What is an Algorithm?

» An algorithm is a sequence of
instructions that one must perform in
order to solve a well formulated
problem.

input (arguments)
Problem: Complexity

Algorithm: Correctness
Complexity

output

Algorithm vs. Program

* An algorithm is an "abstract” description of a
process that is precise, yet general

- Algorithms are described as generally as
possible, so they can be analyzed and proven
correct

* Programs are often specific implementations of
an algorithm

- For a specific machine

- In a specific language

An Example:

1. Go to Best Buy
2. 6o to the correct music
genre section

3. Search the racks for
the artist's name

4. Take a copy of the CD.

5. 6o to the register.

6. Check out using credit
card.

7. Rip it onto your laptop.

Buying a CD

1. Sign into iTunes.com
2. 6o to iTunes Store

3. Type CD title into
search

4. Scroll through Album
list to find CD cover

5. Click "Buy Album”.

. Accept Credit Card
charge

7. Agree to download

o

Two Observations

* Given a problem, there may be more than
one correct algorithms.

» However, the costs to perform different
algorithms may be different.

» We can measure costs in several ways
- In terms of time
- In terms of space

Correctness

* An algorithm is correct only if it produces correct
result for all input instances.

- If the algorithm gives an incorrect answer for one
or more Input instances, it is an incorrect algorithm.

» Coin change problem
- Input: an amount of money M in cents
- Output: the smallest number of coins
» US coin change problem

—————
B e =~
A\

P

b -

-— : ‘!7‘\—

-

.’/

» e

US Coin Change

72 cents - _ r<=— Amount
l @ qg<r1/25
r<—=r-=25-q
d=r/10
r<—r-=10-d
n<rl/5

r<—r-=5n

Two quarters, 22 cents left p<r

Can we

generalize
it?

-
ls it
%_ correct?

. . Twodimes, 2 cents left

@ @ Two pennies

Change Problem

* Input:
- an amount of money “Amount”

- an array of denominations ¢ = (cl, c2, ...,
cd) in decreasing values

» Output: the smallest number of coins

, ‘ Incorrect
7 Amount _ |
n 0 algorithm! |
Fork 1ltod .'
AmO”m-JrO- > L — 3 '-"'I'he correct answeF\
c=1(25.20.10.5. 1) o i Ul ba > ,
" . Should be 2. A%
r rc, i,. B "
return n o B Q\t.) =
st A

y
_correct?

7\

Complexity of an Algorithm?

» Complexity — the cost in tfime and space of an

algorithm as a function of the input's size

- Correct algorithms may have different
complexities.

* The cost to perform an instruction may vary

dramatically.

- An instruction may be an algorithm itself.

- The complexity of an algorithm is NOT
equivalent to the number of instructions.

* Thinking algorithmically...

Recursive Algorithms

* Recursion is technigue for describing an
algorithm in terms of itself.

- These recursive calls are to simpler, or
reduced, versions of the original calls.

- The simplest versions, called "base
cases"”, are merely declared (because

the answer is known).

Recursive definition: factorial(n) = n x factorial(n -1)

Base case: factorial(1) =1

Example of Recursion

def factorial(n):

if (n==1)
return 1
else:

return n*factorial(n-1)

Recursion is a useful technique for specifying
algorithms concisely

* Recursion can be used to decompose large
problems into smaller simpler ones

* Recursion can illuminate the non-obvious

Towers of Hanoi

- Th_%r"e are three pegs and a number of disks
wi

decreasing radii (smaller ones on top of
larger

ones) stacked on Peg 1.

* Goal: move all disks to Peg 3.

- Rules:

- At each move a disk is moved from one
peg to another.

- Only one disk may be moved at a time,
and it must be the top disk on a tower.

- A larger disk may never be placed upon
a smaller disk.

