Wearables – for Fingers and Ears

Shahriar Nirjon UNC Chapel Hill

Two Wearables

Ring
 Finger gesture detection
 (TypingRing, MobiSys '15)

Earbuds
 Pulse and motion detection
 (Musical-Heart, SenSys '12)

Typing Ring A Wearable Ring Platform for Text Input

Shahriar Nirjon, Jeremy Gummeson, Dan Gelb, and Kyu-Han Kim Hewlett-Packard Labs MobiSys 2015

Text Input Methods

As computing systems evolve, so do their input methods

Ring – portable, mobile, always with us

Existing ring based input devices

Usage of a Ring as a Gesture Interface, NFC tag, Mouse, and for Notifications

Fin – Numeric pad and gesture interface

NFC Ring – Two NFC tags to read/write

ThumbTrack – acts as a mouse

SmartyRing – alert, notification, and remote control

Typing Ring

Introducing the Typing Ring

Typing Ring

• A wearable, portable, accessory that allows us to input text into computers of different forms.

Specification

- Connects wirelessly as a standard Bluetooth Smart keyboard.
- Works on surfaces such as a table , a wall, or even your lap.
- Over 98% accurate in detecting typed keys.
- Yields a typing speed of up to 50 keys/min.
- Yields up to 15,500 keys with full charge.
- Weighs ~ 15 gm

Working Principle of Typing Ring

How to type with the Typing Ring

Wearing It

The ring is worn in the middle finger.

Seeking 3-Letter Zones

As the user hovers his hand on a surface, 3-consecutive keys on a on-screen keyboard is highlighted.

Typing a Key

The User makes a typing gesture with one of three fingers and the corresponding key is typed in.

On-screen visual feedback

Typing with 3-fingers

Special Use Cases

Special scenarios beside the generic one

Tiny-Screen Devices

Devices where we cannot use touch keyboards

Saving Screen Space

Typing Ring saves screen space with minimized soft-keyboards.

Typing On-the-Go

Wear a keyboard everywhere.

Full-scale Soft KB

Just Enough Visual Feedback

Hardware Architecture

Hardware components of the Typing Ring

Microcontroller

Sensing; Determining and Sending the Key.

Accelerometer Sensor

Movement of middle finger; Always On.

Proximity Sensor

Determining the typing finger.

X-Y Displacement Sensor

Seeking the zone; Optical mouse sensor;

Bluetooth LE

Sending the key event.

Firmware Architecture

Software inside of the Typing Ring

Sensing Layer

 Read and store 3 types of sensor readings in a bounded circular queue

Finger/Gesture Recognizer

• Algorithms to determine 3-letter zone, typing finger, and 3D gesture

Mapping and Communication

- Standard key events for a typed key
- Fake key event (ALT+NUM) for zone
- Maps gestures to shortcut keys and sends the key event

Key Stroke Detection

Zone seeking and making a typing gesture

State Machine to Stage Zone Seeking and Typing

Typing Finger Detection

Detecting the typing finger among the three with a HMM

Block Diagram of Algorithm Execution

Maximum Likelihood Class

Gesture Shortcuts

Simple 3D gestures mapped to short-cut keys

Gesture to Key Mapping

Gesture	Times Repeated	Key
Pitch	1	Space Bar
	2	Enter
Roll	1	Shift
	2	Caps Lock
Yaw	1	Delete (letter)
	2	Delete (word)

Gesture Shortcuts

3D roll, pitch and yaw detection

Variance of 3-axis Accelerometer Readings

Prototype Implementation

Hardware, communication, and visual feedback

Hardware

- TinyDuino boards (20 mm x 20 mm)
 - MCU Atmel ATmega328P MCU (8MHz, 32KB Flash, 2KB RAM, 1KB EEPROM)
 - Accelerometer Bosch BMA250 3-axis accelerometer shield.
 - BLE Bluegiga BLE112 module
- Proximity QRE 1113 IR line sensor (3 mm sensitivity)
- Displacement ADNS 9800 optical motion sensor (high precision)
- Total wt. 15.5 gm
- Could be miniaturized by 2x-3x

(a) Top View

(b) Side View

(c) Bottom View

Prototype Implementation

Hardware, communication, and visual feedback

Communication

- Bluegiga BLE112 Bluetooth LE SoC
- BGLib API
- HID over GATT profile
- Two types of HID reports for reporting zone changes and key values.

Visual Feedback

- Android Custom Keyboard
- Two types of visual feedbacks regular full-scale and 3-key only (for tiny screen devices)

Full-scale visual feedback

Only 3-key visual feedback (for tiny-screen devices)

Prototype Evaluation

Evaluating the Typing Ring prototype with micro and macro benchmarks

System Measurements

Measuring the executing time and energy consumption

Empirical Evaluations

Collecting raw sensor data for analysis and parameter tuning of algorithms

User Study

Evaluating the performance (e.g. speed) of Typing Ring

Execution Time

Computation and communication delay

Methodology – Precise Time Measurement

digitalWrite (pin, HIGH);

// Ring firmware code
// segment to time
digitalWrite (pin, LOW);

Saleae Logic16

Execution Time

Computation and communication delay

Results – Execution Times of Major Computation and Communication Components

Energy Consumption

Energy profile and estimated lifetime

Results – Energy Consumption of Various Components

Empirical Evaluation

Data collection for offline analysis and parameter tuning

Goal

- Collecting raw sensor readings
- Use data for training the classifier

Data Collection Settings

- 18 Participants
- Each types 50 random characters, 5-15 phrases, and makes 30 gestures.
- Full on-screen keyboard for visual feedback
- Bootstrap classifier (for data collection)
- Sensor sampling at 100 ms interval

