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Overview on Collision Detection 








Collision Detection and Distance Computation





Given two object, how would you check:   (1) if they intersect with each other while moving?  (2) If they do not interpenetrate each other, how far are they apart?  Note:  These two questions may require different kind of computation. (1) is the question of collision detection and (2) is the problem of distance computation.





Bruce-Force Technique: A naive O(N2) algorithm for checking collision among 2 convex polygonal (polyhedral) object is to check if each edge on the object A interpenetrates any edge (face) on the object B;  then, to check if each edge on the object B intersects with any edge (face) on the object B (if 2D, the first step is the same as the second). And, check if any point on A lies inside of B and vise versa.  This is inefficient and can be extremely slow for large N.  Imagine N is 1000… (This is not an unreasonable input size.  In fact, it’s quite common.)  We can do better. 





Classes of Objects/Problems


- 2D vs. 3D


- Convex vs. Non-Convex


- Polygonal (polyhedral) vs. Non-Polygonal (non-polyhedral)


- Open surfaces vs. Closed volumes


- Geometric vs. Volumetric


- Rigid vs. Non-Rigid (deformable/flexible)


- Pairwise vs. Multiple (N-Body)


- CSG vs. B-Rep


- Static vs. Dynamic


… and so on…  This may include other geometric representation schemata, etc.





Some Possible Solutions


- Geometric methods


- Algebraic Techniques


      - Hierarchical Bounding Volumes


- Spatial Partitioning


- Others (e.g. optimization)�
Basic Concepts from COMPUTATIONAL GEOMETRY








1.  Extreme Points and Convex Hull





(Refer to O'Rourke's book in the Reading Room and papers by Guibas and Fortune available electronically on WWW)





Suppose we have a database of people with their heights and weights.





		person 	weights (in lbs)	heights (in feet)





		     A		          150     		            7


		     B		          100			5


		     C		          160		          5.5


		     D      	          200                              6.6


		     E                           250		          4.8





Which people would one call "extreme" in their measurements?  Certainly A, who is the tallest, B, who is the lightest, and E, who happens to be heaviest and shortest.  Intuition suggests that we might also want to consider D "extreme" as it is both heavy and tall.  How could we justify this?  One possibility is by saying that D maximizes the sum of height and weight.  But, this is not true.  E maximize this sum.  However, note that if we apply the formula, (weight in lbs) + 100 *(height in feet), then D maximizes the weighted sum.  This leads to the formal definition that we can call a  data point of (weight, height) "extreme", iff there are some numbers a  and b  so that within the group of data points, it maximizes the function:





			a * (weight) + b * (height)





According to this definition, C is the only person in our example that is not "extreme".  This can be easily interpreted by a simple graph as shown below.  We can interpret the measurements of persons as coordinate pairs.  Thus our database of five people gives rise to a set of 5 people in the "weight-height" plane below.


               �


 





Since the set of all points (x,y)  that satisfy  ax + by = c  forms a straight line, which translates when c changes, it follows that the previous a, b  definition of "extreme" corresponds to the following geometric definition.  A point in a finite point set S in the plane is an extreme point of S if one can draw a straight line through the point and have all the other points of S   lie strictly on one side of the line.  One can generalize the setting to higher dimensions and inquire about the structure of the extreme point sets, which leads to the so-called convex hull problem.  





Definition:  Let S be a set of n points in R2.  A point p = (px, py) in S is an extreme point  for S  if and only if there exists a, b  in R  such that for all q = (qx, qy)   in S  with q != p,  we have


		a px+ b py > a qx+ b qy





This definition has the geometric interpretation that there is a line with the normal vector (a,b) through p so that all other points of S lies strictly on one side of this line.  Intuitively, p  is the most extreme point of S   in the direction of the vector v = (a,b). 


 


Definition:  The convex hull of a set S  is the intersection of all convex sets that contains S.  It should be easy to see that the convex hull of S is the smallest convex polygon that contains S and that the extreme points of S are just the corners of that polygon.  Therefore, solving the convex hull problem implicitly solves the extreme point problem.  





The lower bound on constructing the convex hull using the Marriage before Conquest  approach (similar to the theme of divide-and-conquer) is O(n log H),  where n  is the input size (the number of points in the given set) and H is the number of the extreme points.








2.  Voronoi Diagrams and Triangulation  


(Refer to the books on Computational Geometry, given at the course website)





2.1 Voronoi Diagrams





The proximity problem, i.e. "given a set S of  n  points in R2 ,  for each point pi  in S  what is the set of points (x, y)  in the plane that are closer to pi  than any other point in S  ?", is often answered by the retraction approach in computational geometry.  This approach is commonly known as constructing the "Voronoi diagram " of the point set S. 





The intuition to solve the proximity problem in R2 is to partition the plane into regions, each of these is the set of points which are closer to a point pi  in S than any other.  If we know this partitioning, then we can solve the problem of proximity directly by a simple query.  The partition is based on the set of closest points, e.g. bisectors that have 2 or 3 closest points.  





