COMP290: Physically-based Modeling and Simulation

INSTRUCTORS: Ming C. Lin
Monday – March 6, 2000

Lecture 15: Scheduling Scheme for Multi-body Simulation Environments

1. Scheduling Scheme for Dynamic Simulation

1.1 Overview

The algorithm maintains a queue (implemented as a heap) of all pairs of objects that might collide (e.g. a pair of objects which are rigidly attached to each other will not appear in the queue). They are sorted by lower bound on time to collision; with the one most likely to collide (i.e. the one that has the smallest approximate time to collision) appearing at the top of the heap. The approximation is a lower bound on the time to collision, so no collisions are missed. Non-convex objects, which can be represented as hierarchy trees, are treated as single objects from the point of view of the queue. That is, only the roots of the hierarchy trees are paired with other objects in the queue.

The algorithm first has to compute the initial separation and the possible collision time among all pairs of objects and the obstacles, assuming that the magnitude of relative initial velocity, relative maximum acceleration and velocity limits among them are given. After initialization, at each step it only computes the closest feature pair and the distance between one object pair of our interests, i.e. the pair of objects which are most likely to collide first; meanwhile we ignore the other object pairs until one of them is about to collide. Basically, the algorithm puts all the object pairs to sleep until the clock reaches the "wakeup" time for the first pair on top of the heap. Wakeup time Wi for each object pair Pi is defined as

Wi = twi + t0
where twi is the lower bound on the time to collision for each pair Pi for most situations and t0 is the current time.

1.2 Bounding Time to Collision
Given a trajectory that each moving object will travel, we can determine the exact collision time. If the path that each object travels is not known in advance, then we can calculate a lower bound on collision time. This lower bound on collision time is calculated adaptively to speed up the performance of dynamic collision detection.

Let amax be an upper bound on the relative acceleration between any two points on any pair of objects. The bound amax can be easily obtained from bounds on the relative absolute linear alin and relative rotational accelerations arot and relative rotational velocities vr of the bodies and their diameters:

amax = | alin + arot x r + vr x vr x r |

where r is the vector difference between the centers of mass of two bodies. Let d be the initial separation for a given pair of objects, and vi (where vi = | vlin + vr x r |) the initial relative velocity of closest points on these objects. Then we can bound the time tc to collision as

tc = { (vi2 + 2 *amax *d) 1/2 - vi } / amax
This is the minimum safe time that is added to the current time to give the wakeup time for this pair of objects. To avoid a "Zeno's paradox" condition where smaller and smaller times are added and the collision is never reached, we must add a lower bound to the time increment. So rather than just adding tc as derived above, we can add tw = max(tc , tmin), where tmin is a constant (say 1 mSec) which determines the effective time resolution of the calculation.

Since we can calculate the lower bound on collision time adaptively, we can give a fairly good estimate of exact collision time to the precision in magnitude of tmin. In addition, since the lower bound on time to collision is calculated adaptively for the object most likely to collide first, it is nearly impossible for the algorithm to fail to detect an interpenetration.

1.3 Implementation Details
The scheme for dynamic simulation using the distance computation algorithm is an iterative process which continuously inserts and deletes the object pairs from a heap according to their approximate time to collision, as the objects move in a dynamic environment.

It is assumed that there is a function Ai(t) given for each object, which returns the object's pose at time t, as a 4x4 matrix. Initially, all poses are determined at t0 and the distance calculation algorithm is run on all pairs of objects that might collide. The pairs are inserted into the heap according to their approximate time to collision.

Then the first pair of objects is pulled off the queue. Its closest feature pair at will be available, and the distance measuring algorithm is run. If a collision has occurred and been reported, then the pair is re-inserted in the queue with a minimum time increment tmin. If not, a new lower bound on time-to-collision for that pair is computed, and the pair is re-inserted in the queue. This process is repeated until the wakeup time of the head of the queue exceeds the simulation time.

Note that the lower bound on collision time is calculated adaptively for the pair most likely to collide. Therefore, no collision can be missed. We will not need to worry about those sleeping pairs (which will not collide before their wake-up time), until the clock reaches the wake-up time Wi for each pair Pi .

This scheme described above can take care of all object pairs efficiently so that the distant object pairs wake up much less frequently. Thus, it reduces the run time in a significant way. If no upper bounds on the velocity and acceleration can be assumed, other methods have to be used.

Later, we will see how this techniques is used in speeding up the dynamic simulation of multiple objects interacting with each other. (See the paper by Mirtich and Canny on Impulse-Based Dynamics.)

N-Body Algorithm & Collision Detection Systems

1. N-Body Algorithm for Checking Collisions in Large Environments
 (Refer to the I3D Symposium paper on "I-COLLIDE" by Cohen, Lin, Manocha & Ponamgi 1995)

2. V-COLLIDE

 (Refer to the VRML Symposium paper on "V-COLLIDE" by Hudson, Lin, Cohen, Gottschalk & Manoch 1997)

3. IMMPACT
(Refer to the Eurographics paper on “IMMPACT: Partitioning and Handling Massive Models for Interactive Collision Detection” by A. Wilson, E. Larsen, D. Manocha and M. C. Lin 1999)

