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Fast forward to lessons learned …

Digital anatomy research yields intrinsic benefits, but is  
also a catalyst for innovation on synergistic disciplines.



Fast forward to lessons learned …

Openness to cross-layer interventions maximizes  
the opportunity for breakthrough achievements …



Fast forward to lessons learned …

… and the impact of such design philosophy can be  
have benefits beyond modeling (or visual computing).



How did this journey start … ?



How did this journey start … ?



How did this journey start … ?



… and how it got into fracture and destruction …



… or cutting and virtual surgery
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Performance : Incremental benefit or critical feature?





Storage
• Explicit-assembly : 243 coefficients per vertex (give or take …)
• Essential meta-data for matrix-free : 36 floats per vertex

Implicit mat-vec multiply cost:
• About 1.8-2.5x of data access (read/write) cost
• Via SIMD + MultiThread optimizations.

A developer’s nightmare?
• Sometimes … see SVD for Disney’s PhysGrid.
• But there’s a way to find a method to the madness.

Target performance?



Tech concatenation, or symbiotic interplay?

Conceptual  
Phenomenon

Visual  
Content

Quantitative 
modeling 

(e.g. continuous 
PDE)

Discretization

Geometrical  
modeling

Data structures

Numerical 
algorithms

Algorithmic 
accelerations

Hardware 
optimization

Software engineering, programming models, computation delivery ...





Developments: Soft tissue surgery sim



Bringing hand-optimized code under control?



Storage
• Explicit-assembly : 243 coefficients per vertex (give or take …)
• Essential meta-data for matrix-free : 36 floats per vertex

Implicit mat-vec multiply cost:
• About 1.8-2.5x of data access (read/write) cost
• Via SIMD + MultiThread optimizations.

A developer’s nightmare?
• Sometimes … see SVD for Disney’s PhysGrid.
• But there’s a way to find a method to the madness.

Target performance?



Guided Vectorization

template<class T_RAW,class T_DATA,int multiplicity> 
void Matrix_Times_Transpose(const T_DATA (&A)[9], const T_DATA (&B)[9], T_DATA (&C)[9]);

Semantics : Execution of the 3x3 matrix operation C=A*BT

Arguments : Streams of 3x3 matrices A(k) , B(k) , C(k)

Operation :
      for(k=0;k<W;k++) C(k) := A(k) * [B(k)]T 



Guided Vectorization

template<class T_RAW,class T_DATA,int multiplicity> 
void Matrix_Times_Transpose(const T_DATA (&A)[9], const T_DATA (&B)[9], T_DATA (&C)[9]);

template void Matrix_Times_Transpose<float,float>(const float (&A)[3][3],
    const float (&B)[3][3], float (&C)[3][3]);

template void Matrix_Times_Transpose<float,float[8]>(const float (&A)[3][3][8],
    const float (&B)[3][3][8], float (&C)[3][3][8]);

template void Matrix_Times_Transpose<__m128,float[8]>(const float (&A)[3][3][8],
    const float (&B)[3][3][8], float (&C)[3][3][8]);

template void Matrix_Times_Transpose<__m256,float[8]>(const float (&A)[3][3][8],
    const float (&B)[3][3][8], float (&C)[3][3][8]);

template void Matrix_Times_Transpose<__m512,float[16]>(const float (&A)[3][3][16],
    const float (&B)[3][3][16], float (&C)[3][3][16]);

template void Matrix_Times_Transpose<__m512,float[64],4>(const float (&A)[3][3][64],
    const float (&B)[3][3][64], float (&C)[3][3][64]);



Guided Vectorization

Findings:
• Matches or exceeds performance of hand-vectorized kernels
• ICC extremely efficient in eliminating temporaries (even auto’s)
• No problem with scaling to kernels in the 10,000s of instructions
• Promising performance on automatic fine-grain loop unrolling 



Self collisions : Can we use level sets?



Self collisions : Can we use level sets?





Implicit Surface

C = {(x, y)|�(x, y) = 0}
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Zero-width cut; extra res won’t help



Signed distances on embedding mesh



Signed distances on embedding mesh









Digression; overlapping mesh works!



Digression; overlapping mesh works!



Materials are inaccurate
• Way too permissive
• Can’t answer “will it reach?”
• Stress patterns don’t always 

match our collaborators’ 
experience

Current challenges?



Tech concatenation, or symbiotic interplay?
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“My serial implementation of algorithm X on machine Y ran in Z seconds. 
When I parallelized my code, I got a speedup of 15x on 16 cores ...”

Well-intended evaluation practices ...

“... when I ported my implementation to CUDA, this numerical solver 
ran 200 times faster than my original MATLAB code ...”

... are sometimes abused like this: 

So, what is wrong with that 
premise?

