Digital humans, virtual surgery and fast fluids; do they have
more in common than their hunger for performance?

Eftychios Sifakis

Department of Computer Sciences
University of Wisconsin - Madison

'WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON






Digital anatomy research yields intrinsic benefits, but is
also a catalyst for innovation on synergistic disciplines.



Fast forward to lessons learned ...

Openness to cross=layer interventions maximizes
the opportunity for breakthrough achievements ...



Fast forward to lessons learned ...

... and the impact of such design philosophy can be
have benefits beyond modeling (or visual computing).



How did this jorey start ... ! }




How did this journey start ... ? }




How did this journey start ... ? }

e
TE

—r—




... and how it got into fracture and destruction ...




... or cutting and virtual surger }
A







Performance (execution time)

Aend







Target performance?

Storage
* Explicit-assembly : 243 coefficients per vertex (give or take ...)

* Essential meta-data for matrix-free : 36 floats per vertex

Implicit mat-vec multiply cost:
* About [.8-2.5x of data access (read/write) cost

* Via SIMD + MultiThread optimizations.

A developer’s nightmare?
* Sometimes ... see SVD for Disney’s PhysGrid.
* But there’s a way to find a method to the madness.



Discretization
SR :

| Conceptual |
'Phenomenon |

1

on |

Data

- lebebiniotn
structures

R ——

T

Quantitative
modeling
(e.qg. continuous
PDE)

R ——

————

Geometrical
modeling

Algorithmic
accelerations

Hardware
optimization
——
Numerical
algorithms

Software engineering, programming models, computation delivery ... 5

e ————




!
I
g
,.




Developments: Soft tissue surgery sim

e e ——————— A ——




Brin hand-optimized code under control?




Target performance?

Storage
* Explicit-assembly : 243 coefficients per vertex (give or take ...)

* Essential meta-data for matrix-free : 36 floats per vertex

Implicit mat-vec multiply cost:

* About |.8-2.5x of data access (read/write) cost
* Via SIMD + MultiThread optimizations.

A developer’s nightmare?
* Sometimes ... see SVD for Disney’'s PhysGrid.
* But there's a way to find a method to the madness.



Guided Vectorization }

Semantics : Execution of the 3x3 matrix operation C=A*B’
Arguments : Streams of 3x3 matrices A% , B® | Ck)
Operation :

for(k=0;k<W,k++) Ck := Al * [BR]T

template<class T RAW,class T DATA,int multiplicity>
void Matrix ' Times Transpose(const T DATA (&A)[9], const T DATA (&B) [9], T DATA (&C) [9])




Guided Vectorization }

template<class T RAW,class T DATA,int multiplicity>
void Matrix Times Transpose (const T DATA (&A) [9], const T DATA (&B) [9], T DATA (&C) [9])

template void Matrix Times Transpose<float,float>(const float (&A)[3]1[3],
const float (&B)[3][3], float (&C)[3]1[31]1);

template void Matrix Times Transpose<float,float[8]>(const float (&A)[3]1[3][81],
const float (&B)[3][3]1[8], float (&C)[3]1[31[81]1);

template void Matrix Times Transpose< ml28,float[8]>(const float (&A)[3]1[3]1[8],
const float (&B)[3][3]1[8], float (&C)[31[3]1[81);

template void Matrix Times Transpose< m256,float[8]>(const float (&A)[31[31[81],
const float (&B)[3][3]1[8], float (&C)[3]1[31[81]1);

template void Matrix Times Transpose< m512,float[l16]>(const float (&A)[3][3]1[1l6],
const float (&B)[3][3][1l6], float (&C)[3]1[3]1[16]);

template void Matrix Times Transpose< m512,float[64],4>(const float (&A)[3]1[3]1[64],
const float (&B)[3][3]1[64], float (&C)[3][3]1[641]);



Guided Vectorization ’

FIndings:
* Matches or exceeds performance of hand-vectorized kernels

o |CC extremely efficient in eliminating temporaries (even auto’s)
* No problem with scaling to kernels in the 10,000s of instructions