A single disk tower

A single disk tower

A two disk tower

Move 1

N [eesss—

Move 2

Move 3

A three disk tower

Move 2

‘ ‘

N | eeess——

= [

Move 5

#

Move 7

Simplifying the algorithm for 3 disks

+ Step 1. Move the top 2 disks from 1 to 2
using 3 as intermediate

Simplifying the algorithm for 3 disks

& D

1 2 3

» Step 2. Move the remaining disk from 1 to 3

Simplifying the algorithm for 3 disks

%

1 2 3

+ Step 3. Move 2 disks from 2 to 3 using 1 as
intfermediate

Simplifying the algorithm for 3 disks

Recursive Towers of Hanoi

» At first glance, the recursive nature of the
towers of Hanoi problem may not be
obvious

* Consider, that the 3 disk problem must be
solved as part of the 4 disk problem

* In fact it must be solved twice! Moving the
bottom disk once in-between

The problem for 3 disks becomes

- A base case of a one-disk move from 1 to 3.

. /i\j.ricursive step for moving 2 or more
isks.

* To move n disks from Peg 1 to Peg 3, we
need to

- Move (n-1) disks from Peg 1 to Peg 2
(Note: Peg 2 is the "unused” extra peg)

- Move the nth "bottom” disk from Peg 1 to
Peg 3

- Move (n-1) disks from Peg 2 to Peg 3

Towers of Hanoi Algorithm

def towersOfHanoi(n, fromPeg, toPeg):
if (n==1):

print "Move disk from peg",fromPeg,"to peg",toPeg

return
unusedPeg = 6 - fromPeg - toPeg
towersOfHanoi(n-1,fromPeg,unusedPeg)
print "Move disk from peg", fromPeg,"to peg", toPeg
towersOfHanoi(n-1,unusedPeg,toPeq)
return

The number of disk moves is:
() =1

IT(n)=2Tn-1)+1= 2" -1 Exponential algorithm

Towers of Hanoi

e [fyou call towerOfHanoiwith ___ it takes
— 1 disk ... T move
— 2 disks ... D moves
— 5 disks ... / moves
— 4 digks ... 15 moves
— B disks ... 51 moves

— 20 disgks 1,0485.575 moves
— 527 disks .. 4294907,295 moves

Another Algorithm: Sorting

* A very common problem is to arrange data
into either ascending or descending order

- Viewing, printing

- Faster to search, find min/max,
compute median/mode, etc.

» Lots of different sorting algorithms
- From the simple to very complex

- Some optimized for certain situations
(lots ofduplicates, almost sorted, etc.)

Exercise

* You are given a list of 10 numbers
{n1, n2, n3, n4, n5, n6, n7, n8, n9, n10}

* Write down precise detailed instructions
for sorting them in ascending order

e . ¢ &

Sorting Exercise

+ We'll look at your sorting algorithms
more closely

* Are they correct?

* How many steps are used to sort N
Items?

How to Sort?

* How would you describe the task of sorting a list
of numbers to a 5-year old, who knows only basic
arithmetic operations?

* Goal 1. A correct algorithm

» There are many possible approaches

» Each requires the atomic operation of comparing
two numbers

» Are all sorting approaches equal?

+ What qualities distinguish "good" approaches
from those less good?

- Speed? Space required?

Selection Sort

Method #1

Find the emallest element and 271121 5 [1&| 1 7/

ewap it with the firet:

Find the next smallest element

and ewap it with the second: S 1121271185 | 1 7/

Do the same for the thirdelement: | A | 7 (27118 | 11 | 12

And the fourth: |5 7111 1e]27] 12
—
Finally, the fifth: 21 7111112127118

Completely sorted: A 7/ MNMI112 118 | 27/

Selection Sort

def selectionSort(list):

first=0

while (first < len(list)): (n -1) swaps
index = findMin(list, first)
temp = list[index]
listlindex] = list[first]
list[first] = temp
first = first+1

def findMin(list, first):

1 index = first
n(n —1) comparisons for i in xrange(first+1,len(list)):
2 if (list[i] < list[index]):
index = |

return index

Other Ways to Sort?

* Would you use this algorithm
yourself?

- Progress is slow, (i.e. moving one
value to the front of the list
after comparing to all others) "
* Any Ideas?

 An Insertion Sort

A

Other Ways to Sort?

* Would you use this algorithm
yourself?

