
Introduction to Python
Part 1: Basic types and control flow

COMP 089H Fall 2015

1

Intro to Python: part 1

• Intro to IDLE, Python
• Keyword: print

• Types: str, int, float

• Variables

• User input

• Saving your work

• Comments

• Conditionals
• Type: bool

• Keywords: and, or, not, if, elif, else

2

IDLE: Interactive DeveLopment Environment

• Shell
• Evaluates what you enter and

displays output

• Interactive
• Type at “>>>” prompt

• Editor
• Create and save .py files

• Can run files and display output in
shell

3

Hello, world!

The canonical programming
example for a language: write
“Hello, world!”

It’s very easy in Python. 

>>> print “Hello, world!”

Hello, world!

4

Hello, world!

Syntax highlighting:

• IDLE colors code differently
depending on functionality
• Orange: keyword

• Green: string

• Blue: output in shell

>>> print “Hello, world!”

Hello, world!

5

Hello, world!

Syntax highlighting:

• IDLE colors code differently
depending on functionality
• Orange: keyword

• Green: string

• Blue: output in shell

>>> print “Hello, world!”

Hello, world!

Example keywords:

print if else and or

class while for break elif

in def not from import

6

Hello, world!

Syntax highlighting:

• IDLE colors code differently
depending on functionality
• Orange: keyword

• Green: string

• Blue: output in shell

>>> print “Hello, world!”

Hello, world!

Example strings:

“Hello, world!”

‘abc 123 lots of stuff’

“This has ‘nested’ quotes”

7

Hello, world!

Syntax highlighting:

• IDLE colors code differently
depending on functionality
• Orange: keyword

• Green: string

• Blue: output in shell

>>> print “Hello, world!”

Hello, world!

Any time you have output in

the shell window, IDLE

colors it blue by default

8

Types: str, int, float

We’ve already seen one type in
Python, used for words and
phrases.

In general, this type is called
“string”. In Python, it’s referred to
as str.

>>> print “Hello,” + “ world!”

Hello, world!

>>> print “a” + ‘b’ + “‘c’”

ab’c’

9

Types: str, int, float

Python also has types for
numbers.

int – integers

float – floating point (decimal)
numbers

>>> print 4 # int

4

>>> print 6. # float

6.0

>>> print 2.3914 # float

2.3914

10

Types: str, int, float

When you add two ints you get
an int.

When you add two floats or an
int and a float, you get a
float.

>>> print 4 + 6 # int

10

>>> print 4 + 6. # float

10.0

>>> print 4.0 + 6.0 # float

10.0

11

Types: str, int, float

When you add two ints you get
an int.

When you add two floats or an
int and a float, you get a
float.

This is true for other operations,
too.

>>> print 6. - 3

3.0

>>> print 2 * 10

20

>>> print 2 / 10.0

0.2

>>> print 7 % 2

1

>>> print 2 ** 3

8

12

Types: str, int, float

When you add two ints you get
an int.

Sometimes this leads to
unexpected results when dividing
ints.

>>> print 2 / 3

0

>>> print 3 / 10

3

Python rounds down because

the result of integer division

is also an int.

13

Variables

To re-use a value in multiple
computations, store it in a
variable.

>>> a = 2

>>> print a * a

2

>>> b = 5

>>> print a + b

7

14

Variables

To re-use a value in multiple
computations, store it in a
variable.

Python is “dynamically-typed”, so
you can change the type of value
stored.

• unlike Java, C#, C++, …

>>> someVar = 2

>>> print someVar # it’s an int

2

>>> someVar = “Why hello there”

>>> print someVar # now str

Why hello there

15

Variables

There are some restrictions on
variable names. They must:

• be at least 1 character long

• contain only A-Z, a-z, 0-9, and _

• not start with a number

• not be a keyword

Okay variable names:

banana

i_am_awesome

studentCount

Not good:

123aaa

print

16

Variables

There are some restrictions on
variable names. They must:

• be at least 1 character long

• contain only A-Z, a-z, 0-9, and _

• not start with a number

• not be a keyword

Also, don’t use __stuff__, this
could show up in future versions.

Okay variable names:

banana

i_am_awesome

studentCount

Not good:

123aaa

print

__bananas__

__student_count__

17

Intro to Python: part 1

• Intro to IDLE, Python
• Keyword: print

• Types: str, int, float

• Variables

• User input

• Saving your work

• Comments

• Conditionals
• Type: bool

• Keywords: and, or, not, if, elif, else

18

User Input

Two choices for functions:

• raw_input
• Returns a string

• Very handy – always use this!

• input
• We will not use this. It can be very

dangerous if you’re not careful.

>>> color = raw_input(“What is your favorite

color? ”)

What is your favorite color? Teal

>>> print “Your favorite color is”, color

Your favorite color is teal

19

User Input

Functions are procedures you can
call.

They may or may not return a
value.

• If they do, you are effectively
replacing the function call with
the result.

