COMP290: Physically-based Modeling, Simulation & Animation

INSTRUCTORS:  Ming C. Lin 
Monday, February 28, 2000

Lecture 13:  GJK & Tracking Closest Feature Pairs with Voronoi Regions 

(Refer to Chapter 3 of  Lin's Thesis for more details)

In our last lecture, we have seen different methods for simple collision checking between convex polytopes.  We have also seen that the best algorithm proposed is linear in the number of vertices or faces of each polytope.  In this lecture, we'll continue with an incremental distance computation algorithm which can also be used as a collision check between two convex polyhedra as they move.

1.    GJK Algorithm (see the PowerPoint Slides)

2.1  Two-Dimensional Lin-Canny Algorithm 

Using the Voronoi regions of the convex polygons, we can detect collision using "coherence" and "locality" in a dynamic environment.  The idea is to "track" the pair of closest features between 2 moving convex polygons (polyhedra) using their Voronoi regions.  Since the computation is repetitively done over small time intervals, the local geometry does not change much and the algorithm usually steps to the nearby neighboring features to find the new pair of closest features.  Therefore,  we can update the pair of the closest features between two moving polytopes efficiently.  In fact, experimental results show that the expected running time of this approach is nearly constant, independent of the geometric complexity.  
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Figure 2:  Objects A & B and their Voronoi regions:  P1 and P2 are the pair of closest points between A and B.    Note P1 and P2 lie within the Voronoi regions of each other.

2.2 Algorithm Overview

This method works by finding and maintaining a pair of closest features (vertex, edge, or face) on the two polyhedra as the they move.  The algorithm also take advantage of the fact that the closest features change only infrequently as the objects move along finely discretized paths -- we call this "spatial coherence" due to "temporal coherence".  Each test to keep track or update the closest features is proportional to the number of neighboring features of each candidate.  The algorithm does off-line preprocessing to ensure that each feature has a constant number of neighboring features; therefore, it can verify that the closest features have not changed or performed an update to a neighboring feature in expected constant time.  The experiments show that, once initialized, the expected running time of this incremental algorithm is constant independent of the complexity of the polyhedra, provided the motion is not abruptly large.

The algorithm starts with a candidate pair of features, one from each polyhedron, and check whether the closest points lie on these features.  Since the objects are convex, this is a local test involving only the neighboring features of the candidate features. If the features fail the test, the algorithm steps to a neighboring feature of one or both candidates, and try again. 

When a pair of features fails the test, the new pair chosen is guaranteed to be closer than the old one.  Usually when the objects move and one of the closest features changes, the algorithm can find it after a single iteration.  Even if the closest features are changing rapidly, say once per step along the path, this algorithm will take only slightly longer.   Therefore, one can say that the algorithm runs at the rate nearly independent of the complexity of the objects, but proportional to the size of discrete movement.  

For each pair of features (fA and fB) from objects A and B,  first the algorithm finds the pair of nearest points (say PA and PB) between these  two features.   Then, the algorithm checks whether these two points are a pair of nearest points  between A and B.  That is, the algorithm needs to verify that fB is truly a closest feature on B  to PA and  fA  is truly a closest feature on A  to PB.   This is the verification of whether PA  lies inside the Voronoi region of  fB and whether PB  lies inside the Voronoi region of fA.   If either check fails, a new (closer) feature is substituted, and the new pair is checked again.  Eventually, the algorithm must terminate with a closest pair, since the distance between each candidate feature pair decreases, as the algorithm steps through them.

2.3 Applicability Tests

The test of whether one point lies inside of a Voronoi region of a feature is what we call an "applicability test'' or "applicability criterion".  There are three basic applicability criteria which the algorithm uses throughout the distance computation procedure.   These are (i) point-vertex, (ii) point-edge, and (iii) point-face applicability conditions.  Each of these applicability criteria is equivalent to a membership test which verifies whether  a given  point  lies in the Voronoi region of another feature.  If the nearest points on two features both lie inside the Voronoi region of the other feature, then the two features are a closest feature pair and the points are closest points between the polyhedra.  If the applicability test is violated, then the algorithm returns the next closest neighboring feature(s) as the new candidate(s).

