
Camera Control in Three Dimensions with a Two�Dimensional Input Device

Mark A� Livingston���� Arthur Gregory�� and Bruce Culbertson�

�Hewlett�Packard Laboratories
�Department of Computer Science� University of North Carolina at Chapel Hill

Abstract

We implement a variety of operations to control a virtual
camera using a two�dimensional modal input device� such as
a standard three�button mouse� The operations o�er control
of position� orientation� or zoom� All are designed to be
easy to use for the end user� but we also designed for ease of
implementation for the programmer�

Keywords� view control� mouse� user interface� interac�
tive graphics� �D graphics� rotation� orientation� translation�
zoom� navigation

� Introduction

Controlling objects and virtual cameras in three dimensions
challenges the user interface designer� Frequently the user
must control all three position degrees of freedom �DOFs��
all three orientation DOFs� and a zoom DOF with only a
two�dimensional modal input device� such as a mouse� In
this paper� we present a set of operations that together can
implement seven DOF navigation for the virtual camera�
Some of these operations duplicate each other� but since user
tastes and intuitions behind applications can vary� we 	nd
that each operation has a place in our user interface toolkit�
Table
 lists the operations and the camera parameters they
a�ect�

Operation DOF Description
Orbit � Change dir to camera from object
Roll
 Change vertical dir on�screen
Zoom
 Scale view volume
Magnify
 Scale view of the world
Translate
 Push�pull camera from�to model
Dolly
 Translate along principal view ray
Truck � Translate parallel to image plane

Table

 New user interface operations in our toolkit� Note
that we have new versions of the orbit and translate opera�
tions that implement speci	c constraints to make the motion
more intuitive for the user�

� Previous Work

ARCBALL ��� �� allows the user to control the orientation
of the environment with respect to the camera�� The user

�Orientation�only controllers can be thought of as translating
the camera while maintaining a �xed point of observation� some�
times known as orbiting the object� These two operations are
indistinguishable on the screen if the entire environment is af�
fected by the operation� and thus we refer to orbiting operations
as changes in the orientation� regardless of the implementation�

directly speci	es an arc on a sphere which is rigidly attached
to the environment� The arc is de	ned by two vectors which
originate at the center of the sphere� Mouse locations on
the screen de	ne the vectors via rays from the virtual cam�
era center through the mouse location on the screen and
ultimately through the sphere� One vector terminates at
the point on the surface of the sphere where the rotation
operation was begun �mouse click�� the other terminates at
the current point �mouse drag�� The arc denotes a rotation
of the sphere relative to the camera� as if the camera were
orbiting the sphere� This removes any dependence on the
path by which the mouse arrived at its current position� and
allows the user to easily return to the initial view� We be�
lieve these to be desirable properties and incorporate them
in our design� However� with ARCBALL� control of the �up�
direction is di�cult to maintain�

The UniCam interface ��� uses gestures and screen�space
subdivision to provide six DOF control with a single�button
mouse� Rotation operations occur with mouse motions near
the borders of windows� User gestures with the mouse
rather than user interface buttons �e�g� those provided on
the mouse� disambiguate among the directions along which
translation occurs or around which rotation occurs�

Other applications� for example many VRML browsers�
map user actions to navigation operations with widgets or in
other ways� What is important to note� however� is that the
operations provided frequently lack in control of the sense
of �up� in the world as the user navigates� similar to ARC�
BALL� Other systems map mouse motion� velocity� and ac�
celeration to di�erent navigation operations� We feel these
gestural interfaces place too many requirements on the user
for easy and accurate navigation�

� Navigation Operations

The previous work together can cover six DOF navigation
for a camera� We introduce a set of operations and mappings
that provide seven DOF navigation for the virtual camera�

��� Orbiting with Fixed Vertical

We designed an orbiting method that would strictly control
the sense of �up� in the world as an alternative to ARC�
BALL�s orbiting operation�

The geometry of the ARCBALL interface can be under�
stood by examining the �look�at� transformation �
�� ARC�
BALL o�ered the user control of three DOF� These were
understood as the orientation of the environment �or� more
precisely� the orientation of a sphere rigidly a�xed to the
environment�� but could equivalently be described as the
direction of the camera �with respect to a 	xed point of at�
tention� or look point� and a 	xed distance from that point�
for two DOF� and the world direction that is vertical on the
screen�

Eyepoint

Object/Scene

Navigation Sphere

New Eyepoint

Up vector

Elevation

Azimuth

Look point

Radius

Figure

 The orbit operation allows the user to change the
azimuth and elevation of the camera while maintaining a
	xed radius from the look point� The direction of the up
vector as seen by the camera also remains 	xed� The dolly
operation will enable a change in the radius�

Orbiting changes the direction from the look point to the
camera� For a 	xed look point� we can map mouse motion to
changes in the azimuth and elevation of the camera position
with respect to the look point� This implies that during
the operation� a 	xed radius exists between the camera and
the look point �Figure
�� This mapping is natural for a
camera positioned and oriented with the gluLookAt call in
OpenGL ���� It also implies that we can 	x the direction of
the up vector in the world� Because the view can change
without changing the up vector� note that the up vector will
not necessarily be perpendicular to the principal view ray�

Note that since we give the user explicit control of the
�up� direction in the camera roll operation� it is reasonable
to prevent gimbal lock by limiting the change in the elevation
angle to just shy of the poles� The user can change the up
vector to enable viewpoints from those locations relative to
the object�

��� Camera Roll

Rotation around the principal view ray remaps the direction
of the up vector on the screen� This implies that the up vec�
tor is rotated in the world� One�s 	rst inclination might well
be to assume that the axis for this rotation is simply the
principal view ray� But as noted above� these two vectors
are not necessarily perpendicular� We found that using the
principal view ray as the rotation axis thus yielded unintu�
itive control of the rotation� Rotation in a plane parallel
to the image plane is hard to map to the cursor� the user
would have to move the mouse in a circular path� Instead�
we shear the up vector along the direction of the camera x

axis �Figure ��� Though slightly nonlinear and only approx�
imate� the intuition of where the up direction is on�screen
outweighs the slight change to the operation�

A normalization of the sheared up vector is necessary�
but can be done once at the release of the operation� The

Camera

Object/Scene
Navigation
Sphere

Up vector

Basis

New Up vector

Figure �
 The roll operation allows the user to change the
direction of the up vector as seen by the camera� which is a
rotation of the up vector� The plane in which this rotation
takes place is spanned by the current up vector and a basis
vector which is parallel to the camera x axis� Note that the
axis of rotation is not parallel to the camera principal axis
and must be computed to perform the rotation� Our alter�
native implementation simply shears the up vector along the
direction de	ned by the camera x axis�

nonlinearity could be reduced by pre�warping the shearing
distance�

��� Zoom and Magnify

When a mouse button is pressed� the cursor location denotes
a ray through the camera image plane to the object� We
intersect this ray with the scene �taking the closest point�
to determine the center point� for the magni	cation� We
can magnify under either orthographic or perspective pro�
jection� We scale the view of the objects in the world �but
not the camera position� around the intersection point� We
maintain a scaling matrix �with appropriate pre� and post�
translations to center the scaling� between the actual world
and the displayed world�

This is a similar e�ect to a zoom operation� i�e� chang�
ing the focal length of a perspective camera or scaling the
view volume boundaries of an orthographic camera� Some of
our interfaces implementation a true zoom operation� Zoom
operations are easily performed with the view volume com�
mands provided in the graphics library ���� Our magnify
operation� however� changes the view of the world without
modifying either the scene or camera parameters� which are
both representations of real�world objects in some of our
data sets�

An o��center zoom operation is still possible� however�
regardless of the function used to de	ne the camera model�
Note that the o��center zoom can translate or rotate the
view volume with respect to the camera�s intrinsic coordi�
nate system� as well as change the view volume size� These
are parameters of the camera we have not expressed before�
but since we parameterize them by the focal length or �in the
magnify operation� by the scaling� we are not really adding
new parameters to the camera model� We are� however�
aliasing these extra parameters as a function of the zoom
�or magnify� parameter�

�This point is known as the hit point in UniCam ����

constant magnifyFactor � ��

magnifyVal �

MagnifyUp� �
magnifyVal ��
 � magnifyFactor

MagnifyDown� �
magnifyVal ��
 � magnifyFactor

���in display loop���
SetWorldToViewerTransform� �
glTranslate� � centerPoint �
glScale� magnifyVal �
glTranslate� centerPoint �
DrawWorld� �

Figure �
 OpenGL pseudocode of magnify operation�

��� Translation With Recentering

This operation allows the user to navigate the model by
pushing the camera away from or pulling it towards a point
on the model �de	ned by a ray� which is in turn de	ned by
a mouse click�� and optionally performing the same push or
pull on the center of rotation� This is similar in spirit to
the combination of �dollying� and �orbiting about a speci	c
point� provided by UniCam ����

By changing the position of the center of the orbiting op�
eration during translation �Figure ��� we a�ect future orbit�
ing operations� If the user has translated forward� part of
the model may now be behind the camera� A subsequent
rotation can then reveal previously hidden portions of the
model� This can be a powerful tool for examining the �inte�
rior� regions of concave objects �Figure ���

Camera

Object/Scene
Old Navigation

Sphere

New Navigation Sphere

New
Camera

Mouse Ray

Figure �
 Translation with recentering moves the camera for�
ward along a ray de	ned by the mouse position� and pushes
the orbiting center towards the point at which the model
	rst intersects that ray�

Under orthographic projection� the view generated by this
translation will not change if the mouse location is in the cen�
ter of the image plane and the translation is only forward�
i�e� strictly a �dolly� operation� Of course� if the translation
is far enough straight forward� then the camera may pass
through part of the scene� clipping it from the view� Mouse
locations not in the center will induce translations in the
other dimensions as well�

With the 	nite z resolution available in the standard
graphics frame bu�er� we must also attenuate the farplane

MoveInit� �
camRay � ImagePointToWorldRay� x� y�

world�to�camera�matrix �
newCenter � Intersect� camRay� model �

MoveIn� �
MoveInit� �
centerDispl � newCenter � center
camCenter � camCenter � centerDispl � zoomFactor
lookAt � lookAt � centerDispl � zoomFactor
farPlaneScale ��
 � zoomFactor

MoveOut� �
MoveInit� �
centerDispl � newCenter � center
camCenter � camCenter � centerDispl � zoomFactor
lookAt � lookAt � centerDispl � zoomFactor
farPlaneScale ��
 � zoomFactor
if� farPlaneScale �
 �

farPlaneScale �

Figure �
 Implementation of translation with recentering of
the user�s view of the environment for orthographic projec�
tion� The variable farPlaneScale determines the far plane
distance� both in orthographic or perspective projection�

distance in the projection matrix �Figure ���
Under perspective projection� we perform the same oper�

ation
 translate the camera position along the speci	ed ray
and translate the center of the orbiting operation� In this
case� any translation will change the view� although transla�
tion straight forward can produce similar images to zooming�
It also in�uences future rotation operations by changing the
center of rotation�

Our implementation takes advantage of the pick function
in the OpenGL graphics library utilities ���� The graphics
engine can identify those polygons that currently project to
a given screen point� Hence we only need to compute the
intersection point with a few primitives� usually one or two�
Although this works well for models that are decomposed
into polygons before drawing� some data sets might not be
displayed in this fashion� It would be nice to eliminate this
dependence� �

��� Dolly

The ARCBALL orbiting mode changes the direction from
the look point to the camera� but keeps the distance con�
stant� A dolly operation changes this distance �Figure
��
This can be confounded with a zoom operation for small
motions� but in fact is translating the camera forward along
its principal ray�

��� Truck

In order to provide easier access to translation� we also
implement the truck operation� which is translation con�
strained to the directions spanned by the image plane basis�
These basis vectors are trivially obtained by examining the
world�to�camera transformation matrix� We simultaneously
translate the look point by the same distance as the camera
�Figure ��� We 	nd this produces a more natural motion in
the image�

Figure �
 Demonstration of translation with recentering� The leftmost image shows the initial pose� The user then clicks and
holds the mouse button on the thorax �just behind the head� to translate forward with recentering� The middle image show
the result of this operation� Next the user orbits the thorax� passing through the body of the model to get a better look at
the head from behind �rightmost image��

Camera

Object/Scene
Old Navigation

Sphere

New Navigation Sphere
New Camera

Figure �
 The truck operation translates the camera view�
point and the look�at point parallel to the image plane�

��� Constrained Motions

Some operations described above a�ect two DOFs at a time�
We can easily add constraints to the orbit and truck opera�
tions so that only one DOF is a�ected by the mouse motion�
as was done for ARCBALL� We select the dominant direc�
tion of the mouse motion� de	ned by the one in which the
motion 	rst reaches a threshold of the number of pixels the
mouse moves� We then eliminate any motion in the other
dimension for the duration of the current operation� This
adds some bookkeeping and conditional statements to the
implementation�

� Conclusions

We have found this to be a useful set of navigation opera�
tions which carry the primary advantages of the ARCBALL
interface
 intuitive control for the user and independence of
the operations from the path the mouse takes on the screen�
We prefer multiple buttons and key modi	ers to engage the
various operations rather than rely on the user to perform
gestures on the screen� which� however small they may be�
seems to retreat from ARCBALL�s goal of path indepen�
dence� These operations together can provide six�DOF nav�
igation control and control of the view volume width�

One interface using some of these operations was used for
a demonstration application at a conference� Users there

had little� if any� trouble navigating around the environ�
ment� �Most were presumably knowledgeable of user inter�
faces�� This hardly substitutes for a formal study ���� but
does provide encouragement that the operations are sound
and successfully mimic the usability of ARCBALL and Uni�
Cam� We have had success navigating under two separate
implementations of interfaces using di�erent subsets of these
operations and 	nd them suitable to our needs�

Web information

This operations are simple to implement with vector geom�
etry operations� Pseudocode for some can be found at

http���www�cs�unc�edu��livingst�navigate�html
along with more detailed implementation notes�

References

�
� Blinn� J� Where am I� What am I looking at� IEEE
Computer Graphics and Applications �� � �July
 !!��
���!
�

��� Hinckley� K�� Tullio� J�� Pausch� R�� Proffitt� D��
and Kassell� N� Usability analysis of �d rotation tech�

niques� In
�th ACM Symposium on User Interface Soft�
ware � Technology �UIST���	 �Oct�
 ��� pp�
�
��

��� Hultquist� J� A Virtual Trackball� Graphics Gems I�
Academic Press�
 �� pp� ��������

��� Shoemake� K� ARCBALL
 A user interface for specify�
ing three�dimensional orientation using a mouse� In Pro�
ceedings of Graphics Interface ��
 �May
 ��� pp�
�
�

���

��� Shoemake� K� Arcball Rotation Control� Graphics
Gems IV� Academic Press�
 �� pp�
���
 ��

��� Woo� M�� Neider� J�� and Davis� T� OpenGL Pro�

gramming Guide� �nd ed� Addison Wesley Developers
Press�
 ��

��� Zeleznik� R� C�� and Forsberg� A� UniCam��D ges�
tural camera controls for �D environments� In ���� ACM
Symposium on Interactive �D Graphics �Apr�
 ��
pp�
� �
���

