

COMP290: Physically-based Modeling, Simulation & Animation

INSTRUCTORS: Ming C. Lin

Wednesday, February 23, 2000

Lecture 12: Introduction to Collision Detection

Reading Assignment: Foley/vanDam/Feiner/Hughes pp. 117-124

 The paper by Gilbert, Johnson and Keerthi (GJK), in the

 IEEE Transactions on Robotics and Automation 1988

1. Two-Dimensional Collision Detection

 (Refer to Foley, van Dam, Feiner, Hughes 1990: pp. 117-124)

1.1	 Simple Clipping

A simple instance of "interference detection" is "clipping" -- checking if a given image lies within the boundaries of the window screen coordinates. One of the many commonly used initial test is "Cohen-Sutherland" Line-Clipping Algorithm. This is a simple test to see if Xmin <= X <= Xmax and Ymin <= Y <= Ymax. This quick and simple test can also be applied to check if one bounding box overlaps another bounding box for initial culling.

We will elaborate on this topic later.

1.2 Cyrus-Beck Techniques (1978): A Parametric Line-Clipping Algorithm

Cohen-Sutherland algorithm can only trivially accept or reject lines within the given bounding volume; it cannot calculate the exact intersection point. But, the parametric line clipping algorithm can calculate the value of the parameter t , where the two lines intersect. This can be easily understood by looking at the following picture and pseudo code:

 �

Figure 1: Dot Product for 3 points outside, inside, and on the boundary of the clip region.

	 The line is parametrically represented by P(t) = P0 + t (P1 - P0)

%% Pseudo Code for Cyrus Beck Parametric Line-Clipping Algorithm

{

	precalculate Ni and select a Pi for each edge Ei

	for (each line segment to be clipped) {

		if (P1 = P0)

	 		line is degenerate so clip as a point;

	 	else {

			D = P1 - P0;

		 	te = 0;

		 	tl = 1;

		 	for (each candidate intersection with a clip edge) {

			 if (Ni * D # 0) {

				t = - { Ni * [P0 - Pi] } / (Ni * D)

		 		if (Ni * D > 0)

				 tl = min (tl, t);	

				else

				 te = max (te, t);

			 }	

			}

			if (te > tl)

			 return nil;

			else

		 	 return P(te) and P(tl) as true clip intersection points;

		}	

	}

}