* Promising performance on automatic fine-grain loop unrolling



Self collisions : Can we use level sets? }
e

f

|
Production Rig Our Method




Self collisions : Can we use level sets? }

Production Rig Our Method







C=1(z,y)|o(z,y) = 0}

d(z,y) = Va2 +y2 — 1




Inside

(Negative ® Values)

Signed Distance Field

o(z,y) = Va2 +y? —1

Outside
(Positive ® Values)

























\ A\

o

T
X AN LY

\UENTUNNN

N\

N O T Y O T T

L




mmr— T —

e " ——
- —~—
// \\
- T,
- R
= ~
-~ ~
I,/ \\\
/, \\
/, \\

¥ -
K

———

W

NS }
o

/\
' P
=4

Ny
A
24 AN\

<

/,I
’/
-~
>
—
-
~— ——
~— e
- >
///
—

——
———

R

~

WA

X
/
/

<\

V%



L
NN

A/ \ N\ AT

Li=s=ccn =8
K r’ " {< UK
K.gg Ai N il\\L«i

| AT |







)%ﬁﬂmgy(v%\v

K]
LKA 'Av"‘"" AN r |
ARG
vl % %
N

RS e
\\\ K AN
BN
NROSERRREAA
WOSERREERAS
VS ERSRRER
SRR

/]
/
/\



s - - - . Y
I T
i L]




Current challenges!?

Materials are inaccurate

VWay too permissive

Can't answer “will it reach?”
Stress patterns don't always
match our collaborators’
experience

l\

e




Tech concatenation, or symbiotic inter

Algor/thmlc
accelerat/ons

D/scretlzatlon ) Data Structuress

g Phenoon r /
Qua'ntitative | Hardware
modeling Geometr/cal opt/m/zat/on
(e.qg. continuous modelmg

__._._F.)DE) Numer/cal
algor/thms

R ——

' Vlsual

| Conceptual | .
g,: Content ;

‘1




Are we pursuing the right efficiency?

Well-intended evaluation practices ...

“My serial implementation of algorithm X on machine Y ran in Z seconds. ]

When | parallelized my code, | got a speedup of 156x on 16 cores ...”
e e ettt S —

... are sometimes abused like this:

“... when | ported my implementation to CUDA, this numerical solver
ran 200 times faster than my original MATLAB code ...”
s RS s

So, what is wrong with that
premise?




Are we pursuing the right efficiency? _

Watch for warning signs:

* Speedup across platforms grossly exceeding specification ratios
* e.g NVIDIA GTX Titan X vs. Intel Xeon E5-2650v4 (Q1/16)
» Relative (peak) specifications :

* GPU has about 6x higher (peak) compute capacity

* GPU has about 4x higher (peak) memory bandwidth
* Significantly higher speedups likely indicate:
* Different implementations on the 2 platforms

* Baseline code was not optimal/parallel enough

* “Standard’ parallelization yields linear speedups on many cores

* [Reasonable scenario] Implementation 1s CPU-bound

* [Problematic scenario] Implementation 1s CPU-wasteful



Are we pursuing the right efficiency? _

A different perspective ...

“... after optimizing my code, the runtime is about 5x slower than the
best possible performance that | could expect from this machine ...”

—.

... .e. 20% of maximum theoretical
efficiency!

Challenge : How can we tell how fast
the best implementation could have
been?

(without implementing it ...)



Are we pursuing the right efficiency?

RANT ALERT!

Example : Solving the quadratic equation s axz +bx+c¢c =0

What is the minimum amount of time needed to solve this?

Data access cost bound “We cannot solve this faster than the time
needed to read a,b,c and write x”

T ——

e ————— ————— - [—

“We cannot solve this faster than the time Solution verification

needed evaluate the polynomial, for given bound
values of a,b,c and X’
(i.e. 2 ADDs, 2 MULTs plus data access) >
i —— ax- +bx+c =
Equivalent operation — —l—laxt bl oL
bound “We cannot solve this faster than the time

it takes to compute a square root’

e ———




Are we pursuing the right efficiency?

