Camera Control in Three Dimensions with a Two-Dimensional Input Device

Mark A. Livingston!-2, Arthur Gregory?, and Bruce Culbertson'

IHewlett-Packard Laboratories
2Department of Computer Science, University of North Carolina at Chapel Hill

Abstract

We implement a variety of operations to control a virtual
camera using a two-dimensional modal input device, such as
a standard three-button mouse. The operations offer control
of position, orientation, or zoom. All are designed to be
easy to use for the end user, but we also designed for ease of
implementation for the programmer.

Keywords: view control, mouse, user interface, interac-
tive graphics, 3D graphics, rotation, orientation, translation,
zoom, navigation

1 Introduction

Controlling objects and virtual cameras in three dimensions
challenges the user interface designer. Frequently the user
must control all three position degrees of freedom (DOFs),
all three orientation DOFs, and a zoom DOF with only a
two-dimensional modal input device, such as a mouse. In
this paper, we present a set of operations that together can
implement seven DOF navigation for the virtual camera.
Some of these operations duplicate each other, but since user
tastes and intuitions behind applications can vary, we find
that each operation has a place in our user interface toolkit.
Table 1 lists the operations and the camera parameters they
affect.

Operation DOF Description

Orbit 2 Change dir to camera from object
Roll 1 Change vertical dir on-screen
Zoom 1 Scale view volume

Magnify 1 Scale view of the world

Translate 1 Push/pull camera from/to model
Dolly 1 Translate along principal view ray
Truck 2 Translate parallel to image plane

Table 1: New user interface operations in our toolkit. Note
that we have new versions of the orbit and translate opera-
tions that implement specific constraints to make the motion
more intuitive for the user.

2 Previous Work

ARCBALL [4, 5] allows the user to control the orientation
of the environment with respect to the camera'. The user

L Orientation-only controllers can be thought of as translating
the camera while maintaining a fixed point of observation, some-
times known as orbiting the object. These two operations are
indistinguishable on the screen if the entire environment is af-
fected by the operation, and thus we refer to orbiting operations
as changes in the orientation, regardless of the implementation.

directly specifies an arc on a sphere which is rigidly attached
to the environment. The arc is defined by two vectors which
originate at the center of the sphere. Mouse locations on
the screen define the vectors via rays from the virtual cam-
era center through the mouse location on the screen and
ultimately through the sphere. One vector terminates at
the point on the surface of the sphere where the rotation
operation was begun (mouse click); the other terminates at
the current point (mouse drag). The arc denotes a rotation
of the sphere relative to the camera, as if the camera were
orbiting the sphere. This removes any dependence on the
path by which the mouse arrived at its current position, and
allows the user to easily return to the initial view. We be-
lieve these to be desirable properties and incorporate them
in our design. However, with ARCBALL, countrol of the “up”
direction is difficult to maintain.

The UniCam interface [7] uses gestures and screen-space
subdivision to provide six DOF control with a single-button
mouse. Rotation operations occur with mouse motions near
the borders of windows. User gestures with the mouse
rather than user interface buttons (e.g. those provided on
the mouse) disambiguate among the directions along which
translation occurs or around which rotation occurs.

Other applications, for example many VRML browsers,
map user actions to navigation operations with widgets or in
other ways. What is important to note, however, is that the
operations provided frequently lack in control of the sense
of “up” in the world as the user navigates, similar to ARC-
BALL. Other systems map mouse motion, velocity, and ac-
celeration to different navigation operations. We feel these
gestural interfaces place too many requirements on the user
for easy and accurate navigation.

3 Navigation Operations

The previous work together can cover six DOF navigation
for a camera. We introduce a set of operations and mappings
that provide seven DOF navigation for the virtual camera.

3.1 Orbiting with Fixed Vertical

We designed an orbiting method that would strictly control
the sense of “up” in the world as an alternative to ARC-
BALL’s orbiting operation.