- Progress is slow, (i.e. moving one
value to the front of the list
after comapring to all others)

* Perhaps we can exploit recursion -‘
for sorting...

* Better yet, we can
divide and conquer!

~

Merge Sort

Method #2

Split the list in half |2/ L el 2 L

forming 2 sublists L \
27112 5| e|n| 7|

Continue splitting sublists o7

until lists are a just one

12
tem 57 @
5 s

Then combine sorted 27 12 | Ea | 7 |11
sublists together, by ,, /
selecting the smallest % | 12 27' | 7111 118
value from the front of - pa

h sublist | - ’
cach etve 517 |1[12]18]27

Merge Sort

def mergeSort(list):
if (len(list) == 1): Iogz(n) eplite
return list
half = len(list)/2
left = mergeSort(list[:half])
right = mergeSort(list[half:])

return combine(left,right) def combine(listL,listR):

mergedList =[]
while (len(listL) > 0 and len(listR) > 0):
if (listL[0] < listR[0]):
< N steps to combine lists mergedList.append(listL.pop(0))
else:
mergedList.append(listR.pop(0))
while (len(listL) > 0):
mergedList.append(listL.pop(0))
while (len(listR) > 0):
mergedList.append(listR.pop(0))
return mergedList

N(N-1)/2 vs N log2N

* For small numbers, perhaps not
-N=4,N(N-1)/2 =6, N log2N = 8

- N = 8, N(N-1)/2 = 28, N log2N = 24

- N =16, N(N-1)/2 = 120, N log2N = 64

» But the difference can be quite large
for a large list of numbers

- N = 1000, N(N-1)/2 = 499500, N log2N =
9966

Is Recursion the Secret Sauce?

- A noticeable difference
between selection sort and
merge sort, is that merge sort
was specified

as a recursive algorithm

* Does recursion always lead to
fast algorithms?

* Previously, T offered recursion
as a tool for specifying
algorithms concisely, in ferms
of a common repeated "kernel”

Year 1202: Leonardo Fibonacci:

* He asked the following question:
- How many pairs of rabbits are
produced from a single pair in one
year if every month each pair of
rabbits more than 1 month old
produces a new pair?
- Here we assume that each pair has one male and
one female, the rabbits never die, initially we have
one pair which is less than 1 month old
- f(n): the number of pairs present at the beginning
of month n

Fibonacci Number

@@
/M‘ *8
‘Bﬁ“ﬁ’i\ F i N

. PEFLR PR

Fibonacci Number

* Clearly, we have:
- f(1) = 1 (the first pair we have)
- f(2) = 1 (still the first pair we have because they are just
I month old. They need to be more than one month old to

reproduce)
- f(n) = f(n-1) + f(n-2) because f(n) is the sum of the old
rabbits from last month (f(n-1)) and the new rabbits

reproduced from those f(n-2) rabbits who are old enough
to reproduce.

-f112 3 5 8 13 21 34, 55, ...
- The solution for this recurrence is:

1+4/5,, 1=4/5

1

Vi o

f(n)=

o

Fibonacci Number

Exponential in time! def fibonacciRecursive(n):
Recursive if (n <=2):
Algorithm return 1
else:

a = fibonacciRecursive(n-1)
b = fibonacciRecursive(n-2)
return a+b

Fibonacci Number

Linear in timel

lterative
Algorithm

<\\\
\-‘

& e

lln - 3|

def fibonacci(n):
f=1[1,1]
for i in xrange(2,n):
f += [f[i-1]+f[i-2]]
return f[n-1]

Is there a "Real difference”?

- 10's Number of students in a class

- 100's Number of students in a department

- 1000's Number of students in the college of art and science
-+ 10000's Number of students enrolled at UNC

£ 10710 Number of stars in the galaxy
- 10720 Total number of all stars in the universe
- 10780 Total number of particles in the universe

» 107100 << Number of moves needed for 400 disks in the Towers
of Hanoi puzzle

- Towers of Hanoi puzzle is computable but it is NOT feasible.

Is there a "Real” Difference?

