
What is an Algorithm?
• An algorithm is a sequence of

instructions that one must perform in
order to solve a well formulated
problem.

Algorithm vs. Program
• An algorithm is an “abstract” description of a

 process that is precise, yet general
 – Algorithms are described as generally as

 possible, so they can be analyzed and proven
 correct

• Programs are often specific implementations of
 an algorithm
 – For a specific machine
 – In a specific language

An Example: Buying a CD
1. Go to Best Buy
2. Go to the correct music

 genre section
3. Search the racks for

the artist’s name
4. Take a copy of the CD.
5. Go to the register.
6. Check out using credit

 card.
7. Rip it onto your laptop.

1. Sign into iTunes.com
2. Go to iTunes Store
3. Type CD title into

search
4. Scroll through Album

list to find CD cover
5. Click “Buy Album”.
6. Accept Credit Card

 charge
7. Agree to download

Two Observations
• Given a problem, there may be more than

one correct algorithms.

• However, the costs to perform different

algorithms may be different.

• We can measure costs in several ways

 – In terms of time
 – In terms of space

Correctness
• An algorithm is correct only if it produces correct

result for all input instances.
– If the algorithm gives an incorrect answer for one

or more input instances, it is an incorrect algorithm.
• Coin change problem

 – Input: an amount of money M in cents
 – Output: the smallest number of coins

• US coin change problem

US Coin Change

Change Problem
• Input:

 – an amount of money “Amount”
 – an array of denominations c = (c1, c2, …,
cd) in decreasing values

• Output: the smallest number of coins

Complexity of an Algorithm?
• Complexity — the cost in time and space of an

 algorithm as a function of the input’s size
 – Correct algorithms may have different
 complexities.

• The cost to perform an instruction may vary
 dramatically.
 – An instruction may be an algorithm itself.
 – The complexity of an algorithm is NOT

 equivalent to the number of instructions.
• Thinking algorithmically…

Recursive Algorithms
• Recursion is technique for describing an

algorithm in terms of itself.
 – These recursive calls are to simpler, or
reduced, versions of the original calls.
 – The simplest versions, called “base

 cases”, are merely declared (because
 the answer is known).

factorial(n) = n x factorial(n -1)

factorial(1) =1

Recursive definition:

Base case:

Example of Recursion
 def factorial(n):
 if (n == 1):
 return 1
 else:

 return n*factorial(n-1)

• Recursion is a useful technique for specifying
 algorithms concisely

• Recursion can be used to decompose large
 problems into smaller simpler ones

• Recursion can illuminate the non-obvious

Towers of Hanoi
• There are three pegs and a number of disks

with
 decreasing radii (smaller ones on top of
larger
 ones) stacked on Peg 1.

• Goal: move all disks to Peg 3.
• Rules:

 – At each move a disk is moved from one
 peg to another.
 – Only one disk may be moved at a time,
 and it must be the top disk on a tower.
 – A larger disk may never be placed upon
 a smaller disk.

A single disk tower

A single disk tower

A two disk tower

Move 1

Move 2

Move 3

A three disk tower

Move 1

Move 2

Move 3

Move 4

Move 5

Move 6

Move 7

Simplifying the algorithm for 3 disks

• Step 1. Move the top 2 disks from 1 to 2
using 3 as intermediate

Simplifying the algorithm for 3 disks

• Step 2. Move the remaining disk from 1 to 3

Simplifying the algorithm for 3 disks

• Step 3. Move 2 disks from 2 to 3 using 1 as
intermediate

Simplifying the algorithm for 3 disks

Recursive Towers of Hanoi
• At first glance, the recursive nature of the

towers of Hanoi problem may not be
obvious

• Consider, that the 3 disk problem must be
solved as part of the 4 disk problem

• In fact it must be solved twice! Moving the
bottom disk once in-between

The problem for 3 disks becomes

• A base case of a one-disk move from 1 to 3.
• A recursive step for moving 2 or more

disks.
• To move n disks from Peg 1 to Peg 3, we

need to
 – Move (n-1) disks from Peg 1 to Peg 2
 (Note: Peg 2 is the “unused” extra peg)
 – Move the nth “bottom” disk from Peg 1 to

 Peg 3
 – Move (n-1) disks from Peg 2 to Peg 3

Towers of Hanoi Algorithm
def towersOfHanoi(n, fromPeg, toPeg):

 if (n == 1):
 print "Move disk from peg",fromPeg,"to peg",toPeg
 return

unusedPeg = 6 - fromPeg - toPeg
towersOfHanoi(n-1,fromPeg,unusedPeg)
print "Move disk from peg", fromPeg,"to peg", toPeg
towersOfHanoi(n-1,unusedPeg,toPeg)
return

Towers of Hanoi

Another Algorithm: Sorting
• A very common problem is to arrange data

into either ascending or descending order
 – Viewing, printing
 – Faster to search, find min/max,
compute median/mode, etc.

• Lots of different sorting algorithms
 – From the simple to very complex
 – Some optimized for certain situations
(lots ofduplicates, almost sorted, etc.)