Are we pursuing the right efficiency? RANT ALERT!



Watch for warning signs:
• Speedup across platforms grossly exceeding specification ratios

• e.g. NVIDIA GTX Titan X vs. Intel Xeon E5-2650v4 (Q1/16)
• Relative (peak) specifications : 

• GPU has about 6x higher (peak) compute capacity
• GPU has about 4x higher (peak) memory bandwidth

• Significantly higher speedups likely indicate:
• Different implementations on the 2 platforms
• Baseline code was not optimal/parallel enough

• “Standard” parallelization yields linear speedups on many cores
• [Reasonable scenario] Implementation is CPU-bound
• [Problematic scenario] Implementation is CPU-wasteful

Are we pursuing the right efficiency? RANT ALERT!



“ ... after optimizing my code, the runtime is about 5x slower than the 
best possible performance that I could expect from this machine ...”

A different perspective ...

... i.e. 20% of maximum theoretical 
efficiency!

Challenge : How can we tell how fast 
the best implementation could have 

been?
(without implementing it ...)

Are we pursuing the right efficiency? RANT ALERT!



Example : Solving the quadratic equation
ax

2 + bx+ c = 0

What is the minimum amount of time needed to solve this?

“We cannot solve this faster than the time 
needed to read a,b,c and write x”

Data access cost bound  

“We cannot solve this faster than the time 
needed evaluate the polynomial, for given 

values of a,b,c and x” 
(i.e. 2 ADDs, 2 MULTs plus data access)

Solution verification 
bound  

ax

2 + bx+ c =

(ax+ b)x+ cEquivalent operation 
bound   “We cannot solve this faster than the time 

it takes to compute a square root”

Are we pursuing the right efficiency? RANT ALERT!



What about linear systems of equations?

It is theoretically possible to compute the 
solution to a linear system (with certain 

properties) with a cost comparable to 10x the 
cost of verifying that a given value x is an 

actual solution

“Textbook Efficiency” 
(for elliptic systems)

Ax = b

It is theoretically possible to compute the 
solution to a linear system (with certain 

properties) with a cost comparable to 10x the 
cost of computing the expression r=b-Ax 

and verifying that r=0
(i.e. slightly over 10x of the cost of 

a matrix-vector multiplication)

... or ...

Are we pursuing the right efficiency? RANT ALERT!



Prime Candidates
• Multigrid
• Domain decomposition

In more specialized (unrealistic?) contexts …
• Fourier Analysis
• Cyclic Reduction
• etc ….

But what algorithm gets there?



Systemic (?) Challenges
• Irregular domains
• Adaptive discretizations
• Heterogeneous/nonuniform compute platforms
• Anisotropy
• Inhomogeneous operators

Not-so-systemic (hopefully?) challenges
• Nonlinearity
• Contact (????)

What can spoil this potential?



• At core of elastic body simulators
• Newton iteration for force balance
• Need to solve sparse linearized system
• Approximate solution good enough

Balancing traits of direct & iterative solvers



• Direct or iterative solvers?
• Direct methods need little tuning …
• … but are memory-bound and tough to parallelize
• Iterative schemes get approximate solution fast …
• … but require many iterations for large models

Balancing traits of direct & iterative solvers



• Best of both worlds?
• Split work into local problems (elastic blocks)
• Use direct algebra within blocks 

(and ensure local problem fits in cache)
• Use iterative solver across block

Balancing traits of direct & iterative solvers



Balancing traits of direct & iterative solvers



• But wait, there’s more …
• Direct solver could fit in a single core’s cache
• But we need to use SIMD for parallelism
• … and be extremely frugal with storage

Balancing traits of direct & iterative solvers



Balancing traits of direct & iterative solvers



• Challenges
• Forward/Backward substitution are inherently serial 

(at least, textbooks say they are)
• Uses matrix-vector multiplication 

(and any of this sort is doomed to be memory bound)
• No clear opportunity for SIMD  

(although we are underutilizing computation capability 
by at least a factor of 100x)

Balancing traits of direct & iterative solvers



• Remedies
• VPU optimization is <1%.
• Can easily afford to do 10x more computations, 

if in return we get :
• 10x reduction in bandwidth requirements, and
• SIMD opportunities exposed

Balancing traits of direct & iterative solvers



• Invert using divide-and-conquer

-1

=

Balancing traits of direct & iterative solvers



(a)

(b)

(c)

(d)

(e)



(a)

(b)

(c)

(d)

(e)



(a)

(b)

(c)

(d)

(e)





