assigned to a processor decreases, there is more capacity available for the
LO-criticality tasks. Larger values of ZU lead to smaller ULOHI (τ(πk)) on each
processor. From Theorem 2 we know that in this case there is more capacity
available for the LO-criticality tasks. Thus in balanced task systems (where UHI
and ULO are equal), if ZU is larger, it is more likely that we can accommodate
LO-criticality tasks on the processors, which leads to a successful partition.

2. Partitioning is more successful when the ratio P favors the task system to have
more of the same criticality of tasks, i.e. when HI-criticality utilization UHI , is
much greater than LO-criticality utilization ULO, and vice-versa. For example,
in the graphs in Figure 8, P = 0.1 and P = 0.6 results in a larger fraction of task
systems being scheduled. On any given processor, more capacity is available to
accommodate HI-criticality tasks if the LO-criticality utilization assigned to the
processor is small. Thus, if UHI is much greater than ULO, the processors could
predominantly have higher HI-criticality utilization and the partitioning is more
likely to be successful for smaller LO-criticality utilization. We can present a
similar argument if ULO is much greater than UHI .

3. We did not observe any significant difference in schedulability by varying the
values of the utilization ranges UU and UL used to generate the tasks.

8 Conclusion
We have described and evaluated algorithms for partitioned and global scheduling of
mixed-criticality implicit-deadline sporadic task systems upon identical multiproces-
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Figure 8: MC-PARTITION-UT-INC, UL = 0.05, UU = 0.75, ZL = 1, ZU = 8
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Figure 9: MC-PARTITION-UT-INC, ZL = 1, ZU = 8, P = 0.3
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sor systems. Given the rapidly increasing interest in mixed-criticality systems in both
industry and academia, and the fact that mixed-criticality (and other) embedded sys-
tems are increasingly coming to be implemented upon multiprocessor platforms, this
research seems particularly timely and relevant.

Upon multiprocessor platforms, current engineering practice favors the use of par-
titioned rather than global scheduling. Several researchers have recently argued in
favor of global scheduling (or clustered scheduling, in which the processors are parti-
tioned into clusters each consisting of a few processors, tasks are assigned to clusters,
and scheduled globally within the clusters). We see much merit to these arguments
in general; however with regards to mixed-criticality scheduling (at least within the
framework we have considered here) we believe that the evidence argues in favor of
the partitioned approach. We now summarize the main points that favor this perspec-
tive.

As stated earlier in Section 6.1, the partitioning algorithm is better, from the per-
spective of speedup bounds, when compared to the global algorithm. However, we also
noted that the speedup bound of the global scheduling algorithm may be improved and
we leave that as future work.

The simulation-based evidence is more conclusively in favor of partitioned schedul-
ing: as depicted in Figure 5, even the most naı̈ve partitioning algorithm (WORST-CASE
PARTITION, labeled as WC-P in the graphs) significantly out-performs the best global
scheduling algorithm (labeled GLOBAL).

We point out that these simulation-based conclusions are consistent with prior find-
ings [1, 2, 10, 11] comparing the partitioned and global scheduling of regular (non-MC)
task systems. One of the reasons for the better performance of partitioned algorithms is
that properties, often pessimistic, that merely characterize the behavior of a partitioning
algorithm may constitute the actual schedulability tests for global scheduling. That is,
whereas we can actually run a partitioning algorithm to determine whether a system is
successfully partitioned or not, the test for global schedulability is often a pessimistic
utilization (or similar) bound: only task systems with utilization not exceeding this
bound can be guaranteed schedulable. Hence a simulation-based comparative evalua-
tion would necessarily find all systems with utilization above the bound unschedulable
using global scheduling, whereas some of these systems may be successfully scheduled
by the partitioned algorithm.

There is also the issue of the comparative implementation overhead of global ver-
sus partitioned scheduling. From this perspective, too, partitioned scheduling appears
to win out; as Baker [2] has observed, there is a school of thought that strongly be-
lieves that the overhead of synchronizing schedulers between processors, and lost per-
formance due to translation look-aside buffer and memory cache misses following the
migration of a task between processors, will inevitably negate any possible improve-
ment in scheduling efficiency.

In conclusion, we believe that from the perspective of speedup bound it is not con-
clusive whether the partitioned mixed-criticality scheduling approach is better than the
global one because further work may reveal a better speedup bound for the global
mixed-criticality scheduling approach. However, from the simulation-based results we
obtained, and from the perspective of implementation overhead it is clear that the par-
titioned scheduling approach outperforms the global one.
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