

Steganography: Hiding Data In Plain Sight

Ryan Gibson

What Is Steganography?

● “The practice of concealing messages or
information within other nonsecret text or data.”

● Comes from the Greek words steganos (“covered,
concealed, or protected”) and graphein
(“writing”).

● Essentially, “hiding data within data.”

General Techniques

● Digital steganographic techniques mainly fall into
two categories:
– Alteration of numeric representations of data.

– Overlay data or patterns on top of carrier file in the
hopes that it can be recovered later.

EURion Constellation

● Pattern of circles incorporated
into ~50 countries' banknotes
since 1996.

● Added to help imaging
software detect the presence of
banknotes in digital images to
combat counterfeiting.

● Discovered in 2002 when
Marcus Kuhn's printer refused
to print banknotes.

EURion Constellation Examples

Printer Steganography

● Color laser printers (and some
monochrome ones) tile a
pattern of small yellow dots
across printed pages.

● Intended to produce minimal
visible change to the printout,
ideally being imperceptible to
the naked eye.

Xerox DocuColor printers

10x Magnification Under blue light

World Of Warcraft
(“World Of Watermarks”)

● User ID

● Time of screenshot capture

● Client version

● IP address of the server

● Implemented by Digimarc
– Sells steganographic

methods to combat piracy,
copyright infringement, etc.

Least Signicant Bit Steganography:
What's In A Bitmap Image?

● Grid of “pixels,” squares of
color represented by integers
for the red, green, and blue
color components.

● These are 8-bit integers and
thus range from 0 – 255.

64
112
174

66
112
172

70
114
177

68
112
175

72
112
171

75
112
167

82
114
165

99
122
164

119
133
159

153
157
168

180
186
186

209
210
204

220
219
215

228
228
216

232
230
217

236
234
222

(11101000, 11100110, 11011001)

Bitmap Example

27,26,25,24,23,22,21,20

Least Significant Bit Steganography
● Based on the fact that we

can't differentiate between
small color differences.

● Altering the least
significant bits of a color
channel won't make a
noticeable difference.

● We can hide a binary string
in the LSBs of consecutive
color channels.

R = 255 = 11111111

R = 254 = 11111110

(Previous Images
Superimposed)

LSB Steganography (Hypothetical) Example

We want to hide the binary string 101.

(R, G, B) =
(0, 163, 233)

Old Pixel

00000000
10100011
11101001

00000001
10100010
11101001

(R, G, B) =
(1, 162, 233)

New Pixel

Change LSBs

How Many Bits To Use?
We replace a percentage of the image's data, but lose much less color information.

1 LSB:
Replace 12.5%

Lose ~0.4%

2 LSBs:
Replace 25.0%

Lose ~1.2%

3 LSBs:
Replace 37.5%
Lose ~2.75%

4 LSBs:
Replace 50.0%
Lose ~5.88%

5 LSBs:
Replace 62.5%
Lose ~12.16%

6 LSBs:
Replace 75.0%
Lose ~24.71%

7 LSBs:
Replace 82.5%
Lose ~49.80%

8 LSBs:
Replace 100.0%

Lose ~100%

LSB Steganography Example
(Original)

LSB Steganography Example
(Steganographed)

The Steganographed Image Contains:

● “The Complete Works of William Shakespeare”
– 37 plays, 154 sonnets

– 124,788 lines of text

– 10,004,560 words

● Image Resolution: 1920x1080

Other Examples
Using 2 LSBs:

● Twitter Profile Picture (400x400)
● We can hide:

● 120,000 Bytes
● ~117.19 KiB

● 1080p Desktop Background (1920x1080)
● We can hide:

● 1,555,200 Bytes
● ~1.48 MiB

● NASA Image of Pluto (8000x8000)
● We can hide:

● 48,000,000 Bytes
● ~45.78 MiB

● Panorama of Milky Way (16702x6568)
● We can hide:

● 82,274,052 Bytes
● ~78.46 MiB

Detecting LSB Steganography

● LSB Steganography depends on altering the LSBs
of each color value.

● We can isolate these LSBs and display them
alone through linear normalization.

● This is called a visual attack.