Data Collection Program (Running on a laptop connected to the ring over USB)

Video Demo

Typing Finger Detector's Accuracy

Different models of HMM

Comparing HMMs with 2, 3, 4 and 5 states

НММ

- Empirical Dataset
- 1000 training iterations
- Randomized initialization
- Repeated 10 times
- 70% training, 30% test

Gesture Shortcut Detector's Accuracy

Detecting roll, pitch, and yaw

Result – Sampling rate vs. Accuracy

User Study

Typing speed and experience

Participants

- 7 participants
- 2 sessions each (10-15 min sessions)

Text and Typing Settings

- Concatenated phrases from MacKenzie set
- Manual corrections and gestures allowed
- Full on-screen keyboard for visual feedback
- No auto-corrections

Two Baselines

- Android on-screen soft keyboard.
- Win7 mouse click-based on-screen keyboard.

Baseline 1 – Soft KB

Baseline 2 –mouse clicks on KB

Typing Speed - Comparison

Rate of valid key entries

Result – Typing speed on a Soft KB, with Mouse Clicks, and Typing Ring

Typing Speed – Learning Effect

Learning effect – it gets better with time

Result – Session 1 vs. Session 1 with Typing Ring

User Survey

Understanding user experience

Result – Survey on various usability aspects of Typing Ring

Musical Heart A Hearty Way of Listening to Music

Shahriar Nirjon, Dezhi Hong, John Stankovic, + 7 more University of Virginia and Microsoft Research SenSys 2012

The Musical Heart System

A biofeedback-based, context-aware, and automatic music recommendation system for smartphones.

Sensor Equipped Earphones (Septimu)

USER ACTIVITY	MUSIC PLAYER	SONG LIBRARY
Alber Age: 57	t Einstein , Height: 175 cm, Weight	:: 2.64 lb+
Activate Mor	nitoring	ON
89 BPM		Zone Rest Intensity 48% Average 94
Rest Level	~^	Steps 0 Distance 0 Calories 0
\sim		

Musical Heart: Wearable Sensors

• Sensors:

- o IMU
- o Microphone
- IR Reflective Sensor
- Thermometer

Communication:

- o Audio Jack
- o Bluetooth

• Power:

Li-Polymer battery

Musical Heart: Smartphone App

Filtering: A low pass filter to remove non-heart beat signals.

Detection: as an optimization problem

Step 1 – Use a small threshold to pick initial candidates and score each based on their peak-peak distance and resemblance to a heart beat.

Detection: as an optimization problem

Step 2 – Maximize the sum of scores, while minimize the variance of time-gaps. (for an assumed number of beats)

Detection: as an optimization problem

Step 2 – Maximize the sum of scores, while minimize the variance of time-gaps. (for an assumed number of beats)

For example, to select 5 out of the 6 candidates: Max Sum = 3.8 Min Variance = 0, if we select the red ones.

Repeat Step 3 for HR = [40, 220]

Algorithm – Activity Level Inference

Activity Levels: Low (L_1) , Medium (L_2) , High (L_3) Example: $L_1 \rightarrow L_2 \rightarrow L_3 \rightarrow L_1 \rightarrow L_3 \rightarrow L_2 \rightarrow L_1$

We use k-means clustering to learn the thresholds

Algorithm – Biofeedback and Music Player

Desired Heart Rate

$$\boldsymbol{u} = [\boldsymbol{\alpha}_1 \; \boldsymbol{\alpha}_2 \; \boldsymbol{\alpha}_3] \; \mathbf{x} \; [\text{Tempo Pitch Energy}]^T$$

Use Case – Cardio Exercise Program

Download Musical Heart 2.0

😡 🖘 🕼 😡			SCAN
USER AC	τινιτγ	MUSIC PLAYER	SONG LIBRARY
	Albert Age: 57, F	Einstein leight: 175 cm, Weight	: 2.64 lb+
Activat	e Moni	toring	ON
89 BPM	160 120 80 40		Average 94
Rest Level	4 3 2 1	A	Steps 0 Distance 0 Calories 0

USER ACTIVITY	MUSIC PLAYER	SONG LIBRARY
Plaver Setting	s	ON
()	1	I
20	Cardio	152
	program	Dpm (target)
Top 3 Recom	mendations	Refresh 🗲
Without Yo DigitalDrippe	ou (feat. Usher) ed.com - David Guetta	
Girls (Who Unknown Al	Run The World) bum - Beyonce	
Mr. Saxob Unknown Al	eat (Extended Vers bum - Alexandra Stan	ion)
Without You (fea	at. Usher) - 01:11/03:28	
(►)(►	I) (🕨) (I	I)(ÞI)

www.cs.virginia.edu/~smn8z/musicalheart.html

Thank You

Typing Finger Detector's Accuracy

Comparison of different classifiers

Setup – Classifier Configurations

нмм

- Empirical Dataset
- 1000 training iterations
- Randomized initialization
- Repeated 10 times
- 70% training, 30% test

Decision Tree

- Empirical Dataset
- Quantized Features:
 - Proximity Values
 - 3 axis Acceleration

Naïve Bayesian

- Empirical Dataset
- Quantized Features:
 - Proximity Values
 - 3 axis Acceleration

$$P(C | X_{1}, X_{2}, ..., X_{n}) =$$

$$\frac{P(X_{1}, X_{2}, ..., X_{n} | C) P(C)}{P(X_{1}, X_{2}, ..., X_{n})}$$

Typing Finger Detector's Accuracy

Comparison of different classifiers

Result – Accuracy of HMM, Decision Tree, and Naïve Bayesian

