

http://gamma.cs.unc.edu/DAB http://gamma.cs.unc.edu/IMPASTO http://gamma.cs.unc.edu/VISCOUS http://gamma.cs.unc.edu/BRUSH

Digital Painting

Many advantages

- Undo mistakes
- Perfect copies
- •Unlimited reprints
- No material cost
- •No drying
- •No fading or decay
- •No physical limits

Alvy Ray Smith and Ed Ernshwiller working on "Paint", 1979

Traditional Painting

Rich, dynamic behavior

- Deformable brushes
- Fluid paint

Intuitive control

- 🗕 3D input
- Visual and haptic feedback

\rightarrow The *process*

"The dispatch with which a number of effects can be obtained by a direct, simple technique" – *Mayer 1991, The Artist's Handbook*

Enable realistic interactive painting on computer with thick medium using realistic 3D brushes

Training

Education

Entertainment

Production

"My artist's toolbox has oils and acrylics—and a computer. But the computer's not tactile, and I miss that. You can't push junk around."

- Tia, Pixar Animation Studios

http://www.pixar.com/artistscorner/tia/interview.html

"I have used painter and psp [Paint Shop Pro] for a few yrs, and would welcome something better, would fight for, would almost die for a program like is described."

--received by email 8/27/04

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Brush

- Complex geometry
- Stiff dynamical system

Interaction

- e Canvas ⇔ Brush contact
- Canvas ⇔ Brush transfers

Paint

- Complex surface
- Complex behavior
- Subsurface scattering

Haptics

- Needs stability
- Needs kHz updates

Integration

All simulations must work interactively simultaneously

9

Natural Media

Brush Simulation

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

3D Brush

Simulation

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

IO Device

Position and

Motion

System Overview

http://www.youtube.com/watch? v=tZq-cpeZm8Q

Brush Modeling

Geometric modeling

- Brush has 1,000's of hairs
- Each interacts with paint & roughness/tooth of canvas

Dynamic simulation

- Each hair deformable and independent
- Bristles have stiff dynamics

Exploit bristle coherence Define skeletal "spine" bristles Deform surface or interpolate bristles

For smoother, neater marks

 Stiff dynamical system
 Force large, mass small
 Numerical integration requires small timestep

Brush always at equilibrium so $F = M\ddot{x} \implies F = 0$ A statics problem \bullet Or *quasi-static* since $\dot{x} \neq 0$ • $F = 0 \implies$ Energy min Use standard, robust minimizer E.g. Quasi-Newton SQP (Sequential Quadratic Programming)

Brush Energy Minimization

• Minimize $E(\Theta, \Phi) = E_s + E_f + E_d$ • where

 $E_s(\mathbf{\Theta}, \mathbf{\Phi}) =$ Spring energy

 $E_f(\Theta, \Phi) =$ Friction loss

 $E_d(\Theta, \Phi) = \sum$

Damping loss

$$\sum_{i} K_{i}\beta(\theta_{i},\phi_{i})^{2}/2$$
$$\sum_{i} \mu |F_{n,i}| \|\Delta \mathbf{x}_{c,i}\|$$
$$\sum_{i} D_{i} |\Delta \beta_{i}|$$

Subject to $(\mathbf{x}_i - \mathbf{x}_p) \cdot \hat{\mathbf{n}}_p \ge 0$

Brush Modeling Results

dAb Paint Simulation

Fast and simple

- 2D paint behavior
- Modest system requirements
- First bi-directional brush transfer
- First complex loading

Enabled by 3D brush model + bi-directional transfer An essentiăi^rtechnințiae in

- traditional painting
- Difficult previously
- Useful component of interface

dAb Result Images

Frog

Rebecca Holmberg

Apple

Sarah Hoff

Meadow

Rebecca Holmberg

Man

Lauren Adams

Blossoms

Eriko Baxter

Road Bug

Rebecca Holmberg

Steps: • Determine velocity field • Advect material

Given velocity field v, move material according to the advection equation:

$$\frac{\partial q}{\partial t} = -(\mathbf{v} \cdot \nabla)q$$

Material = Pigment & \$\varphi\$ field
 Semi-Lagrangian advection

Viscous Result Images

Woman in a Hat

Eriko Baxter

Field of Flowers

Eriko Baxter

The Beach

Andrea Mantler

Meadow

Haolong Ma

Abstract I

John Holloway

Paint is very complex

IMPaSTo strategy: Model *dominant* terms

Cross section of Monet's Water Lillies

(Courtesy The Museum of Modern Art)

Pigmented material Subsurface scattering

Mixes nonlinearly:

έ (1-α)

Kubelka-Munk model (1948, 1954)

$$R_{\infty} = 1 + \frac{K}{S} - \sqrt{\left(\frac{K}{S}\right)^2 + 2\frac{K}{S}}$$

+α

Data collection setup

Spectral Sampling

- Gaussian quadrature
- Choose best 8 at runtime

IMPaSTo Result Images

Ajisai

Eriko Baxter

Woman

Andrea Mantler

Dame en Blau

Heather Wendt

Gogh Studios Room 1

William Baxter

Green

Eriko Baxter

Abstract III

John Holloway