Example

Original LSBs of Original
LSBs of

Steganographed
Version

Example (Original Image)

Example Non-Steganographed (2 LSBs)

Example Steganographed (2 LSBs)

JPEG Images

● Much more popular on the internet than .png
or .bmp images.

● Lossy compression – when saving an image, the
output is different than the input.
– Least Significant Bit Steganography no longer

works.

Discrete Cosine Transform Steganography:
JFIF (JPEG) Compression

Image Color Transform
Discrete Cosine

Transform

Quantization

Encoding

JPEG

● JPEG Compression relies on two basic
assumptions:
● We see differences in intensity (grayscale)

much better than differences in color.
● We don't see high frequency (rapid and

repeated) changes in intensity/color well
either.

Discrete Cosine Transform Steganography:
JFIF (JPEG) Compression

Image
Separate color and

grayscale components
Approximate patterns

using cosine waves

Remove data that only
slightly affects the

image

Further compression

JPEG

● JPEG Compression relies on two basic
assumptions:
● We see differences in intensity (grayscale)

much better than differences in color.
● We don't see high frequency (rapid and

repeated) changes in intensity/color well
either.

Color Transform
● Convert image from RGB to YCbCr.

– Y = Luminance, “Intensity”

– Cb = Chroma Blue

– Cr = Chroma Red

Color Transform (Downsampling)
● To save space, we can downsample the

chrominance components of our image.
– Normally downsample by a factor of 4.

● Most people won't be able to see too much of a
difference.

Original 25x Less Color

Color Transform (Downsampling)

Y unchanged

Cb downsampled

Cr downsampled

Discrete Cosine Transform
● In general, we represent a sequence of data

points as the sum of weighted cosine waves.
● n data points can be represented by n cosine

waves of different frequencies.

Discrete Cosine Transform

● We split a JFIF image
into 8x8 squares and
apply DCT separately for
each one.

● We have 64 data points
(8x8 pixels), so we can
represent them with 64
weighted cosine waves.

Discrete Cosine Transform (Example)
62 55 55 54 49 48 47 55

62 57 54 52 48 47 48 53

61 60 52 49 48 47 49 54

63 61 60 60 63 65 68 65

67 67 70 74 79 85 91 92

82 95 101 106 114 115 112 117

96 111 115 119 128 128 130 127

109 121 127 133 139 141 140 133

-66 -73 -73 -74 -79 -80 -81 -73

-66 -71 -74 -76 -80 -81 -80 -75

-67 -68 -76 -79 -80 -81 -79 -74

-65 -67 -68 -68 -65 -63 -60 -63

-61 -61 -58 -54 -49 -43 -37 -36

-46 -33 -27 -22 -14 -13 -16 -11

-32 -17 -13 -9 0 0 2 -1

-19 -7 -1 5 11 13 12 5

Get values

Shift values down by
127 to center them

around 0 (like a
cosine wave)

Input block

Shifted Block

Discrete Cosine Transform (Example)

Apply DCTII

-66 -73 -73 -74 -79 -80 -81 -73

-66 -71 -74 -76 -80 -81 -80 -75

-67 -68 -76 -79 -80 -81 -79 -74

-65 -67 -68 -68 -65 -63 -60 -63

-61 -61 -58 -54 -49 -43 -37 -36

-46 -33 -27 -22 -14 -13 -16 -11

-32 -17 -13 -9 0 0 2 -1

-19 -7 -1 5 11 13 12 5

Shifted Block

-370 -29.7 -2.6 -2.5 -1.1 -3.7 -1.5 -0.08

-231 44.9 24.5 -0.3 9.3 3.9 4.3 -1.4

62.8 8.5 -7.6 -2.7 0.3 -0.4 0.5 -0.8

12.5 -14.6 -3.5 -3.4 2.4 -1.3 2.7 -0.4

-4.9 -3.9 0.9 3.6 0.1 5.1 1.1 0.5

-0.5 3.1 -1.4 0.2 -1.1 -1.5 -1.1 0.9

4.4 2.3 -1.7 -1.6 1.1 -2.7 1.1 1.4

-10.2 -1.8 5.9 -0.4 0.3 0.4 -1 0
DCTII Coefficients (range from -1024 to 1024)

Quantization
● We can remove some of the smaller DCT

coefficients to save more space.
● High frequency cosine waves (near the bottom right

of the table) are not seen by the eye well and can be
removed as well.

