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Lecture 14:  Bounding Volume Hierarchies vs. Spatial Partitioning
1.  Spatial Data Structure & Subdivision 

     (Refer to Computer Graphics by Foley/Van Dam et al, Chapter 12.6 on 

      Spatial-Partitioning  Representations, pp.548-557, for more detail)

1.1  BSP-Trees 

One of the commonly used tree structure is BSP-tree (binary space partitioning tree) to speed up intersection tests in CSG (constructive solid geometry) [TN87].  This approach construct a tree from separating planes at each node recursively.  It partitions each object into groups of parts which are close together in binary space.  When, the separation planes are chosen to be aligned with the coordinate axes, then a BSP tree becomes more or less like an octree.

Another modified version of BSP-Tree proposed by Vanecek is a multi-dimensional space partitioning (MSP) tree called “BREP-INDEX”.  BREP-INDEX provides quick spatial access to the vertices, edges, and faces of a boundary representation (Brep) and is used for collision detection between moving objects in a system called  “Proxima”.

1.2  Octrees
One can think of an octree as tree of cubes within cubes.  But, the size of the cube varies depending on the number of objects occupying that region.  A sparsely populated region is covered by one large cube, while a densely occupied region is divided into more smaller cubes.  Each cube can be divided into 8 smaller cubes if necessary.  So, each node in the tree has 8 children (leaves).

NOTE:  The problems with tree hierarchies is that its update (insertion and deletion) is inflexible and cumbersome, especially for a large tree.  The overhead of insertion and deletion of a node in a tree can easily dominate the run time, especially when a collision occurs.  The tree structures also do not capture the temporal and spatial coherence well.

1.3  Uniform Spatial Subdivision
We can divide the space into unit cells (or volumes) and place each object (or bounding box) in some cell(s).  To check for collisions, we have to examine the cell(s) occupied by each box to verify if the cell(s) is(are) shared by other objects.  But, it is difficult to set a near-optimal size for each cell and it requires tremendous amount of allocated memory.  If the size of the cell is not properly chosen, the computation can be rather expensive.  For an environment where almost all objects are of uniform size, like in some cases of molecular modeling, this is a rather ideal algorithm, especially to run on a parallel-computing machine.  In fact, Overmars has shown that using a hash table to look up an enetry, we can use a data structure of O(n) storage space to perform the point location queries in constant time

1.4   Mesh-Based Partitioning

        (Refer to the paper by Held, Klosowski and Mitchell on “Evaluation of 

         Collision Detection Methods for Virtual Reality Fly-Throughs”)

2.  Hierarchical Representations for Collision Detection
The simplest algorithms for collision detection are based on using bounding volumes and spatial decomposition techniques in a hierarchical manner. Typical examples of bounding volumes include axis-aligned boxes (of which cubes are a special case) and spheres, and they are chosen due to their simplicity of finding collision between two such volumes. Hierarchical structures used for collision detection include k-d trees and octrees, R-trees and their variants, etc.  Other spatial representations are based on BSP's and its extensions to multi-space partitions, spatial representations based on space-time bounds or four-dimensional testing and many more.  All of these hierarchical methods do very well in performing “rejection tests”, whenever two objects are far apart.  When the two objects are in close proximity and can have multiple contacts, these algorithms either use subdivision techniques or check very large number of bounding volume pairs for potential contacts. In such cases, their performance may slow down considerably.   

2.1  Cost Function for Evaluating Bounding Volume Hierarchies
In general, it is difficult to evaluate the effectiveness of different collision detection algorithms, since their performance depends on the relative configuration (both position and orientation) of two objects.  Some methods may perform better in certain situations and worse in others.  However, one may use a general framework to evaluate bounding volume hierarchies for interference detection by using the following cost function:

F = Nu x Cu  +  Nbv x Cbv + Np x Cp
where F is total cost function for interference detection, Nu is number of bounding volumes updated due to object's motion, Cu  is the cost of updating a bounding volume, Nbv  is the number of bounding volume pair overlap tests, Cbv is the cost of testing a pair of bounding volumes for overlap, Np is the number primitive pairs tested for interference, and Cp is the cost of testing a pair of primitives for interference.  Given this cost function, various hierarchical data structures are characterized by the choice of  bounding volumes.  The choice is governed by two conflicting constraints:

· It should fit the original model as tightly as possible (to lower Nbv and Np.)

· Testing two such volumes for overlap should be as fast as possible (to lower Cbv).

Simple primitives like spheres and axis-aligned bounding boxes (AABBs) do very well with respect to the second constraint. But they cannot fit some primitives like long-thin oriented polygons tightly. On the other hand, minimal ellipsoids and oriented bounding boxes (OBBs) provide tight fits, but checking for overlap between them is relatively expensive.  In this lecture, we’ll study different hierarchical bounding volumes for collision detection.

2.2  Using Hierarchical Tree Representation for Collision Detection

Given the hierarchical tree representation for each object, we examine the possible interference between them by a recursive algorithm at each step.  The algorithm first checks for collision between the two parent nodes, starting from the roots of two given trees.  Of course, if there is no interference between the two parent nodes, there is no collision between the objects.  If there is a collision, then it traverses down the trees.  All children of one parent node are checked against all children of the other parent node.  If there is also a collision between the children, then the algorithm will recursively call upon itself to check for possible impacts among the children's children, and so on.  In this recursive manner, the algorithm will only signal a collision if there is actually an impact between any leave nodes of the two objects; otherwise, there is no collision between the two objects.

