Wearables – for Fingers and Ears

Shahriar Nirjon
UNC Chapel Hill
Two Wearables

- **Ring**
 Finger gesture detection
 (*TypingRing, MobiSys ’15)*

- **Earbuds**
 Pulse and motion detection
 (*Musical-Heart, SenSys ’12)*
Typing Ring
A Wearable Ring Platform for Text Input
Shahriar Nirjon, Jeremy Gummeson, Dan Gelb, and Kyu-Han Kim
Hewlett-Packard Labs
MobiSys 2015
Text Input Methods

As computing systems evolve, so do their input methods

Computing Devices

Input Devices
Ring – portable, mobile, always with us

Existing ring based input devices

Usage of a Ring as a Gesture Interface, NFC tag, Mouse, and for Notifications

- **Fin** – Numeric pad and gesture interface
- **ThumbTrack** – acts as a mouse
- **NFC Ring** – Two NFC tags to read/write
- **SmartyRing** – alert, notification, and remote control
Typing Ring

Introducing the Typing Ring

Typing Ring

• A wearable, portable, accessory that allows us to input text into computers of different forms.

Specification

• Connects wirelessly as a standard Bluetooth Smart keyboard.
• Works on surfaces such as – a table, a wall, or even your lap.
• Over 98% accurate in detecting typed keys.
• Yields a typing speed of up to 50 keys/min.
• Yields up to 15,500 keys with full charge.
• Weighs ~ 15 gm
Working Principle of Typing Ring
How to type with the Typing Ring

Wearing It
The ring is worn in the middle finger.

Seeking 3-Letter Zones
As the user hovers his hand on a surface, 3-consecutive keys on a on-screen keyboard is highlighted.

Typing a Key
The User makes a typing gesture with one of three fingers and the corresponding key is typed in.
Special Use Cases
Special scenarios beside the generic one

Tiny-Screen Devices
Devices where we cannot use touch keyboards

Saving Screen Space
Typing Ring saves screen space with minimized soft-keyboards.

Typing On-the-Go
Wear a keyboard everywhere.

Full-scale Soft KB
Vs.
Just Enough Visual Feedback
Hardware Architecture

Hardware components of the Typing Ring

Microcontroller
Sensing; Determining and Sending the Key.

Accelerometer Sensor
Movement of middle finger; Always On.

Proximity Sensor
Determining the typing finger.

X-Y Displacement Sensor
Seeking the zone; Optical mouse sensor;

Bluetooth LE
Sending the key event.
Firmware Architecture
Software inside of the Typing Ring

Sensing Layer
- Read and store 3 types of sensor readings in a bounded circular queue

Finger/Gesture Recognizer
- Algorithms to determine 3-letter zone, typing finger, and 3D gesture

Mapping and Communication
- Standard key events for a typed key
- Fake key event (ALT+NUM) for zone
- Maps gestures to shortcut keys and sends the key event
Key Stroke Detection

Zone seeking and making a typing gesture

State Machine to Stage Zone Seeking and Typing
Typing Finger Detection
Detecting the typing finger among the three with a HMM

Block Diagram of Algorithm Execution

Given an Emission Sequence
\[y = (y_1, \ldots, y_T) \]

- Left Finger 3 State HMM
- Middle Finger 3 State HMM
- Right Finger 3 State HMM

Likelihood of Left Finger
Likelihood of Middle Finger
Likelihood of Right Finger

Maximum Likelihood Class
Gesture Shortcuts

Simple 3D gestures mapped to short-cut keys

Gesture to Key Mapping

<table>
<thead>
<tr>
<th>Gesture</th>
<th>Times Repeated</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pitch</td>
<td>1</td>
<td>Space Bar</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Enter</td>
</tr>
<tr>
<td>Roll</td>
<td>1</td>
<td>Shift</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Caps Lock</td>
</tr>
<tr>
<td>Yaw</td>
<td>1</td>
<td>Delete (letter)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Delete (word)</td>
</tr>
</tbody>
</table>
Gesture Shortcuts
3D roll, pitch and yaw detection