Balancing traits of direct & iterative solvers



Balancing traits of direct & iterative solvers



Balancing traits of direct & iterative solvers



SPGrid - Virtual memory tricks sparse/adaptive grid data



SPGrid - Virtual memory tricks sparse/adaptive grid data



SPGrid - Virtual memory tricks sparse/adaptive grid data



Virtual memory tricks for adaptive simulation



Entire spatial 
domain

Narrow band 
of interest



Entire spatial 
domain

float* grid = new float[nx * ny * nz]; 

Narrow band 
of interest



2048

20
48 …



2048

20
48 …~1 GB of total storage 

99% is wasted! 



float* grid = mmap(nx * ny * nz, …); 



float* grid = mmap(nx * ny * nz, …); 



4KB Page 

~10%
utilization

Lexicographical



4KB Page 

~40%
utilization



Morton Ordering



Blocked Grid

Z-curve traversal 
across blocks

Lexicographical 
traversal  

within block
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~16 cycles on 
Haswell processor! 
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Stencil operations 
even cheaper: 

~5-6 cycles per 
neighbor fetch on 

Sandy Bridge+



• Solver : Multigrid-Preconditioned CG
• MG adapted to grid hierarchy, too
• Can do dynamically changing adaptation pattern
• Originally designed for CPU (+Xeon Phi trivially), 

but GPU analogues implemented to follow-up work 
 
 
 
(110+ TFlops, 768GB RAM, 4.5+GB/s bandwidth : $20k)

Remaining details …



• Heterogeneous platforms
• Multi-GPU equipped SMP servers …
• Small “fast” memory + Large “slow” memory hybrids  

(e.g.Knights Landing) …
• Or any  reasonably deep memory hierarchy …
• Best ratio of $$ to Raw Computational Capacity 
 
 
 
 
(110+ TFlops, 768GB RAM, 4.5+GB/s bandwidth : $20k)

Harnessing platform heterogeneity



• Heterogeneous platforms
• Multi-GPU equipped SMP servers …
• Small “fast” memory + Large “slow” memory hybrids  

(e.g.Knights Landing) …
• Or any  reasonably deep memory hierarchy …
• Best ratio of $$ to Raw Computational Capacity 
 
 
 
 
(110+ TFlops, 768GB RAM, 4.5+GB/s bandwidth : $20k)

Harnessing platform heterogeneity



• Challenges
• GFlops/Gload ratio - approaching 100:1 today 

(closer to 12-15:1 in “good old pre-GPU/SIMD days” )
• Access to non-local memory at least one order of 

magnitude slower 
(PCIe/Infiniband vs DDD4, or KNL fast/slow memory)

• Even worse scenario : 
Workload too slow for CPU, too large for GPU

• Offload overhead often a non-starter for traditional 
distributed parallelization

Harnessing platform heterogeneity



• A crisis or an opportunity? 
• Dream scenario : 

Making an algorithm work on a heterogeneous platform as 

fast as a homogeneous one with the aggregate specs
• Certainly not possible in general (via automated means)
• … but doable for many problems in computational 

dynamics!

Harnessing platform heterogeneity



Harnessing platform heterogeneity



Harnessing platform heterogeneity



Harnessing platform heterogeneity



• Performance restored by: 
• Making any offloaded tasks are large enough to absorb 

communication cost (and get something in return)
• Tweaking the math (adaptivity) to reduce complexity
• Use an “approximate” divide and conquer design

Harnessing platform heterogeneity



Harnessing platform heterogeneity



Harnessing platform heterogeneity







• Should we be open to cross-layer interventions? Why? 
• Might be a necessity for competitiveness …
• Other disciplines appreciate this, too! 

(and graphics researchers have experience doing it)
• A more fundable vision?
• Historical precedent …

In retrospect …



Digital humans, virtual surgery and fast fluids; do they have 
more in common than their hunger for performance?
Eftychios Sifakis
Department of Computer Sciences 
University of Wisconsin - Madison

every Newton iteration, we should be conscious of the fact that the
force differentials thus produced are not identical to the exact ex-
pressions from equations (9) and (10) (also described in [Chao et al.
2010]). Since our decision of proper force differentiation was mo-
tivated by the lesser accuracy of the warped stiffness procedure, or
the approach of [Zhu et al. 2010], we would like to assess the mag-
nitude of inaccuracy that our definiteness correction incurs. Our
method, as well as the aforementioned approximations effectively
amount to a Modified Newton procedure for the force equilibrium
equation. Notably, all methods reach the same equilibrium solution
if converged; they simply follow different search paths towards that
solution. From the theory of modified Newton methods, the conver-
gence properties of the modified procedure depend on the spectral
radius Q = ⌅(I� Ĵ�1J), where J is the proper force Jacobian, and
Ĵ is the approximation used in the modified method. If Q < 1 the
modified procedure is convergent (in fact, when Q ⇧ 1, quadratic
convergence is practically retained); however when Q > 1 there is
no guarantee of convergence, and certain error modes exist that will
be amplified by the modified iteration.