● We divide each coefficient by the corresponding
quantization value and round to the nearest integer.

16 12 14 14 18 24 49 72

11 12 13 17 22 35 64 92

10 14 16 22 37 55 78 95

16 19 24 29 56 64 87 98

24 26 40 51 68 81 103 112

40 58 57 87 109 104 121 100

51 60 69 80 103 113 120 103

61 55 56 62 77 92 101 99

Standard Y JPEG
quantization table for
50% quality

Discrete Cosine Transform (Example)
-370 -29.7 -2.6 -2.5 -1.1 -3.7 -1.5 -0.08

-231 44.9 24.5 -0.3 9.3 3.9 4.3 -1.4

62.8 8.5 -7.6 -2.7 0.3 -0.4 0.5 -0.8

12.5 -14.6 -3.5 -3.4 2.4 -1.3 2.7 -0.4

-4.9 -3.9 0.9 3.6 0.1 5.1 1.1 0.5

-0.5 3.1 -1.4 0.2 -1.1 -1.5 -1.1 0.9

4.4 2.3 -1.7 -1.6 1.1 -2.7 1.1 1.4

-10.2 -1.8 5.9 -0.4 0.3 0.4 -1 0

DCTII Coefficients (range from -1024 to 1024)

16 12 14 14 18 24 49 72

11 12 13 17 22 35 64 92

10 14 16 22 37 55 78 95

16 19 24 29 56 64 87 98

24 26 40 51 68 81 103 112

40 58 57 87 109 104 121 100

51 60 69 80 103 113 120 103

61 55 56 62 77 92 101 99

Quantization Table

-23 -2 0 0 0 0 0 0

-21 4 2 0 0 0 0 0

6 1 0 0 0 0 0 0

1 -1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Quantized Table

Retrieving the Image

Image Color Transform
DCT III

(Inverse DCT)

Multiply by
Quantization Table

Decoding

JPEG

Input Image (Example)

Output Image (Example)

DCT Steganography

● We can hide data in the least significant bits of
the values in the quantized tables.

● In practice, we don't alter the value in the upper-
left corner (the DC coefficient) or any values that
are 0 or 1.

-23 -2 0 0 0 0 0 0

-21 4 2 0 0 0 0 0

6 1 0 0 0 0 0 0

1 -1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Quantized Table

DCT Steganography Example

DCT Steganography Example

Other Examples (Images Converted to JPEG, 90% Quality)

● Twitter Profile Picture (400x400)
● We can hide:

● 309 Bytes
● ~0.30 KiB

● 1080p Desktop Background (1920x1080)
● We can hide:

● 28,955 Bytes
● ~28.28 KiB

● NASA Image of Pluto (8000x8000)
● We can hide:

● 778,313 Bytes
● ~760.07 KiB

● Panorama of Milky Way (16702x6568)
● We can hide:

● 2,791,778 Bytes
● ~2.66 MiB

Detecting DCT Steganography
● The method is robust to visual attack, but…

● A histogram of the DCT coefficients in an image will normally be
fairly symmetric about 0.

● Simple steganographic techniques will cause an image to deviate
from this pattern.

● Analysis of this symmetry can usually estimate the percentage of
the image used for data embedding within ~1%.

DCT Coefficients of
unaltered JPEG

DCT Coefficients of
steganographed JPEG

● In unaltered JPEG compression, rapid changes in color/intensity
distort nearby pixels in a predictable manner.

● A chi-square test will tell us the probability of an image deviating
from this expectation and the probability of the presence of
embedded data.

● Accuracy depends on the significance level used.

– Lower significance levels result in more false negatives.

– Higher significance levels result in more false positives.

Detecting DCT Steganography

Extension to Audio
● Similar to images, audio files are composed of a

series of integers representing amplitude at any
given time.

● These integers can be represented as binary
strings for Least Significant Bit embedding.

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

