
Introduction to Python
Part 2: Loops and functions

COMP 089H Fall 2015

1

Intro to Python: part 2

• Type: list
• Creating
• Accessing, modifying elements
• Method: append

• Loops
• for loops
• while loops

• Functions
• Defining
• Print vs. return

• More tools
• Built-in modules
• External packages

• File I/O

2

Type: list

A list is a collection of objects.

These can be anything, including
other lists (these are nested).

You can put a list in a variable.

>>> myList = [“apple”, 42, 3.14]

>>> myList

[‘apple’, 42, 3.14]

>>> otherList = [7, ‘a’, myList]

>>> otherList

[7, ‘a’, [‘apple’, 42, 3.14]]

3

Type: list

A list is a collection of objects.

To access or modify an element of
a list, use [].

In Python, 0 is the first element’s
index.

>>> myList = [“apple”, 42, 3.14]

>>> myList

[‘apple’, 42, 3.14]

>>> myList[0]

‘apple’

>>> myList[0] = “banana”

>>> myList

[‘banana’, 42, 3.14]

4

Type: list

A list is a collection of objects.

To access or modify an element of
a list, use [].

In Python, 0 is the first element’s
index.

You can access the last with -1.

>>> myList = [“apple”, 42, 3.14]

>>> myList

[‘apple’, 42, 3.14]

>>> myList[0] = “banana”

>>> myList

[‘banana’, 42, 3.14]

>>> myList[-1] = “hi there”

>>> myList

[‘banana’, 42, ‘hi there’]

5

Type: list

A list is a collection of objects.

To access or modify an element of
a list, use [].

To access a range of elements, use
a colon. If you include numbers,
those are the start (inclusive) and
end (exclusive).

>>> myList = [“apple”, 42, 3.14]

>>> myList

[‘apple’, 42, 3.14]

>>> myList[:1] # start at beg.

[‘apple’]

>>> myList[1:] # 1 to end

[42, 3.14]

6

Type: list

A list is a collection of objects.

You can add two lists using +.

>>> myList = [“apple”, 42, 3.14]

>>> otherList = [7, “banana”]

>>> myList + otherList

[‘apple’, 42, 3.14, 7, ‘banana’]

7

Type: list

A list is a collection of objects.

You can add two lists using +.

To add a single element at the
end, use the list method append.

>>> myList = [“apple”, 42, 3.14]

>>> otherList = [7, “banana”]

>>> myList + otherList

[‘apple’, 42, 3.14, 7, ‘banana’]

>>> myList

[‘apple’, 42, 3.14]

>>> myList.append(“peach”)

>>> myList

[‘apple’, 42, 3.14, ‘peach’]

8

Intro to Python: part 2

• Type: list
• Creating
• Accessing, modifying elements
• Method: append

• Loops
• for loops (for-each, for-index)
• while loops

• Functions
• Defining
• Print vs. return

• More tools
• Built-in modules
• External packages

• File I/O

9

Loops: motivation

Say you want to echo each letter
of a word…

word = raw_input(“Please enter a word: ”)

print word[0]

print word[1]

print word[2]

print word[3]

10

Loops: motivation

Say you want to echo each letter
of a word…

If you try this, you could have
errors if the user doesn’t enter a
word long enough, or incorrect
behavior or if it’s too long.

word = raw_input(“Please enter a word: ”)

print word[0]

print word[1]

print word[2]

print word[3]

11

Loops: motivation

Say you want to echo each letter
of a word…

To fix this, you could check the
length of the word using the len
function.

This is really long, and hard-coded.

word = raw_input(“Please enter a word: ”)

if len(word) == 1:

print word[0]

elif len(word) == 2:

print word[0]

print word[1]

elif len(word) == 3:

print word[0]

print word[1]

print word[2]

elif len(word) == 4:

print word[0]

print word[1]

print word[2]

print word[3]

12

for loops: for-each

The for keyword lets us loop
over each element in an iterable.

>>> for letter in “hello!”:

print letter

h

e

l

l

o

!

13

for loops: for-each

The for keyword lets us loop
over each element in an iterable.

The variable between for and in
is named by you. It is assigned to
each element (letter in a string,
value in a list) one after the other.

>>> for letter in “hello!”:

print letter

h

e

l

l

o

!