What about I/neat systems of equat/ons7 )

- —— — —— - ———— - ——————————————

It IS theoretlcally poss:ble to compute the
“Textbook Efficiency” solution to a linear system (with certain
(for elliptic systems) properties) with a cost comparable to 10x the

cost of verifying that a given value x is an
actual solution

T ——

— - ————— - ——————— — ——— —— — e —— — e —————

It is theoretically poss:ble to compute the
solution to a linear system (with certain
properties) with a cost comparable to 10x the

.. Or... cost of computing the expression r=b-AX
and verifying that r=0

(1.e. slightly over 10x of the cost of

a matrix-vector multiplication)




But what algorithm gets there! }

Prime Candidates
* Multigrnd
* Domain decomposition

In more specialized (unrealistic?) contexts ...
* Fourier Analysis
* Cyclic Reduction
e etc....



What can spoil this potential?

Systemic (?) Challenges
* Irregular domains
* Adaptive discretizations
* Heterogeneous/nonuniform compute platforms
* Anisotropy
* Inhomogeneous operators

Not-so-systemic (hopefully?) challenges
* Nonlinearrty
* Contact (/77



Balancing traits of direct & iterative solvers

* At core of elastic body simulators
* Newton rteration for force balance

* Need to solve sparse linearized system

* Approximate solution good enough



Balancing traits of direct & iterative solvers

* Direct or iterative solvers!?
* Direct methods need Iittle tuning ...

* ... but are memory-bound and tough to parallelize

P

* [terative schemes get approximate solution fast ...

* ... but require many iterations for large models



Balancing traits of direct & iterative solvers

e Best of both worlds?

* Split work into local problems (elastic blocks)
* Use direct algebra within blocks

(and ensure local problem fits in cache)
* Use rterative solver across block



Balancing traits of direct & iterative solvers




Balancing traits of direct & iterative solvers

 But wait, there’s more ...

* Direct solver could fit In a single core’s cache

* But we need to use SIMD for parallelism
* ... and be extremely frugal with storage



Balancing traits of direct & iterative solvers

a1 6803 :l- o S—
wdilll G .m

T ""‘:-l.“.u.

""ai"'aqu-

_ni"
s
:::a.::;!':--!";“!u:“ hl:“
et T

-t -t .:I



Balancing traits of direct & iterative solvers

* Challenges
* Forward/Backward substitution are inherently serial
(at least, textbooks say they are)
* Uses matrix-vector multiplication
(and any of this sort is doomed to be memory bound)

* No clear opportunity for SIMD
(although we are underutilizing computation capability
by at least a factor of |00x)



Balancing traits of direct & iterative solvers

* Remedies
* VPU optimization is <|%.
* (Can easlly afford to do |10x more computations,

T In return we get :
* |Ox reduction in bandwidth requirements, and
* SIMD opportunities exposed



Balancing traits of direct & iterative solvers

* Invert using divide-and-conquer

Kii Kic
Ky Ky —
Kcl Kc2 KCC
I —KI_I:KIC K, | I
I —K,'Ky K, I

I C_l —K K c2K22 |















Balancing traits of direct & iterative solvers

el =I.,’ s ‘

"'"‘:c:nq:.,‘

s, Y3

i T e ..u,:
T g ..iqu- ‘v
1T .-Ii‘,:" ‘v

1T

e

ﬂ ﬂkaafkg
=7 -}
i-l";‘ls. ;!.

e




Balancing traits of direct & iterative solvers

::,,.m:::nIlI::h.|||::m|||=:;.,|.|:;:mll

] 1
T
mllmullll“m -
m"llllnlli"". -
. szl
nl =1l e
FRR...FP] . HH.
o0, 2k, -
F"l e F" - CHTH
nl ., -
f"l-lf" - .
e, o, s
P " ' rF ' """
il =1
” i H
| Eal
” “ ul "
n . u H
Il m ” H
p ¥
=1 Fal '