In both case (i) and (ii), the constraint planes of Voronoi regions for a given vertex or an edge are hyperplanes derived from the neighboring features.  However, in the case (iii) there is also the face itself imposing as a constraint plane.  This constraint corresponds to a case where we have a local minimum in a "gradient-descent" like algorithm.   When a pair of features fails the point-face applicability condition, geometrically it can be interpreted as one feature lies on the "far  side" of the other polytope.   In a situation like this, the procedure calls upon an O(n)  routine (where n  is the number of features of the polyhedron A containing the face) to search for the closest feature on the polyhedron A  to the feature containing P  and proceed with the general algorithm.

2.4 Algorithm Description

Given a pair of features, there are altogether 6 possible cases  that we need to consider:  (1) a pair of vertices, (2) a vertex and an edge, (3) a vertex and a face, (4) a pair of edges, (5) an edge and a face, and (6) two faces.  In general, the case of two faces or edge-face rarely happens.  However, in applications such as path planning for accessibility study, we may end up moving along maximal clearance paths which keep two faces parallel, or an edge parallel to a face. It is important to be able to detect when we have such a degenerate case.  Please refer to Chapter 3 of Lin's Thesis or its Appendix on the Pseudo Code of the algorithm for a complete description.  

2.5  Implementation Issues

•
Subdivision

For vertices of typical convex polyhedra, there are usually three to six edges in the coboundary.  Faces of typical polyhedra also have three to six edges in the boundaries.  Therefore,  normally the applicability criteria require only a few quick tests for each round.  When a face has more than five edges in its boundary or when a vertex has more than five edges in its coboundary, the Voronoi region associated with each feature is preprocessed by subdividing the whole region into smaller cells.  After subdivision, each Voronoi cell is defined by 4 or 5 constraint planes in its neighboring features (boundary or coboundary).  This subdivision procedure is a simple algorithm which can be done in linear time as part of preprocessing; and it guarantees that when the algorithm starts, each Voronoi region has a constant number of constraint planes. Consequently, the three applicability tests described above run in  constant time.
•
Construction of Voronoi regions

In order to minimize online computation time, one can compute all the Voronoi regions first in a one-time computational effort.  Therefore, as the algorithm steps through each iteration, all the applicability tests would look uniformly alike --- all as "point-cell applicability test'', with a slight difference to the point-face applicability criterion.  

•
Robustness Issues

The algorithm uses hysteresis to avoid cycling in degenerate cases when there is more than one feature pair separated at approximately  the same distance.  We can achieve this by making the Voronoi regions overlap each other with small and "flared" displacements.  Note that all the constraint planes are tilted outward by a small angular displacement as well as infinitesimal translational displacement.  The angular displacement is used to ensure the overlap of adjacent regions.  So, when a point falls on the borderline case, it will not flip back and forth between the two adjacent Voronoi regions.  The small translational displacement in addition to angular  displacement is needed for numerical problem arising from point  coordinate transformations.  For an example, if we transform a point P  by a homogeneous matrix T  and transform it back by T-1, we will not get the same point P  but P' with small differences in each of its coordinate, i.e. T-1(TP)  (  P.

There are many other cases of floating point problems.  Another example: all faces are convex, but because of subdivision they can be coplanar.  Where the faces are coplanar, the Voronoi regions of the edges between them is null and face constraints point directly to the next Voronoi region associated with their neighboring coplanar faces.

2.6  Penetration Problem and Solutions

      (Refer to the Solid Modeling 1995 paper by Ponamgi, Manocha, Lin)
· Use of Internal Voronoi Regions

· Pseudo Regions for Simplicity
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