14

for loops: for-each

The for keyword lets us loop
over each element in an iterable.

The variable between for and in
is named by you. It is assigned to
each element (letter in a string,
value in a list) one after the other.

You can also do a for loop over a
variable (as long as it’s iterable).

>>> for letter in “hello!”:

print letter

h

e

l

l

o

!

>>> myList = [1, 4, 9]

>>> for val in myList:

print val

1

4

9

15

for loops: for-each

The for keyword lets us loop
over each element in an iterable.

If the value before the colon is not
an iterable, Python throws an
error.

So far, we’ve seen the iterables
str and list.

16

for loops: for-index

All for loops in Python are for-
each loops, meaning the variable
gets the value in the iterable.

Sometimes you want its position,
too.

Python provides the function
range.

17

for loops: for-index

You can combine range with
len to iterate over the indices of
an iterable, and then use [] to
access each element.

(This is similar to how you might
use for loops in some other
languages.)

18

>>> myList = [“apple”, “banana”, “cantaloupe”]

>>> for i in range(len(myList)):

print “The fruit at index”, i, “is”, myList[i]

The fruit at index 0 is apple

The fruit at index 1 is banana

The fruit at index 2 is cantaloupe

for loops: for-index

You can combine range with
len to iterate over the indices of
an iterable, and then use [] to
access each element.

Keep in mind, the for loop is still
for-each, but now it’s over the list
formed by range.

19

>>> myList = [“apple”, “banana”, “cantaloupe”]

>>> for i in range(len(myList)):

print “The fruit at index”, i, “is”, myList[i]

The fruit at index 0 is apple

The fruit at index 1 is banana

The fruit at index 2 is cantaloupe

Compare

>>> myList = [“apple”, “banana”, “cantaloupe”]

>>> length = len(myList)

>>> length

3

>>> indexRange = range(length)

>>> indexRange

[0, 1, 2]

>>> for i in indexRange: # for-each over indexRange

print “The fruit at index”, i, “is”, myList[i]

The fruit at index 0 is apple

The fruit at index 1 is banana

The fruit at index 2 is cantaloupe

while loops

Sometimes you want to repeat until something happens.

For example, you could echo a user until they type a specific stop-word.

>>> ans = ‘’

>>> while ans != ‘.’:

ans = raw_input(“Please enter a word, or ‘.’ to quit: “)

print “You said:”, ans

Please enter a word, or ‘.’ To quit: apple

You said: apple

Please enter a word, or ‘.’ To quit: banana

You said: banana

Please enter a word, or ‘.’ To quit: .

You said: .

>>>

20

while loops

Be careful about infinite loops!

Make sure you change whatever
value the while condition checks.

Type Ctrl-C in IDLE to cancel a
command if this happens.

>>> num = 1

>>> while num <= 10: # I will never stop :o

print num * num

1

1

1

1

1

1

1

1

1

1

1

1

1

1

21

while loops

Be careful about infinite loops!

Make sure you change whatever
value the while condition checks.

Type Ctrl-C in IDLE to cancel a
command if this happens.

>>> num = 1

>>> while num <= 10:

print num * num

num = num + 1 # much better

1

4

9

16

25

36

49

64

81

100

22

Intro to Python: part 2

• Type: list
• Creating
• Accessing, modifying elements
• Method: append

• Loops
• for loops (for-each, for-index)
• while loops

• Functions
• Defining
• Print vs. return

• More tools
• Built-in modules
• External packages

• File I/O

23

Functions

We’ve already seen a handful of
built-in functions:

• int

• str

• raw_input

• range

• len

We’ve also seen the list method
append.

24

Functions

You can create your own with the
def keyword.

By convention, function names in
Python start with lowercase
letters.

IDLE will turn your function’s
name blue in the definition.

25

>>> def myAddFunction(a, b):

print a + b

>>> myAddFunction(2, 6)

8

>>> def sayHi(): # don’t need params

print “Hi!”

>>> sayHi()

Hi!

Functions

If your function only prints, you can’t call it and expect to use its value
in other expressions.

26

Functions

If you want to use its result, you
have to return that result.