- Growth of functions

O(n"3|} O(n*2)
}

200 |
o@*n) |
180 + ’ |I
|
160 } |
140 +

120 + ’ ‘
|
100 + | (|
an 4) '

40 | |

20 +

/

O(nlogn)

o(1)

W

0

r
LI I B I B A B B B B B BN NN B B R B I NN N R BN B R B B BN B B RN B BN N N N R N B B N N R B N B R R B B A
|

|
il
03 6 9121518212427 303338309 42454851 S4 57 EOB3 66 EQ 72 75733581 84 87 90 93 96 949

n n nign n? n? 4
1 1 0.00 1 0 1 1 2
10 1 | 332 10 33 100 1,000 1024
100 1 | 6.64 100 664 10,000 (1,000,000 | 1.2 x 103
1000 | 1 | 997 1000 | 9970 | 1,000,000 10° 1.1 x 1030
—| O(n)
O(logn)

Asymptotic Notation

* Order of growth is the interesting measure:
- Highest-order term is what counts

» As the input size grows larger it is the high
order term that dominates

* O notation: ©(n?) = "this function grows similarly
to né”

* Big-O notation: O (n°) = “this function grows at
least as slowly as n”.

- Describes an upper bound.

Big-O Notation

f(n)=0(g(n)): there exist positive constants c and n, such that
0< f(n)=cg(n)foralln=n,

* What does it mean?

- If f(n) = O(n?), then:

* f(n) can be larger than n? sometimes, but...

- We can choose some constant ¢ and some value nO
such that for every value of n larger than nO : f
(n) <cn®

» That is, for values larger than n,, f(n) is never more

than a constant multiplier greater than n?

* Or, in other words, f(n) does not grow more than a

constant factor faster than n?.

Visualization of O(g(n))

cg(n)

Big-O Notation

2n* = 0n?)

1,000,0001* +150,000 = O(2*)
Sn® =Tn+20= 0672)

2n 42 = O(n2)

n' =0 nz)

Big-O Notation

. Prove that: 20n° +2n+5 = ()(;72)
»let c=21andn, = 4

» 21n? > 20n? + 2n + 5 for all n > 4
n°>2n+5 foralln>4

TRUE

©-Notation

e Big-0is not a tight upper bound.
In other words n = O(#?)

* O provides a tight bound
f (n)= @(g(n)) there exist positive constants c¢,, ¢, , and #, such that

0= clg(n)s f(n)s czg(n)for alln=n,

e n=0(n% £ 0O(n?
e 20012 = O(H2) = ©(n?)
o n*° % 0(n%) # O(n)

Visualization of ©(g(n))

c,g(n)

Some Other Asymptotic Functions

e Little o — A non-tight asymptotic upper bound
— n=o(n?), n=0(n?)
— 21 # o(h?), dn¢ = O(n?)

e (2 — A lower bound

£(7)=Q(g()): there exist positive constants ¢ and 1z, such that
f(n)=cg(n)foralln=n,

— n? = Q(n)
* » — A non-tight asymptotic lower bound

e f(n)=0(n) < f(n)=0(n)and f(n) = Q(n)

Visualization of Asymptotic Growth

o(f(m)) O(f(n))
O(f(n))

/ 7o
/ Q(f(n))

— o(f(n))

Analogy to Arithmetic Operators

f(”): O g(n)) ~ a<bh
f)=9l) = a=b
f)=0(k) = a=b
f("7)= 0 g(n)) ~ a<b
f)=olgl)) = a>b

Measures of Complexity

* Best case

- Super-fast in some limited situation is not very
valuable information

* Worst case

- Good upper-bound on behavior

- Never get worse than this

- Average case

- Averaged over all possible inputs

- Most useful information about overall
performance

- Can be hard to compute precisely

Complexity

+ Time complexity is not necessarily the
same as the space complexity

» Space Complexity: how much space an
algorithm needs (as a function of n)

- Time vs. space

Techniques

* Algorithm design techniques
- Exhaustive search
- Greedy algorithms
- Branch and bound algorithms
- Dynamic programming
- Divide and conquer algorithms
- Randomized algorithms
* Tractable vs intractable algorithms