In our work, Ĵ is the result of the indefiniteness correction previ-
ously described. For warped stiffness Ĵ results from the approx-
imation of the stress differential of equation (10) by the simpler
expression �P = R

⇤
µ
�
(RT �F) + (RT �F)T

⇥
+ ⇥tr(RT �F)

⌅
.

The formulation of [Zhu et al. 2010] implies a similar approxima-
tion, namely �P = R

⇤
2µ(RT �F) + ⇥tr(RT �F)

⌅
. The spectral

radius Q corresponding to all three approaches remains relatively
close to zero (< 0.05) for deformations that are small and smooth.
However, our method remains safely convergent, significantly more
so than the other two alternatives, even with larger, non-smooth de-
formations. For example, in the scenario of figure 2, at the moment
when warped stiffness develops an instability (2.4⇥ extension) we
have Q = 4.87 for warped stiffness, Q = 0.829 for the approxi-
mation of [Zhu et al. 2010] and Q = 0.0717 for our approach.

6 Dynamics

Our method extends trivially to dynamic simulations that include
inertial effects. However, it is important to note that the indefinite-
ness encountered in quasistatic time stepping also arises in implicit
time stepping for dynamics. Fortunately, the definiteness fix out-
lined above can be used in this setting as well. In this case, we
typically desire a fixed, large time step of �t ⌅ 1

30 . Using back-
ward Euler time stepping and Newton-Raphson linearization, the
following linear update equation must be solved for the increment
�x in the kth iteration

KBE(xn+1
k )�x = �tM

�
vn +�t(xn � xn+1

k )
⇥
+�t2f(xn+1

k )

Here KBE = M+�t2K(xn+1
k ), and M is the mass matrix. Indef-

initeness of K(xn+1
k ) can thus be seen to potentially cause indef-

initeness of KBE(xn+1
k ). One could attempt to manipulate nodal

masses or material properties to preserve definiteness, but this al-
ters the behavior of the simulation in arbitrary ways. Although
decreasing the timestep could also fix the indefiniteness, the time
step cannot be decreased arbitrarily when interactivity is desired.
Furthermore, it is important to note that the nodal mass is pro-
portionate to the volume associated with each node. Therefore, as
we increase the discrete spatial resolution of our domain, the nodal
mass decreases thereby increasing the likelihood of encountering an
indefinite backward Euler system matrix as it would behave more
and more like the indefinite K(xn+1

k ). See Figure 4 for a numer-
ical experiment that demonstrates this behavior. Therefore, when
both high performance and high resolution are desired, indefinite-
ness in the backward Euler system matrix quite likely. Fortunately,

the definiteness fix in section 5 for K(xn+1
k ) guarantees definite-

ness of the backward Euler system matrix.

Figure 4: Plot of ratios of minimum to maximum eigenvalues of the
backward Euler matrix of a dynamic elastic bar simulation without
our definiteness fix applied. Note that the minimum eigenvalues are
negative in the 16x24x84 resolution example.

7 Constraints and collisions

As previously discussed, the ability to handle elaborate collision is
an essential benefit of simulation in production. We use point con-
straints to enforce both soft constraints, such as bone attachments,
and to handle object and self collisions. Specifically, we embed
proxy points (xp) in the simulation lattices and distribute their as-
sociated forces trilinearly to the vertices of the hexahedral cells that
contain them. [Sifakis et al. 2007] show the effectiveness of this
basic approach.

Collision detection The collision response is determined by a
number of collision proxies approximately covering the embedded
collision surface. We utilize a penalty based response dependent on
the penetration depth and unit outward normal at each proxy point.
For rigid objects, we simply query a level set representation of the
object at each proxy point. However, for self-collision, the rapidly
changing shape of the elastic objects precludes accurate reconstruc-
tion of a signed distance function at each time step.

Self-collision penetration depth evaluation For each proxy col-
lision point, we first determine which deformed hexahedra contain
it in the current configuration. This is done rapidly by querying an
axis aligned bounding box hierarchy whose leaves surround each
deformed hexahedron in the current configuration. To prevent false
positives, we do not look in the 27 hexahedra in the one ring of the
proxy point in material coordinates. Each hexahedron deemed near
a given proxy point is then tetrahedralized to barycentrically deter-

Figure 5: Collisions and especially self-collisions drastically im-
prove the quality of deformation when coupled with elasticity. On
the left is a production rig that qualitatively exhibits the right
look but does not resolve collisions. On the right is our method
which resolves self-collisions producing a much more natural look.
c⇤Disney Enterprises, Inc.