27

Intro to Python: part 2

• Type: list
• Creating
• Accessing, modifying elements
• Method: append

• Loops
• for loops (for-each, for-index)
• while loops

• Functions
• Defining
• Print vs. return

• More tools
• Built-in modules
• External packages

• File I/O

28

Built-in modules

Python has a variety of built-in
modules, which you can use via
the import keyword.

For example, the math module
provides functions like sqrt.

To call them, provide the module
name: “math.methodName”.

>>> import math

>>> math.sqrt(4)

2.0

>>> math.sin(math.pi) # note: e-16 is about 0

1.2246467991473532e-16

29

External packages

You can also download useful
Python packages, such as:

• TkInter: graphical user interfaces

• Pygame: games

• NumPy/SciPy/Matplotlib:
scientific computing, plotting

• Python Imaging Library (PIL):
image manipulation

https://wiki.python.org/moin/TkInter

http://www.pygame.org/hifi.html

http://www.numpy.org/

http://www.scipy.org/

http://pythonware.com/products/pil/

30

https://wiki.python.org/moin/TkInter
http://www.pygame.org/hifi.html
http://www.numpy.org/
http://www.scipy.org/
http://pythonware.com/products/pil/

Intro to Python: part 2

• Type: list
• Creating
• Accessing, modifying elements
• Method: append

• Loops
• for loops (for-each, for-index)
• while loops

• Functions
• Defining
• Print vs. return

• More tools
• Built-in modules
• External packages

• File I/O

31

File Input/Output

You can read and write to a file.

Use open to get a variable for the
file – provide the name and your
access mode:

• ‘r’: read

• ‘w’: write

• ‘a’: append (add to the end)

>>> f = open(“myText.txt”, ‘r’)

>>> f.close() # close when done!

32

File Input/Output

You can read and write to a file.

A file is an iterable, so you can use
it in a for loop to process the
lines.

>>> f = open(“myText.txt”, ‘r’)

>>> for line in f:

print line

// My favorite foods

popcorn

apples, green grapes

>>> f.close() # close when done!

33

File Input/Output

You can read and write to a file.

There are empty lines because
text files have new line characters,
like “\n” or “\r\n”.

You can remove leading/trailing
whitespace (‘\n’, ‘\r\n’,
‘\t’, ‘ ’) with the string
method strip.

>>> f = open(“myText.txt”, ‘r’)

>>> for line in f:

print line.strip()

// My favorite foods

popcorn

apples, green grapes

>>> f.close() # close when done!

34

File Input/Output

You can read and write to a file.

You can use split to divide a
str into a list of sub-strings,
by a separator of your choice.

>>> f = open(“myText.txt”, ‘r’)

>>> for line in f:

s = line.strip()

vals = s.split(‘,’)

print vals

[‘// My favorite foods’]

[‘popcorn’]

[‘apples’, ‘ green grapes’]

>>> f.close() # close when done!

35

File Input/Output

You can read and write to a file.

You can use split to divide a
str into a list of sub-strings,
by a separator of your choice.

You might need to use strip
again to remove new whitespace.

>>> f = open(“myText.txt”, ‘r’)

>>> for line in f:

s = line.strip()

vals = s.split(‘,’)

for val in vals:

print val.strip()

// My favorite foods

popcorn

apples

green grapes

>>> f.close() # close when done!

36

File Input/Output

You can read and write to a file.

You might want to ignore certain
lines, such as comments that start
with # or //.

The str method startswith
returns a bool.

>>> f = open(“myText.txt”, ‘r’)

>>> for line in f:

s = line.strip()

if not s.startswith(“//”):

vals = s.split(‘,’)

for val in vals:

print val.strip()

popcorn

apples

green grapes

>>> f.close() # close when done!

37

File Input/Output

You can read and write to a file.

To write to a file, open it with ‘w’
or ‘a’, and use the write
method.

Don’t forget to add new-line
characters if you want separate
lines!

>>> myList = [‘a’, ‘b’, ‘c’]

>>> f = open(“newfile.txt”, ‘w’)

>>> for letter in myList:

f.write(letter + ‘\n’)

>>> f.close() # close when done!

Newfile.txt contains:

a

b

c

38

Today we covered:

• Type: list
• Creating
• Accessing, modifying elements
• Method: append

• Loops
• for loops (for-each, for-index)
• while loops

• Functions
• Defining
• Print vs. return

• More tools
• Built-in modules
• External packages

• File I/O

39

