Digital Sound

Ming C. Lin

Department of Computer Science University of North Carolina http://gamma.cs.unc.edu/Sound

How can it be done?

 Foley artists manually make and record the sound from the real-world interaction

Lucasfilm Foley Artist

How about Computer Simulation?

- Physical simulation drives visual simulation
 - Sound rendering can also be <u>automatically</u> generated via 3D physical interaction

Sound Rendering: An Overview

Modeling Sound Material

[Embrechts,2001] [Christensen,2005] [Tsingos,2007]

Applications

- Advanced Interfaces
- Multi-sensory Visualization

Minority Report (2002)

Multi-variate Data Visualization

Applications

- Games
- VR Training

Game (Half-Life 2)

Medical Personnel Training

Applications

Acoustic Prototyping

Symphony Hall, Boston

Level Editor, Half Life

Sound Propagation in Games

- Strict time budget for audio simulations
- Games are dynamic Moving sound sources Moving listeners Moving scene geometry
- Trade-off speed with the accuracy of the simulation
- Static environment effects (assigned to regions in the scene)

3D Audio Rendering

- Main Components
 - 3D Audio and HRTF
 - Artifact free rendering for dynamic scenes
 - Handling many sound sources

Traditional pipeline

3D Audio Rendering

Perceptual Audio Rendering [Moeck, 2007]

Multi-Resolution Sound Rendering [Wand, 2004]

- The complete pipeline for sound simulation
 - Sound Synthesis
 - Sound Propagation
 - Sound Rendering

Sound Synthesis

Sound Propagation

Sound Rendering

Synthesis System Overview

Synthesis System Overview

- Sound synthesis module
 - Modal Analysis: Raghuvanshi & Lin (2006)
 - Impulse response

Synthesis System Overview

- Interaction handling module
 - State detection: lasting and transient contacts
 - Converting interactions into impulses

- Deformation modeling
 - Vibration of surface generates sound
 - Sound sampling rate: 44100 Hz
 - Impossible to calculate the displacement of the surface at sampling rate
 - Represent the vibration pattern by a bank of damped oscillators (modes)
- Standard technique for real-time sound synthesis

- Discretization
 - An input triangle mesh \rightarrow a spring-mass system
 - A spring-mass system \rightarrow a set of decoupled modes

- The spring-mass system set-up
 - Each vertex is considered as a mass particle
 - Each edge is considered as a damped spring

 Coupled spring-mass system to a set of decoupled modes

- A discretized physics system
 - We use spring-mass system

Small displacement, so consider it linear

$$\mathbf{K}d + \mathbf{C}\dot{d} + \mathbf{M}\ddot{d} = f$$

Stiffness Damping Mass

Handling Lasting Contacts

One Possible Solution

- Three levels of simulation
 - Macro level: simulating the interactions on the overall surface shape
 - Meso level: simulating the interactions on the surface material bumpiness
 - Micro level: simulating the interactions on the surface material roughness

- Macro level: Geometry information
 - Update rate: 100's Hz
- Update rate does not need to be high

Macro Level - Geometry

 The geometry information is from the input triangle mesh, and contacts are reported by collision detection in the physics engine.

Meso level: Bumpiness

- Bump mapping is ubiquitous in real-time graphics rendering
- Bump maps are visible to users but transparent to physics simulation

• Micro level simulation: Van den Doel et al. 01

Fractal noise is used to simulate the micro-level interaction

Live demo of only micro-level simulation enabled And both micro, meso, and macro-level simulation enabled

- Advantages:
 - Fast and simple. Makes real-time sound synthesis driven by complex interaction possible.
 - Captures the richness of sound varying at three levels of resolution
 - Visual and auditory feedbacks are consistent

Video Demonstration

http://gamma.cs.unc.edu/SlidingSound/ SlidingSound.html

http://gamma.cs.unc.edu/MultiDispTexture/

Integration with Touch-Enabled Interfaces

Multi-Touch Display

 Camer tracking user hand gesture; sense of touch provided by display surfaces

Haptic Devices

 Existing physics engine provides sufficient information for user-object interaction

Virtual Musical Instrument

http://gamma.cs.unc.edu/TabletopEnsemble/

http://gamma.cs.unc.edu/vMusic/

Sounding Liquids

- Work in physics and engineering literature since 1917
 - Sound generated by resonating bubbles
- Physically-based Models for Liquid Sounds (van den Doel, 2005)
 - Spherical bubble model
 - No fluid simulator coupling
 - Hand tune bubble profile

Background (Fluid)

- Grid-based methods
 - Accurate to grid resolution
 - Bubbles can be smaller
 - Slow
 - Can be two-phase

Background (Fluid)

- Shallow Water Equations
 - Simulate water surface
 - No breaking waves
 - Real time
 - One phase
 - Explicit bubbles

Overview

- Generate sound from existing fluid simulation
 Model sound generated by bubbles
- Apply model to two types of fluid simulators
 - Particle-Grid-based
 - Extract bubbles
 - Process spherical and non-spherical bubbles
 - Generate sound

- Shallow Water Equations
 - Processes surface
 - Curvature and velocity
 - Select bubble from distribution
 - Generate sound

Mathematical Formulations

Spherical Bubbles

$$f_0 = \frac{1}{2\pi} \sqrt{\frac{3\gamma p_0}{\rho R_0^2}}$$
$$\tau(t) = Asin(2\pi f(t)t)e^{-dt}$$

- Non-spherical bubbles
 - Decompose into a spherical harmonics

$$f_n^2 \approx \frac{1}{4\pi^2} (n-1)(n+1)(n+2) \frac{\sigma}{\rho R_0^3}$$

Video Demonstration

http://gamma.cs.unc.edu/SoundingLiquids/

Summary

- Simple, automatic sound synthesis
- Applied to two fluid simulators
 - Interactive, shallow water
 - High-quality, grid based