>>> color = raw_input(“What is your favorite

color? ”)

What is your favorite color? Teal

>>> print “Your favorite color is”, color

Your favorite color is teal

20

User Input

Functions are procedures you can
call.

You call a function by putting
parentheses after its name.

Anything inside the parentheses
are parameters, separated by
commas.

>>> color = raw_input(“What is your favorite

color? ”)

What is your favorite color? Teal

>>> print “Your favorite color is”, color

Your favorite color is teal

21

User Input

Functions are procedures you can call.

raw_input only has one argument, prompt, and it is optional (note
the [] in the documentation).

See https://docs.python.org/2/library/functions.html

22

https://docs.python.org/2/library/functions.html

User Input

print can take multiple values,
separated by commas

• It replaces each comma with a
space

>>> color = raw_input(“What is your favorite

color? ”)

What is your favorite color? Teal

>>> print “Your favorite color is”, color

Your favorite color is teal

>>> print 4, 2, 9

4 2 9

23

User Input

print can take multiple values,
separated by commas

• It replaces each comma with a
space

If you don’t want spaces, use the
built-in str function to convert
values to strings, then add them.

>>> color = raw_input(“What is your favorite

color? ”)

What is your favorite color? Teal

>>> print “Your favorite color is”, color

Your favorite color is teal

>>> print 4, 2, 9

4 2 9

>>> print “a” + str(1) + “b” + str(2)

a1b2

24

Creating a .py file

• File -> New Window

25

Creating a .py file

• File -> New Window

• Make sure you enter .py as the file extension; IDLE doesn’t always do
this, and you will lose syntax highlighting 

26

Creating a .py file

• File -> New Window

• Make sure you enter .py as the file extension; IDLE doesn’t always do
this, and you will lose syntax highlighting 

• Go to Run -> Run Module (F5) to save and run your program

27

Comments

You’ve already seen some!

Comments in Python are denoted with a #, and are colored red

They aren’t run, and are used to help with readability

28

Intro to Python: part 1

• Intro to IDLE, Python
• Keyword: print

• Types: str, int, float

• Variables

• User input

• Saving your work

• Comments

• Conditionals
• Type: bool

• Keywords: and, or, not, if, elif, else

29

Type: bool

Boolean values are true or false.

Python has the values True and
False (note the capital letters!).

You can compare values with ==,
!=, <, <=, >, >=, and the result of
these expressions is a bool.

>>> a = 2

>>> b = 5

>>> a > b

False

>>> a <= b

True

>>> a == b # does a equal b?

False

>>> a != b # does a not-equal b?

True

30

Type: bool

When combining Boolean
expressions, parentheses are your
friends.

>>> a = 2

>>> b = 5

>>> False == (a > b)

True

31

Keywords: and, or, not

and is True if both parts
evaluate to True, otherwise
False

or is True if at least one part
evaluates to True , otherwise
False

>>> a = 2

>>> b = 5

>>> a < b and False

False

>>> a < b or a == b

True

>>> a < b and a == b

False

>>> True and False

False

>>> True and True

True

>>> True or False

True

32

Keywords: and, or, not

and is True if both parts
evaluate to True, otherwise
False

or is True if at least one part
evaluates to True , otherwise
False

not is the opposite of its
argument

>>> not True

False

>>> not False

True

>>> True and (False or not True)

False

>>> True and (False or not False)

True

33

Conditionals: if, elif, else

The keywords if, elif, and else
provide a way to control the flow of
your program.

34

Conditionals: if, elif, else

The keywords if, elif, and else
provide a way to control the flow of
your program.

Python checks each condition in
order, and executes the block
(whatever’s indented) of the first
one to be True.

35

Conditionals: if, elif, else

Indentation is important in
Python!

Make sure each if, elif, and
else has a colon after it, and
its block is indented one tab (4
spaces by default).

36

Conditionals: if, elif, else

Make sure you’re careful what you compare to the result of
raw_input. It is a string, not a number.

The right way: str to str or int to int

>>> gradYear = raw_input(“When do you plan to graduate? ”)

When do you plan to graduate? 2019

>>> gradYear == 2019 # gradYear is a string :(

False

>>> gradYear == “2019”

True

>>> int(gradYear) == 2019 # cast gradYear to an int :)

True

37

Conditionals: if, elif, else

Make sure you’re careful how to compare the result of raw_input. It
is a string, not a number.

Doing it wrong leads to a ValueError:

>>> gradYear = raw_input(“When do you plan to graduate? ”)

When do you plan to graduate? Sometime

>>> int(gradYear) == 2019

Traceback (most recent call last):

File “<pyshell#4>”, line 1, in <module>

int(gradYear) == 2019

ValueError: invalid literal for int() with base 10: ‘sometime’
38

Today we covered:

• Intro to IDLE, Python
• Keyword: print

• Types: str, int, float

• Variables

• User input

• Saving your work

• Comments

• Conditionals
• Type: bool

• Keywords: and, or, not, if, elif, else

39