Variance of 3-axis Accelerometer Readings
Prototype Implementation

Hardware, communication, and visual feedback

Hardware

- TinyDuino boards (20 mm x 20 mm)
- MCU – Atmel ATmega328P MCU (8MHz, 32KB Flash, 2KB RAM, 1KB EEPROM)
- Accelerometer – Bosch BMA250 3-axis accelerometer shield.
- BLE – Bluegiga BLE112 module
- Proximity – QRE 1113 IR line sensor (3 mm sensitivity)
- Displacement - ADNS 9800 optical motion sensor (high precision)
- Total wt. 15.5 gm
- Could be miniaturized by 2x-3x
Prototype Implementation

Hardware, communication, and visual feedback

Communication
- Bluegiga BLE112 Bluetooth LE SoC
- BGLib API
- HID over GATT profile
- Two types of HID reports for reporting zone changes and key values.

Visual Feedback
- Android Custom Keyboard
- Two types of visual feedbacks – regular full-scale and 3-key only (for tiny screen devices)
Prototype Evaluation
Evaluating the Typing Ring prototype with micro and macro benchmarks

System Measurements
Measuring the executing time and energy consumption

Empirical Evaluations
Collecting raw sensor data for analysis and parameter tuning of algorithms

User Study
Evaluating the performance (e.g. speed) of Typing Ring
Execution Time
Computation and communication delay

Methodology – Precise Time Measurement

digitalWrite (pin, HIGH);
// Ring firmware code
// segment to time
digitalWrite (pin, LOW);
Execution Time
Computation and communication delay

Results – Execution Times of Major Computation and Communication Components

![Graph showing execution times of various components (msec)]
Energy Consumption

Energy profile and estimated lifetime

Results – Energy Consumption of Various Components

- Arduino (3.6 mW): 4.14 mJ per key
- Accelerometer (0.45 mW): 0.52 mJ per key
- Proximity (60 mW): 24 mJ per key
- Displacement (75 mW): 73 mJ per key
- BLE TX/RX (80 mW): 0.34 mJ per key

Total energy consumption: 102 mJ per key

Energy profile:
- 0-20: Arduino
- 20-60: Accelerometer
- 60-80: Proximity
- 80-120: Displacement and BLE TX/RX

125 mAh battery capacity:
- 13,500 – 15,500 Keys
- 3.8 – 4.3 Hours
Empirical Evaluation
Data collection for offline analysis and parameter tuning

Goal
• Collecting raw sensor readings
• Use data for training the classifier

Data Collection Settings
• 18 Participants
• Each types 50 random characters, 5-15 phrases, and makes 30 gestures.
• Full on-screen keyboard for visual feedback
• Bootstrap classifier (for data collection)
• Sensor sampling at 100 ms interval

Data Collection Program
(Running on a laptop connected to the ring over USB)
Video Demo
Typing Finger Detector’s Accuracy

Different models of HMM

Comparing HMMs with 2, 3, 4 and 5 states

HMM
- Empirical Dataset
- 1000 training iterations
- Randomized initialization
- Repeated 10 times
- 70% training, 30% test

![Diagram showing HMM states and observable states](image)
Gesture Shortcut Detector’s Accuracy

Detecting roll, pitch, and yaw

Result – Sampling rate vs. Accuracy

![Graph showing sampling rate vs. accuracy](image)
User Study
Typing speed and experience

Participants
• 7 participants
• 2 sessions each (10-15 min sessions)

Text and Typing Settings
• Concatenated phrases from MacKenzie set
• Manual corrections and gestures allowed
• Full on-screen keyboard for visual feedback
• No auto-corrections

Two Baselines
• Android on-screen soft keyboard.
• Win7 mouse click-based on-screen keyboard.
Typing Speed - Comparison

Rate of valid key entries

Result – Typing speed on a Soft KB, with Mouse Clicks, and Typing Ring
Typing Speed – Learning Effect

Learning effect – it gets better with time

Result – Session 1 vs. Session 1 with Typing Ring
User Survey

Understanding user experience

Result – Survey on various usability aspects of Typing Ring

![Bar chart showing scores for various usability aspects](chart.png)
Musical Heart
A Hearty Way of Listening to Music
Shahriar Nirjon, Dezhi Hong, John Stankovic, + 7 more
University of Virginia and Microsoft Research
SenSys 2012
The Musical Heart System

A biofeedback-based, context-aware, and automatic music recommendation system for smartphones.

Sensor Equipped Earphones (Septimu) + Android App
Musical Heart: Wearable Sensors

- **Sensors:**
 - IMU
 - Microphone
 - IR Reflective Sensor
 - Thermometer

- **Communication:**
 - Audio Jack
 - Bluetooth

- **Power:**
 - Li-Polymer battery
Musical Heart: Smartphone App

Detect: Heart Rate, Activity level, & Context

Sensing

Music Recommender

Proxy
Algorithm – Heartrate Detection

Filtering: A low pass filter to remove non-heart beat signals.

Signals from Ear (music + heart beats)

After filtering (heart beats)
Algorithm – Heartrate Detection

Detection: simple thresholding does not work

Large Threshold:
too few candidates (8)

Small Threshold:
too many candidates (27)
Algorithm – Heartrate Detection

Detection: as an optimization problem

Step 1 – *Use a small threshold to pick initial candidates and score each based on their peak-peak distance and resemblance to a heart beat.*

6 Candidate for Heartbeats
Step 2 – Maximize the sum of scores, while minimize the variance of time-gaps. *(for an assumed number of beats)*
Algorithm – Heartrate Detection

Detection: as an optimization problem

Step 2 – Maximize the sum of scores, while minimize the variance of time-gaps. (for an assumed number of beats)

For example, to select 5 out of the 6 candidates:

Max Sum = 3.8
Min Variance = 0, if we select the red ones.

Repeat Step 3 for HR = [40, 220]
Algorithm – Activity Level Inference

Activity Levels: Low \((L_1)\), Medium \((L_2)\), High \((L_3)\)

Example: \(L_1 \rightarrow L_2 \rightarrow L_3 \rightarrow L_1 \rightarrow L_3 \rightarrow L_2 \rightarrow L_1\)

We use \(k\)-means clustering to learn the thresholds
Algorithm – Biofeedback and Music Player

\[u = [\alpha_1 \alpha_2 \alpha_3] \times [\text{Tempo Pitch Energy}]^T \]
Use Case – Cardio Exercise Program

Cardio Chart

<table>
<thead>
<tr>
<th>Time</th>
<th>Desired Intensity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 min</td>
<td>65%</td>
</tr>
<tr>
<td>3 min</td>
<td>75%</td>
</tr>
<tr>
<td>2 min</td>
<td>85%</td>
</tr>
<tr>
<td>3 min</td>
<td>75%</td>
</tr>
<tr>
<td>2 min</td>
<td>85%</td>
</tr>
<tr>
<td>5 min</td>
<td>65%</td>
</tr>
</tbody>
</table>

Avg. Deviation: 11.4%
Download Musical Heart 2.0

www.cs.virginia.edu/~smn8z/musicalheart.html
Thank You
Typing Finger Detector’s Accuracy

Comparison of different classifiers

Setup – Classifier Configurations

HMM
- Empirical Dataset
- 1000 training iterations
- Randomized initialization
- Repeated 10 times
- 70% training, 30% test

Decision Tree
- Empirical Dataset
- Quantized Features:
 - Proximity Values
 - 3 axis Acceleration

Naïve Bayesian
- Empirical Dataset
- Quantized Features:
 - Proximity Values
 - 3 axis Acceleration

\[
P(C|X_1, X_2, ..., X_n) = \frac{P(X_1, X_2, ..., X_n|C) P(C)}{P(X_1, X_2, ..., X_n)}
\]
Typing Finger Detector’s Accuracy
Comparison of different classifiers

Result – Accuracy of HMM, Decision Tree, and Naïve Bayesian