The geometry of the ARCBALL interface can be under-
stood by examining the “look-at” transformation [1]. ARC-
BALL offered the user control of three DOF. These were
understood as the orientation of the environment (or, more
precisely, the orientation of a sphere rigidly affixed to the
environment), but could equivalently be described as the
direction of the camera (with respect to a fixed point of at-
tention, or look point, and a fixed distance from that point,
for two DOF') and the world direction that is vertical on the
screen.

Object/Scen

New Eyepoint

Figure 1: The orbit operation allows the user to change the
azimuth and elevation of the camera while maintaining a
fixed radius from the look point. The direction of the up
vector as seen by the camera also remains fixed. The dolly
operation will enable a change in the radius.

Orbiting changes the direction from the look point to the
camera. For a fixed look point, we can map mouse motion to
changes in the azimuth and elevation of the camera position
with respect to the look point. This implies that during
the operation, a fixed radius exists between the camera and
the look point (Figure 1). This mapping is natural for a
camera positioned and oriented with the gluLookAt call in
OpenGL [6]. It also implies that we can fix the direction of
the up vector in the world. Because the view can change
without changing the up vector, note that the up vector will
not necessarily be perpendicular to the principal view ray.

Note that since we give the user explicit control of the
“up” direction in the camera roll operation, it is reasonable
to prevent gimbal lock by limiting the change in the elevation
angle to just shy of the poles. The user can change the up
vector to enable viewpoints from those locations relative to
the object.

3.2 Camera Roll

Rotation around the principal view ray remaps the direction
of the up vector on the screen. This implies that the up vec-
tor is rotated in the world. One’s first inclination might well
be to assume that the axis for this rotation is simply the
principal view ray. But as noted above, these two vectors
are not necessarily perpendicular. We found that using the
principal view ray as the rotation axis thus yielded unintu-
itive control of the rotation. Rotation in a plane parallel
to the image plane is hard to map to the cursor; the user
would have to move the mouse in a circular path. Instead,
we shear the up vector along the direction of the camera x
axis (Figure 2). Though slightly nonlinear and only approx-
imate, the intuition of where the up direction is on-screen
outweighs the slight change to the operation.

A normalization of the sheared up vector is necessary,
but can be done once at the release of the operation. The

Object/Scene
Navigation

Sphere

Up vector

. Camera
- W@

New Up vect

Figure 2: The roll operation allows the user to change the
direction of the up vector as seen by the camera, which is a
rotation of the up vector. The plane in which this rotation
takes place is spanned by the current up vector and a basis
vector which is parallel to the camera x axis. Note that the
axis of rotation is not parallel to the camera principal axis
and must be computed to perform the rotation. Our alter-
native implementation simply shears the up vector along the
direction defined by the camera z axis.

nonlinearity could be reduced by pre-warping the shearing
distance.

3.3 Zoom and Magnify

When a mouse button is pressed, the cursor location denotes
a ray through the camera image plane to the object. We
intersect this ray with the scene (taking the closest point)
to determine the center point® for the magnification. We
can magnify under either orthographic or perspective pro-
jection. We scale the view of the objects in the world (but
not the camera position) around the intersection point. We
maintain a scaling matrix (with appropriate pre- and post-
translations to center the scaling) between the actual world
and the displayed world.

This is a similar effect to a zoom operation, i.e. chang-
ing the focal length of a perspective camera or scaling the
view volume boundaries of an orthographic camera. Some of
our interfaces implementation a true zoom operation. Zoom
operations are easily performed with the view volume com-
mands provided in the graphics library [6]. Our magnify
operation, however, changes the view of the world without
modifying either the scene or camera parameters, which are
both representations of real-world objects in some of our
data sets.

An off-center zoom operation is still possible, however,
regardless of the function used to define the camera model.
Note that the off-center zoom can translate or rotate the
view volume with respect to the camera’s intrinsic coordi-
nate system, as well as change the view volume size. These
are parameters of the camera we have not expressed before,
but since we parameterize them by the focal length or (in the
magnify operation) by the scaling, we are not really adding
new parameters to the camera model. We are, however,
aliasing these extra parameters as a function of the zoom
(or magnify) parameter.

2This point is known as the hit point in UniCam [7].

constant magnifyFactor = 0.1
magnifyVal = 1

MagnifyUp()
magnifyVal *= 1 + magnifyFactor

MagnifyDown()
magnifyVal /= 1 + magnifyFactor

...in display loop...
SetWorldToViewer Transform()
glTranslate(- centerPoint)
glScale(magnifyVal)
glTranslate(centerPoint)
DrawWorld()

Figure 3: OpenGL pseudocode of magnify operation.

3.4 Translation With Recentering

This operation allows the user to navigate the model by
pushing the camera away from or pulling it towards a point
on the model (defined by a ray, which is in turn defined by
a mouse click), and optionally performing the same push or
pull on the center of rotation. This is similar in spirit to
the combination of “dollying” and “orbiting about a specific
point” provided by UniCam [7].

By changing the position of the center of the orbiting op-
eration during translation (Figure 4), we affect future orbit-
ing operations. If the user has translated forward, part of
the model may now be behind the camera. A subsequent
rotation can then reveal previously hidden portions of the
model. This can be a powerful tool for examining the “inte-
rior” regions of concave objects (Figure 5).

\\\

Object/Scene \
\old Navigation
\ Sphere
o
o—__|
Mo 4
USe Ray7
/ New
f// Camera

Camera

New Navigation Sphere

Figure 4: Translation with recentering moves the camera for-
ward along a ray defined by the mouse position, and pushes
the orbiting center towards the point at which the model
first intersects that ray.

Under orthographic projection, the view generated by this
translation will not change if the mouse location is in the cen-
ter of the image plane and the translation is only forward-
i.e. strictly a “dolly” operation. Of course, if the translation
is far enough straight forward, then the camera may pass
through part of the scene, clipping it from the view. Mouse
locations not in the center will induce translations in the
other dimensions as well.

With the finite z resolution available in the standard
graphics frame buffer, we must also attenuate the farplane

Movelnit()
camRay = ImagePointToWorldRay(z, v,
world-to-camera-matriz)
newCenter = Intersect(camRay, model)

Moveln()
Movelnit()
centerDispl = newCenter — center
camCenter = camCenter + centerDispl * zoomFactor
lookAt = lookAt + centerDispl * zoomFactor
farPlaneScale *= 1 4+ zoomFactor

MoveOut()
Movelnit()
centerDispl = newCenter — center
camCenter = camCenter - centerDispl * zoomFactor
lookAt = lookAt - centerDispl * zoomFactor
farPlaneScale /= 1 + zoomFactor
if(farPlaneScale < 1)
farPlaneScale = 1

Figure 6: Implementation of translation with recentering of
the user’s view of the environment for orthographic projec-
tion. The variable farPlaneScale determines the far plane
distance, both in orthographic or perspective projection.

distance in the projection matrix (Figure 6).

Under perspective projection, we perform the same oper-
ation: translate the camera position along the specified ray
and translate the center of the orbiting operation. In this
case, any translation will change the view, although transla-
tion straight forward can produce similar images to zooming.
It also influences future rotation operations by changing the
center of rotation.

Our implementation takes advantage of the pick function
in the OpenGL graphics library utilities [6]. The graphics
engine can identify those polygons that currently project to
a given screen point. Hence we only need to compute the
intersection point with a few primitives, usually one or two.
Although this works well for models that are decomposed
into polygons before drawing, some data sets might not be
displayed in this fashion. It would be nice to eliminate this
dependence. .

3.5 Dolly

The ARCBALL orbiting mode changes the direction from
the look point to the camera, but keeps the distance con-
stant. A dolly operation changes this distance (Figure 1).
This can be confounded with a zoom operation for small
motions, but in fact is translating the camera forward along
its principal ray.

3.6 Truck

In order to provide easier access to translation, we also
implement the truck operation, which is translation con-
strained to the directions spanned by the image plane basis.
These basis vectors are trivially obtained by examining the
world-to-camera transformation matrix. We simultaneously
translate the look point by the same distance as the camera
(Figure 7). We find this produces a more natural motion in
the image.

Figure 5: Demonstration of translation with recentering. The leftmost image shows the initial pose. The user then clicks and
holds the mouse button on the thorax (just behind the head) to translate forward with recentering. The middle image show
the result of this operation. Next the user orbits the thorax, passing through the body of the model to get a better look at
the head from behind (rightmost image).

Object

\Hold Navigation
\ Sphere

. . New Camera
New Navigation Sphere

Figure 7: The truck operation translates the camera view-
point and the look-at point parallel to the image plane.

3.7 Constrained Motions

Some operations described above affect two DOF's at a time.
We can easily add constraints to the orbit and truck opera-
tions so that only one DOF is affected by the mouse motion,
as was done for ARCBALL. We select the dominant direc-
tion of the mouse motion, defined by the one in which the
motion first reaches a threshold of the number of pixels the
mouse moves. We then eliminate any motion in the other
dimension for the duration of the current operation. This
adds some bookkeeping and conditional statements to the
implementation.

4 Conclusions

We have found this to be a useful set of navigation opera-
tions which carry the primary advantages of the ARCBALL
interface: intuitive control for the user and independence of
the operations from the path the mouse takes on the screen.
We prefer multiple buttons and key modifiers to engage the
various operations rather than rely on the user to perform
gestures on the screen, which, however small they may be,
seems to retreat from ARCBALL’s goal of path indepen-
dence. These operations together can provide six-DOF nav-
igation control and control of the view volume width.

One interface using some of these operations was used for
a demonstration application at a conference. Users there

had little, if any, trouble navigating around the environ-
ment. (Most were presumably knowledgeable of user inter-
faces.) This hardly substitutes for a formal study [2], but
does provide encouragement that the operations are sound
and successfully mimic the usability of ARCBALL and Uni-
Cam. We have had success navigating under two separate
implementations of interfaces using different subsets of these
operations and find them suitable to our needs.

Web information

This operations are simple to implement with vector geom-
etry operations. Pseudocode for some can be found at

http://www.cs.unc.edu/"1livingst/navigate.html
along with more detailed implementation notes.

References

[1] BLINN, J. Where am I? What am I looking at? IEEE
Computer Graphics and Applications 8, 4 (July 1988),
76-81.

[2] HiNCKLEY, K., TuLLIO, J., PAUSCH, R., PROFFITT, D.,
AND KASSELL, N. Usability analysis of 3d rotation tech-

niques. In 10t aom Symposium on User Interface Soft-
ware & Technology (UIST’97) (Oct. 1997), pp. 1-10.

[3] HurrqQuist, J. A Virtual Trackball. Graphics Gems I.
Academic Press, 1990, pp. 462—463.

[4] SHOEMAKE, K. ARCBALL: A user interface for specify-
ing three-dimensional orientation using a mouse. In Pro-
ceedings of Graphics Interface '92 (May 1992), pp. 151—
156.

[6] SHOEMAKE, K. Arcball Rotation Control. Graphics
Gems IV. Academic Press, 1994, pp. 175-192.

[6] Woo, M., NEIDER, J., AND Davis, T. OpenGL Pro-

2nd

gramming Guide, ed. Addison Wesley Developers

Press, 1997.

[7] ZELEzNIK, R. C., AND FORSBERG, A. UniCam—2D ges-
tural camera controls for 3D environments. In 1999 ACM
Symposium on Interactive 8D Graphics (Apr. 1999),
pp. 169-174.