Given two points pi and pj, the set of points closest to pi than pj is just the half-plane Hi(pi,pj)  containing Pi.  Hi(pi,pj) is defined by the perpendicular bisector to the line segment of pipj  .  The set of points closer to pi than any other point is formed by the intersection of at most n-1 half-planes, where n  is the number of points in the set S . This set of points, Vi (S) is called the "Voronoi polygon " associated with pi. Formally, Vi(S)   can be defined as the following:





		Vi (S)  = { x in R2 | d(x, pi) <= d(x, q) for all q in S}





The collection of n Voronoi polygons given the n points in the set S is the "Voronoi diagram",  Vor(S),  of the point set S .  Every point (x, y) in the plane lies within a Voronoi polygon.  If a point (x,y)  in Vi(S),  then  pi  is the point  nearest to the point (x,y).  The similar idea applies to the same problem in 3D or higher dimensional space.  








The extension of the Voronoi diagram to higher dimensional features (such as edges and facets, instead of points) is called the "generalized Voronoi diagram ",  i.e. the set of points closest to a feature , e.g. that of a polyhedron.  In general, the generalized Voronoi diagram has quadratic surface boundaries in it.  However, if the polytope is convex, its generalized Voronoi diagram has planar boundaries.  This leads to the formal definition of "Voronoi regions".








Definition:  A "Voronoi region " associated with a feature is a set of points that are closer to that feature than any other.  








The Voronoi regions form a partition of space outside of the polyhedron according to the closest feature.  The collection of Voronoi regions of each polyhedron is the generalized Voronoi diagram of the polyhedron.  Note that the generalized Voronoi diagram of a convex polyhedron  has linear size and consists of polyhedral regions.   And, all Voronoi regions are convex.








2.2 Delaunay Triangulations





The Delaunay triangulation is the topological dual (graph theoretical dual or combinatorial theoretic dual) of the Voronoi diagram. The vertices of the Delaunay triangulation are the sites or Voronoi vertices (corresponding to the regions of the Voronoi diagram).  We connect two sites with an edge in the Delaunay triangulation if and only if their Voronoi regions share an edge (thus, the two diagrams have the same number of edges, though the Delaunay triangulation has no unbounded edges). Thus a point/vertex in the Voronoi diagram corresponds to a Delaunay triangle, a Voronoi edge to a Delaunay edge, and a Voronoi polygon to a Delaunay vertex (site).  Note, however, that dual edges of the two graphs do not necessarily intersect.  Furthermore, we may recover the Voronoi diagram by reversing the process of constructing the Delaunay triangulation.  








2.3 Tetrahedralization





Triangulation of n points in 3D is normally called tetrahedralization.  The union of resulting tetrahedra is the original solid formed by the n points in 3D.  Refer to the paper by Held, Klosowski and Mitechell (1995) and see how a tetrahedral mesh can be used for checking interference between fly-by objects.   








2.4 Convex Decomposition





Tetrahedralization is also an important step in "convex decomposition".  Convex decomposition is the process to divide up a non-convex polyhedron into pieces of convex polyhedra.   Optimal convex decomposition of general non-convex polyhedra can be NP-hard.  To partition a non-degenerate simple polyhedron of genus 0 takes O((n + r2)) log r)  time, where n  is the number of vertices and r is the number of reflex edges of the original non-convex object.  In general, a non-convex polyhedron of n vertices can always be partitioned into O(n2)  convex pieces.  




















3.  Linear Programming





In general, a d -dimensional linear programming problem may be posed as follows: 


 


Given 	a finite set A in Rd 


		for each a  in A , a constant Ka  in R  


		c in Rd 





Find  		x in Rd which minimize <x, c>





Subject To	<a, x>   >=  Ka    for all a  in A . 





where <*, *>  denotes the standard inner product in  Rd.  





Without loss of generality, we can assume that x = (x1, ... , xd)  in  Rd  with minimum xd, which would be the case if  c = (0, ... , 0, 1)  in Rd  This can be easily achieved with a coordinate transformation to change the basis.   Still retaining the full generality, we can modify the form of constraints by isolating xd   in the expansion of  <x, a> .  We obtain three possible types of constraints:  





		xd  >=  a1x1 +  ...  + ad-1 xd-1 + ad


		xd  <=  a1x1 +  ...  + ad-1 xd-1 + ad


		 0  <=  a1x1 +  ...  + ad-1 xd-1 + ad





The three types of constraints depending on if ad is positive, negative or zero, respectively.     We  partition  the  set   A  accordingly,   that  is  A+ = {a  in  A :  ad > 0} ,  


A- = {a  in  A :  ad  <  0}  and A0 = {a  in  A :  ad  = 0} .  Renaming the variables, we arrive at out canonical form for the 2-dimensional linear programming:





Given 	a finite set A in R2


		


Find  		(x , y)   in R 2  which minimize y





	Subject To	 y  >=  a1x + a0 ,  for all a  in A+ 


			y  <=  a1x + a0   ,  for all a  in A- 


			0  <=  a1x + a0   ,  for all a  in A0 





Note that the three types of constraints correspond to upper half-plane, lower-half plane and "side-way" half-plane constraints on (x, y)  respectively.  





For 3-dimensional linear programming, instead of looking for a feasible planar point (x, y) with smallest y -coordinate, we search for a feasible point (x, y, z) in R3 with the smallest z -coordinate.  Our constraints are now half-spaces bounded by planes in R3; we require the solution point to lie in the intersection of a set of such half-spaces. 





