Simulating Hair Dynamics

Jamie Snape

The University of North Carolina at Chapel Hill
• Styling
 Geometry of hair
 Density, distribution, orientation of hair strands

• Simulation
 Dynamic motion of hair
 Collision between hair and other objects
 Mutual hair interactions

• Rendering
 Color, shadows, light scattering effects, transparency, and anti-aliasing
Hair Simulation
• Difficult to provide a realistic model

 Each hair strand has a complex mechanical behaviors

 Little knowledge available of mutual hair interactions

• Problems in terms of computation costs

 Existing methods propose compromises between realism and efficiency depending on application
The Mechanics of Hair

- Hair strands are anisotropic deformable objects
 - Can easily bend and sometimes twist
 - Strongly resist shearing and stretching
- Have some elastic properties
 - Tend to recover original shape after stress has been removed
• Complex interactions between hair strands

 Surface of individual hair strands consists of irregular tiled scales

 Causes anisotropic friction inside hair with direction depending on orientation of scales and direction of motion

• Geometric shape affects motion of hair

 Hair curls can longitudinally stretch during motion

 Clumps more likely to appear in curly hair

 More intricate geometries have less degrees of freedom during motion
Dynamics of Individual Hair Strands
Mass-spring Systems

- Hair strand modeled as a set of particles connected by stiff springs and hinges

 Each particle has one degree of translational and two degrees of rotational freedom

 Bending rigidity ensured by angular springs at each joint
• Simple and easy to implement

But does not account for torsional rigidity or non-stretching of each strand
One-dimensional Projective Equations

- Hair strand considered as a chain of rigid sticks

 Sticks parameterized by polar angles ϕ and θ

 External force applied to each stick projected onto two planes defined by ϕ and θ

 Fundamental principles of dynamics applied to each parameter leading to two differential equations at each step
Hair is prevented from stretching and hair bending is properly recovered.

But as torsional hair stiffness cannot be accounted for, three dimensional motion cannot be completely simulated.

Motion processed from top to bottom, so difficult to handle external punctual forces.
Rigid Multi-body Serial Chain

- Hair strand represented as a rigid multi-body open chain

 Stretching degrees of freedom removed to ensure only bending or twisting

 Apart from gravity, forces responsible for bending or torsional rigidity are applied to each link

 Motion computed using forward dynamics
Simulating the Dynamics of a Full Hairstyle
Hair as a Continuous Medium

• A human head of hair normally consists of over 100,000 strands of hair
 Simulating each individually is computationally overwhelming

• But strands of hair in close proximity tend to move with similar motions
 Suggests viewing hair as an anisotropic continuous medium
Smooth Particle Hydrodynamics

• Model interactions of hair using fluid dynamics

 Kinematically link each hair strand to fluid particles in their vicinity
 Density of hair medium defined as mass of hair per unit volume
 Pressure and viscosity represent all the forces due to interactions between hair strands
 Hair-body interactions modeled by creating boundary fluid particles around solid objects
Captures the complex interactions of hair strands

But assumes a continuum of hair, so cannot capture the dynamic clustering effects seen in long and thick hair

Computationally expensive, slow even using parallelization
Loosely Connected Particles

- Use a set of SPH particles that interact in an adaptive way

 Each particle represents a certain amount of hair material with a local orientation

- Neighboring particles with similar orientations are linked

 Represents spatial consistency of interactions between particles
During motion each particle can interact with other particles in its local neighborhood.

Links are breakable and disappear as soon as the particles move a certain distance apart.

Allows separation and grouping while maintaining constant hair length.
Interpolation between Guide Hair Strands

- Simulate a sparse set of hair strands

 Create a dense model by interpolating the position of the remaining strands from the guide strands
• Use the guide strands to detect and handle hair interactions

 Only using strands inefficient so build an auxiliary triangle strip between corresponding vertices

 Check for interactions between hair segments and a hair segment and triangular face
Free Form Deformation

- Define a mechanical model for a lattice surrounding the head

 Lattice is deformed as a particle system and hair strands follow by interpolation

 Collisions between hair and body handled by approximating the body as a set of metaballs

- Good for simulating complex hairstyles when head motion has low magnitude

 Cannot reproduce discontinuities in hair
Hair as Disjoint Groups

- Group nearby hair strands and simulate groups as independent, interacting entities

 Saves computation time compared to simulating individual strands

 Able to account for local discontinuities seen inside long hair during fast motion
Real-time Simulation of Hair Strips

- Model groups of strands using a thin flat patch

 Place springs between neighboring strips to prevent collisions

 Also prevents strips from moving too close or far apart

 Use ellipsoids to represent the head and body and a reaction constraint method to move a strip back to the boundary if it intersects
• Using a strip to represent tens or hundreds of hairs allows real time simulation

 But process limited in the types of hairstyle and motion it can represent

 Flat shape of strips most suited to long straight hair
Simulation of Wisps

- Group neighboring strands together into wisps

 Approximate the shape of a wisp during motion using parabolic trajectories of particles initially located at the base of each wisp

 Alternatively simulate the motion of a typical strand and generate additional strands by adding random displacements

 Interactions between individual strands or wisps not considered
Multi-resolution Methods
Level-of-detail Representations

- Three levels of detail to accelerate simulation while maintaining high visual quality
 - Individual strands represented by subdivision curves
 - Clusters represented by subdivision swept volumes
 - Strips represented by subdivision patches

- Create a hair hierarchy using these LODs and collision detection using swept sphere volumes
• Hair hierarchy traversed during simulation to choose appropriate representation and resolution of a given section of hair

Transition automatically to a higher LOD for sections that are most significant based on visibility, viewing distance, or motion

If a section is occluded or out of field-of-view, simulate with the coarsest LOD

As distance decreases or hair moves more drastically, there is more observable detail and need for more detailed simulation
Adaptive Clustering

- Continuously adjust the amount of computation according to local complexity

 An adaptive wisp tree represents at each time step the wisp segments of the hierarchy that are simulated

 Hair should be more refined near the tips than roots, so AWT dynamically splits or groups wisps while preserving tree-like structure

 Implicitly models hair interactions so that neighboring wisps with similar motions merge
Summary

- Hair modeling
- The mechanics of hair
- Dynamics of individual hair strands
 - Mass-spring systems
 - One-dimensional projective equations
 - Rigid multi-body serial chain
• Simulating the dynamics of a full hairstyle

 Smooth particle hydrodynamics
 Loosely connected particles
 Interpolation between guide hair strands
 Free form deformation
 Real-time simulation of hair strips
 Simulation of wisps

• Multi-resolution methods

 Level-of-detail-representations
 Adaptive clustering
Anjyo, Usami & Kurihara (1992): A simple method for extracting the natural beauty of hair

Bertails, Kim, Cani & Neumann (2003): Adaptive wisp tree - a multiresolution control structure for simulating dynamic clustering in hair motion

Chang, Jin & Yu (2002): A practical model for hair mutual interactions

Hadap & Magnenat-Thalmann (2001): Modeling dynamic hair as a continuum

Koh & Huang (2000): Real-time animation of human hair modeled in strips
Kurihara, Anjyo & Thalmann (1993): Hair animation with collision detection

L’Oréal (2005): Hair Science www.hair-science.com

Magnenat-Thalmann & Hadap (2000): State of the art in hair simulation

Plante, Cani & Poulin (2001): A layered wisp model for simulating interactions inside long hair

Ryu (2007): 500 million and counting: Hair rendering on Ratatouille

Volino & Magnenat-Thalmann (1999): Animating complex hairstyles in real-time

Watanbe & Suenaga (1992): A trigonal prism-based method for hair image generation

Ward, Bertails, Kim, Marschner, Cani & Lin (2007): A survey on hair modeling: styling, simulation and rendering

Ward & Lin (2003): Adaptive grouping and subdivision for simulating hair dynamics