Balancing traits of direct & iterative solvers




SPGrid - Virtual memory tricks sparse/adaptive grid data




SPGrid - Virtual memory tricks sparse/adaptive grid data 3




N“ . —

Adaptive Uniform
| 35M cells | 13M cells



C
O
=)
©
-
k=
(Vg
)
=
=)
o
(q°]
o
(qv]
.
R
(Vs
R
O
.
)
>N
.
O
&
()
&
I
-
)
=
>

\?/ s/. s
(N ‘% AN
k| R * J | -
.‘_;%. Pon /
..u\ .,.. s“... P ,~/ / .
m{‘/%/‘,.ff/ Py ﬁx :
[ JA VR ( S Y N
y N " ‘N \
* -O [‘ % ./\ | | 2
[i§ -s h ...s,/.. |
AV N S A AN L
i 3 /? "..;/, [ /s
YA YL vvo‘ N 1
4 | /
u YA YA .‘ [ \
N ou,“\ ‘.‘ ,.\/‘,‘ ] .\/
h '-\J\/ﬂ\ 0‘.-/7~ | s. V! AN
) om“ o ...“‘. z_ / /L \ :
Riahd INENLS YL N ‘
\ ..\Z N/\f \/ N P LY f Js
PN INENCS NG s |
| NN i~ N f
NSRS Ny N ;
/\ ‘ | “s/./r s. Y ‘ 7s
NN AV \
NS OIN S / .
4/‘ ﬁ\ / | / N
\, \./.s \, \
N S 4 | /
N, | AN \
pY N 5
¢ & 0|F|’
F. .F
® e & o &
oo 0H
— ® L 2 -3 & - -
0.»01u+00000.
9| ool o el o
0.0.00+.0.*.ﬂ
——T—0—1—0—0—1—0——@
oo deq
—8—T8— 5 &
L. 4 o
—@ - - ®
o9 ) [y o )

ierarchy

SPGrid H

Geometric Octree



Narrow band
of interest
Entire spatial
domain

N




float* grid = new float[nx * ny * nz];

—_‘

Narrow band
of interest

Entire spatial
domain

N




2048



2048

~1 GB of total storage

99% Is wasted!

*"—‘w

2048 ——




= mmap(nx * ny * nz,

float* grid




mmap (nx * ny * nz,

grid

float*




Lexicographical

4KB Page N

~10%
utilization




4KB Page ——




Morton Ordering

E RN EN SN
S AN AN
SN S TS MRS S

S g SEa ‘SEs
SN RIS S
Eote WSEas (ks
N E N EA e
SRR A RS X




_______________

TI_\
M
AN N N ‘
N N N |

I\ N N N
N RO N N

Lexicographical
traversal
within block

/
~ _— e e e e e e — ——— =
’

/-curve traversal
across blocks






128 129 130 131

144 145 146 147

192

44 45 46 47
40 41 42 43
36 37 38 39
32 33 34 35

60 61 62 63
56 57 58 59
52 53 54 55
48 49 50 51

108
104
100

96

12 13 14 15
8 9 10 11
4 5 6 7
O 1 2 3

28 29 30 31
24 25 26 27
20 21 22 23
16 17 18 19

/6
/2
68
64




Array Y-coordinate (binary)

>

1000
0111
0110
0101
0100
0011
0010
0001
0000

128 129 130 131

144 145 146 147

192

44 45 46 47
40 41 42 43
36 37 38 39
32 33 34 35

60 61 62 63
56 57 58 59
52 53 54 55
48 49 50 51

108
104
100

96

12 13 14 15
8 9 10 11
4 5 6 7
O 1 2 3

28 29 30 31
24 25 26 27
20 21 22 23
16 17 18 19

/6
/2
68
64

0000 0001 0010 0011 0100 0101 0110 0111 1000

Array X-coordinate
(binary) S




Array Y-coordinate (binary)

>

0111

128 129 130 131

44 45 (46)47

40 41 42 43
36 37 38 39
32 33 34 35

144 145 146 14/7|1

60 61 62 63
56 57 58 59
52 53 54 55
48 49 50 51

12 13 14 15
8 9 10 11
4 5 6 7
O 1 2 3

28 29 30 31
24 25 26 27
20 21 22 23
16 17 18 19

0010

Array X-coordinate
(binary) S




Array Y-coordinate (binary)

>

0111

~16 cycles on

Haswell processor!

