
What is an Algorithm? 
• An algorithm is a sequence of 

instructions that one must perform in 
order to solve a well formulated 
problem. 



Algorithm vs. Program 
• An algorithm is an “abstract” description of a 

 process that is precise, yet general 
 – Algorithms are described as generally as 

 possible, so they can be analyzed and proven 
 correct 

• Programs are often specific implementations of 
 an algorithm 
 – For a specific machine 
 – In a specific language 



An Example: Buying a CD 
1. Go to Best Buy 
2. Go to the correct music 

 genre section 
3. Search the racks for 

the artist’s name 
4. Take a copy of the CD. 
5. Go to the register. 
6. Check out using credit 

 card. 
7. Rip it onto your laptop. 

1. Sign into iTunes.com 
2. Go to iTunes Store 
3. Type CD title into 

search 
4. Scroll through Album 

list to find CD cover 
5. Click “Buy Album”. 
6. Accept Credit Card 

 charge 
7. Agree to download 



Two Observations 
• Given a problem, there may be more than 

one correct algorithms. 
 
• However, the costs to perform different 

algorithms may be different. 
 
• We can measure costs in several ways 

 – In terms of time 
 – In terms of space 



Correctness 
• An algorithm is correct only if it produces correct 

result for all input instances. 
– If the algorithm gives an incorrect answer for one 

or more input instances, it is an incorrect algorithm. 
• Coin change problem 

 – Input: an amount of money M in cents 
 – Output: the smallest number of coins 

• US coin change problem 



US Coin Change 



Change Problem 
• Input: 

 – an amount of money “Amount” 
 – an array of denominations c = (c1, c2, …, 
cd) in decreasing values 

• Output: the smallest number of coins 



Complexity of an Algorithm? 
• Complexity — the cost in time and space of an 

 algorithm as a function of the input’s size 
 – Correct algorithms may have different 
  complexities. 

• The cost to perform an instruction may vary 
 dramatically. 
 – An instruction may be an algorithm itself. 
 – The complexity of an algorithm is NOT 

 equivalent to the number of instructions. 
• Thinking algorithmically… 



Recursive Algorithms 
• Recursion is technique for describing an 

algorithm in terms of itself. 
 – These recursive calls are to simpler,  or 
reduced, versions of the original  calls. 
 – The simplest versions, called “base 

 cases”, are merely declared (because 
 the answer is known). 

factorial(n) = n x factorial(n -1) 
 
factorial(1) =1 

Recursive definition: 
 
Base case: 



Example of Recursion 
  def factorial(n): 
   if (n == 1): 
        return 1 
   else: 

          return n*factorial(n-1) 

• Recursion is a useful technique for specifying 
 algorithms concisely 

• Recursion can be used to decompose large 
 problems into smaller simpler ones 

• Recursion can illuminate the non-obvious 



Towers of Hanoi 
• There are three pegs and a number of disks 

with 
 decreasing radii (smaller ones on top of 
larger 
 ones) stacked on Peg 1. 

• Goal: move all disks to Peg 3. 
• Rules: 

 – At each move a disk is moved from one  
 peg to another. 
 – Only one disk may be moved at a time,  
 and it must be the top disk on a tower. 
 – A larger disk may never be placed upon 
  a smaller disk. 



A single disk tower 



A single disk tower 



A two disk tower 



Move 1 



Move 2 



Move 3 



A three disk tower 



Move 1 



Move 2 



Move 3 



Move 4 



Move 5 



Move 6 



Move 7 



Simplifying the algorithm for 3 disks 

• Step 1. Move the top 2 disks from 1 to 2 
using 3 as intermediate 



Simplifying the algorithm for 3 disks 

• Step 2. Move the remaining disk from 1 to 3 



Simplifying the algorithm for 3 disks 

• Step 3. Move 2 disks from 2 to 3 using 1 as 
intermediate 



Simplifying the algorithm for 3 disks 



Recursive Towers of Hanoi 
• At first glance, the recursive nature of the 

towers of Hanoi problem may not be 
obvious 

• Consider, that the 3 disk problem must be 
solved as part of the 4 disk problem 

• In fact it must be solved twice! Moving the 
bottom disk once in-between 



The problem for 3 disks becomes 

• A base case of a one-disk move from 1 to 3. 
• A recursive step for moving 2 or more 

disks. 
• To move n disks from Peg 1 to Peg 3, we 

need to 
 – Move (n-1) disks from Peg 1 to Peg 2 
  (Note: Peg 2 is the “unused” extra peg) 
 – Move the nth “bottom” disk from Peg 1 to 

 Peg 3 
 – Move (n-1) disks from Peg 2 to Peg 3 



Towers of Hanoi Algorithm 
def towersOfHanoi(n, fromPeg, toPeg): 

    if (n == 1): 
  print "Move disk from peg",fromPeg,"to peg",toPeg 
  return 

unusedPeg = 6 - fromPeg - toPeg 
towersOfHanoi(n-1,fromPeg,unusedPeg) 
print "Move disk from peg", fromPeg,"to peg", toPeg 
towersOfHanoi(n-1,unusedPeg,toPeg) 
return 



Towers of Hanoi 



Another Algorithm: Sorting 
• A very common problem is to arrange data 

into either ascending or descending order 
 – Viewing, printing 
 – Faster to search, find min/max, 
compute median/mode, etc. 

• Lots of different sorting algorithms 
 – From the simple to very complex 
 – Some optimized for certain situations   
(lots ofduplicates, almost sorted, etc.) 