Exercise
• You are given a list of 10 numbers
 {n1, n2, n3, n4, n5, n6, n7, n8, n9, n10}

• Write down precise detailed instructions
for sorting them in ascending order

Sorting Exercise
• We’ll look at your sorting algorithms

more closely
• Are they correct?
• How many steps are used to sort N

items?

How to Sort?
• How would you describe the task of sorting a list

 of numbers to a 5-year old, who knows only basic
 arithmetic operations?

• Goal 1: A correct algorithm
• There are many possible approaches
• Each requires the atomic operation of comparing

 two numbers
• Are all sorting approaches equal?
• What qualities distinguish “good” approaches

 from those less good?
 – Speed? Space required?

Selection Sort

Selection Sort

Other Ways to Sort?
• Would you use this algorithm
 yourself?
 – Progress is slow, (i.e. moving one
 value to the front of the list
 after comparing to all others)

• Any Ideas?
• An Insertion Sort

Other Ways to Sort?
• Would you use this algorithm

 yourself?
 – Progress is slow, (i.e. moving one
 value to the front of the list
 after comapring to all others)

• Perhaps we can exploit recursion
 for sorting…

• Better yet, we can
 divide and conquer!

Merge Sort

Merge Sort

N(N-1)/2 vs N log2N
• For small numbers, perhaps not
– N = 4, N(N-1)/2 = 6, N log2N = 8
– N = 8, N(N-1)/2 = 28, N log2N = 24
– N = 16, N(N-1)/2 = 120, N log2N = 64
• But the difference can be quite large

for a large list of numbers
– N = 1000, N(N-1)/2 = 499500, N log2N =

9966

Is Recursion the Secret Sauce?

• A noticeable difference
between selection sort and
merge sort, is that merge sort
was specified
 as a recursive algorithm

• Does recursion always lead to
fast algorithms?

• Previously, I offered recursion
as a tool for specifying
algorithms concisely, in terms
of a common repeated “kernel”

Year 1202: Leonardo Fibonacci:
• He asked the following question:

 – How many pairs of rabbits are
 produced from a single pair in one
 year if every month each pair of
 rabbits more than 1 month old
 produces a new pair?
 – Here we assume that each pair has one male and
 one female, the rabbits never die, initially we have
 one pair which is less than 1 month old
 – f(n): the number of pairs present at the beginning
 of month n

Fibonacci Number

Fibonacci Number
• Clearly, we have:

 – f(1) = 1 (the first pair we have)
 – f(2) = 1 (still the first pair we have because they are just
1 month old. They need to be more than one month old to
 reproduce)
 – f(n) = f(n-1) + f(n-2) because f(n) is the sum of the old
 rabbits from last month (f(n-1)) and the new rabbits
 reproduced from those f(n-2) rabbits who are old enough
to reproduce.
 – f: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …
 – The solution for this recurrence is:

Fibonacci Number

Fibonacci Number

Is there a “Real difference”?
• 10’s Number of students in a class
• 100’s Number of students in a department
• 1000’s Number of students in the college of art and science
• 10000’s Number of students enrolled at UNC
• …
• …
• 10^10 Number of stars in the galaxy
• 10^20 Total number of all stars in the universe
• 10^80 Total number of particles in the universe
• 10^100 << Number of moves needed for 400 disks in the Towers

of Hanoi puzzle

• Towers of Hanoi puzzle is computable but it is NOT feasible.

Is there a “Real” Difference?

• Growth of functions

Asymptotic Notation
• Order of growth is the interesting measure:

 – Highest-order term is what counts
• As the input size grows larger it is the high

order term that dominates
• Θ notation: Θ(n2) = “this function grows similarly

to n2”.
• Big-O notation: O (n2) = “this function grows at

 least as slowly as n2”.
 – Describes an upper bound.

Big-O Notation

• What does it mean?
 – If f(n) = O(n2), then:

• f(n) can be larger than n2 sometimes, but…
• We can choose some constant c and some value n0

 such that for every value of n larger than n0 : f
(n) <cn2

• That is, for values larger than n0, f(n) is never more
than a constant multiplier greater than n2

• Or, in other words, f(n) does not grow more than a
constant factor faster than n2.

Visualization of O(g(n))

Big-O Notation

Big-O Notation
• Prove that:
• Let c = 21 and n0 = 4
• 21n2 > 20n2 + 2n + 5 for all n > 4
 n2 > 2n + 5 for all n > 4
 TRUE

Θ-Notation

Visualization of Θ(g(n))

Some Other Asymptotic Functions

Visualization of Asymptotic Growth

Analogy to Arithmetic Operators

Measures of Complexity
• Best case

 – Super-fast in some limited situation is not very
 valuable information

• Worst case
 – Good upper-bound on behavior
 – Never get worse than this

• Average case
 – Averaged over all possible inputs
 – Most useful information about overall
performance
 – Can be hard to compute precisely

Complexity
• Time complexity is not necessarily the

same as the space complexity
• Space Complexity: how much space an

algorithm needs (as a function of n)
• Time vs. space

Techniques
• Algorithm design techniques
 – Exhaustive search
 – Greedy algorithms
 – Branch and bound algorithms
 – Dynamic programming
 – Divide and conquer algorithms
 – Randomized algorithms

• Tractable vs intractable algorithms