Next, we’ll study different bounding volume hierarchies for collision detection.

3.  Sphere-Trees

As mentioned earlier, spheres are among the simplest geometric structures to check for collisions.  If all objects were spheres, a pair-processing would be trivial.  Unfortunately very few objects can be closely approximated by a single sphere.  But, a collection of spheres  may provide a better approximation.  A sphere-tree is a hierarchy of sets of spheres, used to approximate an object.   

The advantages of using sphere-trees are:  (1) simplicity in checking overlaps between 2 bounding spheres, (2) invariant to rotations and can apply the same transformation to the center of each spheres; the structure of the sphere-tree would remains the same as long as the object is rigid.

However, building a good sphere-tree for each object is not a simple task.  Some proposed methods include (1) using octree as a starting point, (2) simulated annealing algorithm to compute the “medial axis” of the object, (3) covering technique by attaching spheres to all the vertices, etc.  In addition, spheres are not the best approximation for geometric objects in general, and especially terrible for long and “skinny” objects.  For example, it would take many spheres to generate a tight approximation of  a long rod.  

4.  Sub-Part Hierarchical Tree Representation using Convex Hulls/Polytopes
Nonconvex objects can be either composite solid objects or articulated bodies.  We assume that each nonconvex object is given as a union of convex polyhedra or is composed of several nonconvex subparts, each of these can be further represented as a union of convex polyhedra or a union of non-convex objects.  We use a sub-part hierarchy tree to represent each nonconvex object.  At each node of the tree, we store either a convex sub-part (at a leave) or the union of several convex subparts.

Depending on the applications, we first construct the convex hull of a rigid non-convex object or dynamic bounding box for articulated bodies at each node and work up the tree as part of preprocessing computation.  We also include the convex hull or dynamic bounding box of the union of sub-parts in the data structure.  The convex hull (or the bounding box) of each node is the convex hull (or bounding box) of the union of its children.  

For example, the root of the aircraft tree (shown in class) is the aircraft and the convex hull of the aircraft.  The nodes on the first level of the tree store the subparts and the union of the subparts of the aircraft, i.e. the left and right wings (both convex), the convex body of airplane, and the union of the tail pieces.  At the node where the union of the tail pieces are stored, a convex hull of union of these tail pieces is also stored there as well.  This node, which stores the union of all tail pieces, further branches out to 3 leaves, each of which stores a convex tail piece.

In addition, not only can we apply the hierarchical subpart tree representation to polyhedral models, we can also use it for non-convex objects with curved boundary as well.  Depending on the representation of the curved objects (parametric, algebraic, Bezier, or B-spline patches), each node of the tree will store a portion (such as a patch) of the curved surfaces and the root of the tree is the entire curved object and the convex hull of its polyhedral approximation.  

Given the subpart tree representations for two given objects, we can check for possible contacts by using the tree traversal outlined in Section 1.2.  For instance, assume for simplicity that one non-convex object is composed of m convex polyhedra and the other is composed of n convex polyhedra, the algorithm will first check for collision between the two convex hulls of these two objects.  If there is a collision,  mn convex polyhedra-pairs will be tested for possible contacts.  If there is a collision between any one of these mn pairs of convex polyhedra, then the two objects interpenetrate; otherwise, the two objects have not yet intersected.

If we use the Lin-Canny Algorithm (described in Lecture 3) to check for collision between two convex hulls or convex pieces stored at each node, there is never a need to construct the Voronoi regions of the original non-convex objects.  Instead, at the preprocessing step the algorithm only constructs the Voronoi regions for each convex piece at each node of the subpart hierarchical tree.  When it performs the collision checks,  it only keeps track of the closest feature pairs for the convex hulls of parent nodes, unless a collision has taken place between the convex hulls of two non-convex objects or the bounding boxes of articulated bodies.   Under such a situation, it has to track the closest pair of features for not only the convex hulls or bounding boxes at the parent nodes, but also among all possible subpart pairs at the children nodes as well.  This can lead to O(n2)  comparisons, if each object is consisted of n subparts and the trees only have two levels of leave nodes.

However, we can achieve better performance if we have a good hierarchy of the models.  For complex objects, using a deep hierarchical tree with lower branching factor will keep down the number of nodes which need to be expanded.  This approach guarantees that we find the earliest collision between two non-convex objects while reducing computation costs.  For example, given 2n sub-parts, we can further group them into two subassemblies and each has n sub-parts.  Each sub-assembly is further divided into several smaller groups.  This process generates a deep hierarchical tree with lower branching factor, thus reducing the number of expansions needed whenever the convex hulls (or bounding boxes) at the top-level parent nodes collide.

NOTE:  A modification to this technique is given in the Solid Modeling 1995 paper by Ponamgi, Manocha and Lin’95

5.  K-dop for Interference Detection

      (Refer to the paper by Klowsowski, et al 1996)

6.  Using OBBTrees for Collision Detection
      (Refer to the SIGGRAPH paper by Gottschalk, Lin and Manocha 1996)