Exercise 
• You are given a list of 10 numbers 
 {n1, n2, n3, n4, n5, n6, n7, n8, n9, n10} 

• Write down precise detailed instructions 
for sorting them in ascending order 



Sorting Exercise 
• We’ll look at your sorting algorithms 

more closely 
• Are they correct? 
• How many steps are used to sort N 

items? 



How to Sort? 
• How would you describe the task of sorting a list 

 of numbers to a 5-year old, who knows only basic 
 arithmetic operations? 

• Goal 1: A correct algorithm 
• There are many possible approaches 
• Each requires the atomic operation of comparing 

 two numbers 
• Are all sorting approaches equal? 
• What qualities distinguish “good” approaches 

 from those less good? 
 – Speed? Space required? 



Selection Sort 



Selection Sort 



Other Ways to Sort? 
• Would you use this algorithm 
 yourself? 
 – Progress is slow, (i.e. moving one 
 value to the front of the list 
 after comparing to all others) 

• Any Ideas? 
• An Insertion Sort 



Other Ways to Sort? 
• Would you use this algorithm 

 yourself? 
 – Progress is slow, (i.e. moving one 
 value to the front of the list 
 after comapring to all others) 

• Perhaps we can exploit recursion 
 for sorting… 

• Better yet, we can 
 divide and conquer! 



Merge Sort 



Merge Sort 



N(N-1)/2 vs N log2N 
• For small numbers, perhaps not 
– N = 4, N(N-1)/2 = 6, N log2N = 8 
– N = 8, N(N-1)/2 = 28, N log2N = 24 
– N = 16, N(N-1)/2 = 120, N log2N = 64 
• But the difference can be quite large 

for a large list of numbers 
– N = 1000, N(N-1)/2 = 499500, N log2N = 

9966 



Is Recursion the Secret Sauce? 

• A noticeable difference 
between selection sort and 
merge sort, is that merge sort 
was specified 
 as a recursive algorithm 

• Does recursion always lead to 
fast algorithms? 

• Previously, I offered recursion 
as a tool for specifying 
algorithms concisely, in terms 
of a common repeated “kernel” 



Year 1202: Leonardo Fibonacci: 
• He asked the following question: 

 – How many pairs of rabbits are 
 produced from a single pair in one 
 year if every month each pair of 
 rabbits more than 1 month old 
 produces a new pair? 
 – Here we assume that each pair has one male and 
 one female, the rabbits never die, initially we have 
 one pair which is less than 1 month old 
 – f(n): the number of pairs present at the beginning 
 of month n 



Fibonacci Number 



Fibonacci Number 
• Clearly, we have: 

 – f(1) = 1 (the first pair we have) 
 – f(2) = 1 (still the first pair we have because they are just 
1 month old. They need to be more than one month old to 
 reproduce) 
 – f(n) = f(n-1) + f(n-2) because f(n) is the sum of the old 
 rabbits from last month (f(n-1)) and the new rabbits 
 reproduced from those f(n-2) rabbits who are old enough 
to reproduce. 
 – f: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, … 
 – The solution for this recurrence is: 



Fibonacci Number 



Fibonacci Number 



Is there a “Real difference”? 
• 10’s       Number of students in a class 
• 100’s     Number of students in a department 
• 1000’s   Number of students in the college of art and science 
• 10000’s Number of students enrolled at UNC 
• … 
• … 
• 10^10    Number of stars in the galaxy 
• 10^20   Total number of all stars in the universe 
• 10^80   Total number of particles in the universe 
• 10^100 << Number of moves needed for 400 disks in the Towers   

of Hanoi puzzle 
 
• Towers of Hanoi puzzle is computable but it is NOT feasible. 



Is there a “Real” Difference? 

• Growth of functions 



Asymptotic Notation 
• Order of growth is the interesting measure: 

 – Highest-order term is what counts 
• As the input size grows larger it is the high 

order term that dominates 
• Θ notation: Θ(n2) = “this function grows similarly 

to n2”. 
• Big-O notation: O (n2) = “this function grows at 

 least as slowly as n2”. 
 – Describes an upper bound. 



Big-O Notation 

• What does it mean? 
 – If f(n) = O(n2), then: 

• f(n) can be larger than n2 sometimes, but… 
• We can choose some constant c and some value n0 

 such that for every value of n larger than n0 : f
(n) <cn2 

• That is, for values larger than n0, f(n) is never more 
than a constant multiplier greater than n2 

• Or, in other words, f(n) does not grow more than a 
constant factor faster than n2. 



Visualization of O(g(n)) 



Big-O Notation 



Big-O Notation 
• Prove that: 
• Let c = 21 and n0 = 4 
• 21n2 > 20n2 + 2n + 5 for all n > 4 
 n2 > 2n + 5 for all n > 4 
 TRUE 



Θ-Notation 



Visualization of Θ(g(n)) 



Some Other Asymptotic Functions 



Visualization of Asymptotic Growth 



Analogy to Arithmetic Operators 



Measures of Complexity 
• Best case 

 – Super-fast in some limited situation is not very 
 valuable information 

• Worst case 
 – Good upper-bound on behavior 
 – Never get worse than this 

• Average case 
 – Averaged over all possible inputs 
 – Most useful information about overall 
performance 
 – Can be hard to compute precisely 



Complexity 
• Time complexity is not necessarily the 

same as the space complexity 
• Space Complexity: how much space an 

algorithm needs (as a function of n) 
• Time vs. space 



Techniques 
• Algorithm design techniques 
 – Exhaustive search 
 – Greedy algorithms 
 – Branch and bound algorithms 
 – Dynamic programming 
 – Divide and conquer algorithms 
 – Randomized algorithms 

• Tractable vs intractable algorithms 