44

40" 27 43[56 57

36 37 38 39
32 33 34 35

58 59
52 53 54 55
48 49 50 57

100

926

12 13 14 15
8 9 10 11
4 5 6 7
O 1 2 3

28 29 30 31
24 25 26 27
20 21 22 23
16 17 18 19

/6
/2
68
64

0010

W =00101110@)

Array X-coordinate
(binary) S




>

Array Y-coordinate (binary)

Stencil operations
even cheaper:
.. ~b-6 cycles per

0111 |44 ﬂeighbor fetch on :
40 Sandy Bridge+

36%37%38739[52 53 54 55|00 e
32 33 34 35|48 49 50 57| 9¢
12 13 14 15|28 29 30 31| /¢
8 9 10 11|24 25 26 27|/-
4 5 6 7120 21 22 23|6¢

O 1 2 3(1617 18 19|6¢ Array X-coordinate
(binary) S

0010



Remaining details ... ’

* Solver : Multigrid-Preconditioned CG
* MG adapted to grid hierarchy, too

* (Can do dynamically changing adaptation pattern
* Originally designed for CPU (+Xeon Phi trivially),
but GPU analogues implemented to follow-up work




Harnessing platform heterogeneit

* Heterogeneous platforms
* Mult-GPU equipped SMP servers ...
* Small "fast’” memory + Large “slow” memory hybrids

(e.g.Knights Landing) ...

* Orany reasonably deep memory hierarchy ...

* Best ratio of $$ to Raw Computational Capacrty



Harnessing platform heterogeneit

* Heterogeneous platforms
* Mult-GPU equipped SMP servers ...
* Small "fast’” memory + Large “slow” memory hybrids

(e.g.Knights Landing) ...

* Orany reasonably deep memory hierarchy ...

* Best ratio of $$ to Raw Computational Capacrty

(I'10+ THops, 768GB RAM, 4.5+GB/S bandwidth : $20k)



Harnessing platform heterogeneit

* Challenges
* GFlops/Gload ratio - approaching 100:| today

(closerto |2-15:1 in"good old pre-GPU/SIMD days™ )
* Access to non-local memory at least one order of

magnitude slower
(PCle/Infiniband vs DDD4, or KNL fast/slow memory)
* Lven worse scenario :
Workload too slow for CPU, too large for GPU
» Offload overhead often a non-starter for tradrtional
distributed parallelization



Harnessing platform heterogeneit

* A crisis or an opportunity?
* Dream scenario :
Making an algorithm work on a heterogeneous platform as
fast as a homogeneous one with the aggregate specs
* Certainly not possible in general (via automated means)

* ... but doable for many problems in computational
dynamics!



Harnessing platform heter




<

| T \
- o -
i o2
p | »

a||

| *Yields dense system
*Must run on CPU



Harnessing platform heter




Harnessing platform heterogeneit

* Performance restored by:

* Making any offloaded tasks are large enough to absorb

communication cost (and get something In return)
* [weaking the math (adaptivity) to reduce complexity

* Use an “approximate” divide and conquer design



w—-———-—————

Harnessing platform heterogeneit §

!
J
[»

l{ |




Harnessing platform heterogeneity










In retrospect ... ’

 Should we be open to cross-layer interventions? Why?
* Might be a necessity for competitiveness ...

* Other disciplines appreciate this, too!

(and graphics researchers have experience doing It)
* A more fundable vision?
* Historical precedent ...



Digital humans, virtual surgery and fast fluids; do they have
more in common than their hunger for performance?

Eftychios Sifakis

Department of Computer Sciences
University of Wisconsin - Madison

'WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON





