
REAL-TIME VOLUMETRIC 3D CAPTURE OF ROOM-SIZED SCENES
FOR TELEPRESENCE

Andrew Maimone∗ Henry Fuchs†

Department of Computer Science, University of North Carolina at Chapel Hill

Figure 1. Left: Color coded contribution of the five Kinect sensors used in test system. Two center images: Two views of a live capture session. All
surfaces displayed are captured dynamically. Right: Raytracing of 3D Volume Segmentation. Pink indicates background, blue indicates foreground, cyan
indicates scene motion, and black represents unknown (no data).

ABSTRACT
This paper describes a 3D acquisition system capable of simul-
taneously capturing an entire room-sized volume with an array of
commodity depth cameras and rendering it from a novel viewpoint
in real-time. The system extends an existing large-scale capture
system with a volumetric measurement integration and rendering
engine that has been adapted for use with a fixed array of cameras.
New techniques are explored to improve image quality, decrease
noise, and reduce the number of required depth cameras while
preserving support for a fully dynamic scene.

Index Terms — teleconferencing, sensor fusion, filtering

1. INTRODUCTION

A long-standing goal of telepresence has been to join remote spaces
through a shared virtual wall, allowing remote collaborators to see
each other’s environments as extensions of their own. A key com-
ponent of this vision is the real-time acquisition of a large-scale
dynamic scene in 3D so that it can be rendered from the unique
perspective of the viewer.

The recent arrival of the Microsoft Kinect, an inexpensive and
high performance depth and color image sensor, has accelerated
progress in this area – but limitations remain. The Kinect-based
FreeCam [1] system demonstrated high quality real-time 3D ac-
quisition but capture was limited to users segmented from the
background. KinectFusion [2] presented very high quality room
sized 3D scanning, but instantaneous update was limited to parts
of the scene within the field of view of a single camera. High
quality offline scanning has also been demonstrated for large scale
scenes [3] and humans [4]. Past work by the authors [5, 6] pre-
sented large-scale 3D acquisition of all objects in large volume
simultaneously, but image quality was lacking. In this paper, we
present a 3D acquisition system that offers fully dynamic and si-
multaneous capture of all objects in a room-sized scene, but offers
significantly improved image quality.
∗e-mail: maimone@cs.unc.edu
†email: fuchs@cs.unc.edu

2. BACKGROUND AND CONTRIBUTIONS

Previous work by the authors demonstrated cubicle-sized [6] and
room-sized [5] 3D capture by filtering, color matching, and form-
ing a triangle mesh from the data of a fixed array of Kinects and
merging the result in image space. Although this approach offered
high performance, the lack of a geometric data merger between
units resulted in mediocre image quality, and the absence of any
temporal coherence (beyond a simple temporal threshold in [6])
resulted in severe temporal noise. These works also did not retain
data between frames and therefore required additional cameras to
provide a view of temporarily occluded background objects.

As a result, we look to KinectFusion [2], which solved these
problems by fusing and holding depth measurements in a voxel
grid as a weighted average over time. Although KinectFusion was
designed for a single moving camera, we note that at first order
the approach is straightforward to adapt to a fixed array of cam-
eras: the measurements from each fixed camera can be fused into
a voxel grid at each frame using precalibrated positions.

However, we observe that when using the KinectFusion algo-
rithm in this unintended way (see center image of Figure 4), the
results are poor – the fusion of a few measurements of each sur-
face point from fixed cameras does not significantly reduce depth
noise as does the hundreds of measurements acquired from a mov-
ing camera over time. Additionally, KinectFusion’s method for
instantaneous response to change in a dynamic scene (segment-
ing and placing geometry in a more responsive overlaid volume)
is not applicable to a large capture volume with fixed cameras
as the measurement uncertainty typically exceeds the movement
of a near-motionless standing participant – a scenario commonly
found in a telepresence setting. We also note the need for blending
and color-matching the textures over the camera array.

In this work, we integrate our exisiting multi-Kinect capture
calibration and filtering framework [6] with the KinectFusion mea-
surement integration and rendering engine, while enhancing the
latter to support dynamic scenes with fixed camera arrays. Our
specific contributions are as follows:

 GPU

Kinect
1

Kinect
N

Undistort Undistort

Color Color

Depth

Hole Fill,
Smooth

Display

Depth

Depth Depth

…........

Motion
Detect

Motion
Detect

Hole Fill,
Smooth

Color,
Motion Flag

Scene
Voxel

Volume

Depth Depth

Color
Match

Color
Match

Change/
Background

Detect

Color,
Motion Flag

Color,
Motion Flag

TSDF and Color
Refine/Replace
(KinectFusion)

Change/
Background

Detect

TSDF and Color
Refine/Replace

(KinectFusion)

.......

…....

Color,
Motion Flag

…...............

Depth Color Depth Color

Raytrace
(KinectFusion)

Viewer Pos//

Figure 2. Data processing, integration, and rendering pipeline.

1. Adaptation of KinectFusion to fixed camera arrays
2. A technique for supporting dynamic scenes with a single

volume by observing both color and depth changes
3. A technique for learning a volumetric scene background

model that enables data retention and noise suppression
4. A technique for color matching cameras in a voxel volume
5. A hybrid voxel coloring and texture projection technique to

provide color for novel view renderings

3. SYSTEM OVERVIEW

Hardware Configuration and Layout For the system presented
in this paper, five Kinect cameras were used to capture a volume
of approximately 4.25m × 2.5m × 2.5m. The contribution of
each Kinect is illustrated in the leftmost image of Figure 1. The
Kinects were connected to a PC with an Intel Core i7-960 CPU
and an NVIDIA GeForce GTX 580 GPU for real-time scene pro-
cessing and novel view rendering. In this work we focus primarily
on the acquisition component of a 3D telepresence system; see our
previous work for information regarding integration with a head-
tracked autostereo display [6] or large display wall [5].

Software Overview The OpenGL shader language was used for
depth map preprocessing and the excellent CUDA-based KinFu
module provided in the PCL library1 was used as the base Kinect-
Fusion implementation. The OpenCV library was used for camera
calibration and 2D image operations. The overall data processing,
integration and rendering pipeline is illustrated in Figure 2 and
individual components are described in Section 4.

4. IMPLEMENTATION

4.1. Calibration and Preprocessing

Calibration The Kinects were calibrated and corrected for ra-
dial distortion and depth biases using the method described in
our previous system [6], except that extrinsic calibration between
cameras was performed simultaneously (rather than pairwise to
a master camera) and bundle adjustment was performed using the
Simple Sparse Bundle Adjustment (SSBA)2 software. These alter-
ations allowed for more accurate extrinsic calibration necessary to
accurately fuse geometry between cameras.

1http://pointclouds.org/
2http://www.inf.ethz.ch/personal/chzach/opensource.html

Depth data
present from
any camera?

Depth threshold
exceeded or voxel

measured as
free space?

Voxel
is background?

Color threshold
exceeded?

Use
Existing Data

START

NO

YES

YES

Set
Voxel Inactive

Refine
Existing Data

NO

Color threshold
exceeded?

YES

YES

NO NO

Replace
Existing Data

YES

NO
Voxel

is background?

YES

NO

Figure 3. Decision process for voxel change detection and data retention.

Depth Preprocessing As noted in Section 2, integrating the mea-
surements of a few fixed Kinect sensors does not provide sufficient
geometric noise reduction, even if accumulation is performed over
a long period of time. Additionally, holes are present in the depth
data due to multi-Kinect interference. Therefore, we apply the
GPU-based hole filling and smoothing operators described in our
previous work [6], while adding color distance information to the
bilateral filter to improve edge quality.

Color Preprocessing The scene change detection algorithm de-
scribed in Section 4.2 relies in part on color change information.
To detect color change we first find the absolute difference be-
tween the current and last color frame from each Kinect and apply
a morphological erosion to remove isolated color noise. A mor-
phological dilation is then applied to expand the suspected mo-
tion region to fill in gaps that occur within textureless regions. A
threshold is then applied to remove values beneath the noise floor,
and the result is stored as a per-pixel binary change map in the
color image’s alpha channel.

4.2. Volumetric Integration and Rendering

As noted previously, our measurement integration and rendering
engine is based on KinectFusion [2], a fast GPU-optimized ver-
sion of the Truncated Signed Distance Function (TSDF) volumetic
integration method. We extend this method to fixed multi-camera
configurations responsive to dynamic scenes by applying the mod-
ifications listed in this section.

Background Model As noted in Section 2, KinectFusion pro-
vides a method for instantaneous response to changes in a dy-
namic scene – segmenting moving objects by depth into a more
responsive foreground volume that is overlaid onto the slowly re-
fined background volume. However, this approach is not practi-
cal for our fixed camera arrangement as there is too much sensor
noise to detect subtle motions, such as that of a standing person.
Instead, we opt for a single volume augmented with a foreground-
background indicator implemented as a per-voxel temporal counter.
At each frame, the counter is incremented if the voxel is not mea-
sured as free space by any of the Kinects and is otherwise reset
to zero. When the counter reaches a maximum value, the voxel is
considered background. The rightmost image of Figure 1 shows a
segmentation of a participant standing in a 3D scene.

Note that this background model is 3D and therefore allows
multiple layers of background to exist simultaneously. For ex-
ample, a rear wall learned as background may be subsequently
occluded by a lamp, which is then also learned as background.

When the lamp is removed, the occluded area of the wall will still
be considered background without a relearning period as it was
never measured as free space. As shown in the rightmost image of
Figure 1, a background object (the coffee table) may also occlude
a foreground object (the participant).

Scene Change Detection To represent a dynamic scene, it is
necessary to determine if the discrepancy between newly acquired
data and previously accumulated data represents a scene change or
can be attributed to noise. As a starting point, we determine if the
difference between a new depth measurement and the correspond-
ing value in the accumulated volume exceeds the expected noise
of a Kinect sensor at the measurement distance. However, this test
often results in false positives in areas with excessive noise (such
as object edges), areas where multi-Kinect interference is more
pronounced, and areas where there is above average calibration
error. To reduce these false positives, we eliminate regions cor-
responding to background and those where no color change was
reported using the method described in Section 4.1. This decision
process is performed per-voxel.

Data Retention With each frame, new measurements may be
unavailable for parts of the scene that were observed in the past –
the result of occlusion, sensor noise, or multi-sensor interference.
To present a complete scene using fewer cameras and to reduce
temporal noise, it is desirable to retain data; however, one must be
careful not to hold transient measurements in a dynamic scene.

We make the assumption that background voxels (those that
have consistently not represented free space) and those that do not
represent a color change beyond the noise threshold of the color
camera do not represent a material scene change and are retained
when no new sensor measurements are available. Note that the
data stored in unretained voxels is not erased, but rather flagged as
inactive so that data may be later refined if future measurements
are close to those previously stored.

TSDF Integration We modify the standard update rules of Kinect-
Fusion [2] as follows:

1. The Kinect data is aligned with the voxel grid using a fixed
precalibrated position, rather than a tracked position.

2. Measurements weights and the size of the truncated SDF
region behind the surface is set on a per-Kinect basis using
an estimate of depth error at the given surface distance.

3. The criteria illustrated in Figure 3 is used to decide whether
the TSDF should be updated as a weighted average or re-
placed with the most recent value.

Raytracing and Color We utilize the raytracing approach of
KinectFusion to render the volume from a novel view, except that
we skip voxels that do not meet the previously described data re-
tention criteria. To color the scene according to the RGB images
acquired from the Kinect cameras, we evaluated two options –
projective texture mapping and voxel coloring.

In projective texture mapping, the current color image ac-
quired by the Kinect is projected into the scene during the ray-
tracing step. This approach allows the full resolution of the color
camera to be used and requires no extra memory, but does not pro-
vide temporal noise reduction or allow color data to be retained
over time. In our multi-Kinect implemention, we also note the
need to project surface voxels onto the image plane of each color
camera, resolve occlusions, and perform blending.

In voxel coloring, an option in the utilized PCL KinectFusion
implementation, colors are stored as a weighted average in each

voxel. This approach allows a reduction of color noise and data
to be retained between frames, but color data is stored at volume
resolution – which is typically much lower than the available color
resolution. In our implementation, we also note the need to discard
accumulated color data when scene changes are detected.

As a compromise, we propose a third hybrid option: the use
of projective texture mapping with a fallback to voxel coloring
for data that is to be retained across frames. We found that this
approach made projective texturing practical for use in our multi-
camera setup when rendering from novel views.

We also note the need to match colors between Kinect cam-
eras as the units utilize automatic color control. As a solution,
we adapt our previous color matching approach [6] from triangle
based rendering to volume rendering. We maintain a per-Kinect
color bias that is computed as the average difference between each
voxel’s color (which itself is a weighted average between cameras)
and the color contribution from each Kinect. For stability, this bias
is calculated as a rolling average over time.

5. RESULTS

Rendering Quality Figure 4 shows a comparison between var-
ious rendering engines. In the leftmost image (corresponding to
our previous rendering engine [6]), note the misalignment of some
surfaces (ex: green poster), noisy surfaces (ex: front right floor
tiles), missing color data due to occlusion (shadow behind user),
and mismatched colors (coffee table). In the center image (a naive
application of the core KinectFusion [2] algorithm to a fixed multi-
Kinect setup), note the extreme noisiness resulting from a lack of
depth prefiltering, color mismatches between cameras, and miss-
ing data (the moving arms have disappeared due to the slow weighted
average update). In the right image (the rendering engine de-
scribed in this work), these problems have been resolved, but we
note a roughness of edges and an overall geometric quality inferior
to those presented in KinectFusion [2] with a moving camera.

The left column of Figure 6 shows a comparison of temporal
noise (measured as the difference between two frames of a cap-
tured static scene) using our previous system [6] and the proposed
system using both projective texture mapping and voxel coloring.
We note a significant decrease in geometric noise among object
edges. With voxel coloring, we also note a significant decrease in
color noise over the entire rendering. Quantitatively, the PSNR be-
tween frames increased 4.0 dB to 32.08 dB with projective texture
mapping, and increased 13.8 dB to 41.81 dB with voxel coloring.

Figure 5 compares texture quality for two coloring methods.
Projective texture mapping at a low volume resolution offers a
visible improvement over voxel coloring even at a high volume
resolution, although temporal noise is higher.

Support for Dynamic Scenery The center and right images of
Figure 6 show a moving person captured with our proposed sys-
tem, which does not exhibit the long geometric motion trails asso-
ciated with simple weighted average volumetic integration. How-
ever, we have observed small temporal inconsistencies at object
edges during fast motion sequences that are the result of unsyn-
chronized sensors. These effects could be mitigated by performing
temporal interpolation between depth maps to match a synchro-
nization marker placed in the scene or by applying a small amount
of non-rigid registration across sensor data, as in [4]. Color syn-
chronization could be handled by making small texture adjust-
ments using the technique of [7].

Figure 4. Rendering quality. Left: rendering engine of our previous work [6]. Center: rendering using naive application of KinectFusion [2] to a fixed
array of Kinects. Right: rendering engine described in this work (using voxel coloring).

Figure 5. Texture quality. Left to right: 1) voxel coloring at 384× 268×
268 and 2) 875 × 612 × 612 volume resolution, 3) projective texture
mapping at 384× 268× 268 and 4) 875× 612× 612 volume resolution.

We have also observed that a small amount of color motion
blur may occur in some scenarios, as well as a short geometric
transition period when objects move from background to fore-
ground (ex: when moving a table).

Performance For the five Kinect system described in the paper,
combined volume data integration (at 384× 268× 268 voxel res-
olution) and novel view rendering (at 640× 480 pixel resolution)
occurred at an average rate of 8.5 Hz, while re-rendering an un-
changed volume from a novel view occurred at a rate of 26.3 Hz.

6. CONCLUSIONS AND FUTURE WORK

We have presented a real-time 3D capture system that offers im-
proved image quality and significantly reduced temporal noise
over existing real-time systems capable of capturing entire room-
sized scenes simultaneously. We are excited at prospect of future
systems offering these capabilities with photorealistic, video-like
image quality. As a first step towards this goal, we plan to improve
the edge quality of moving objects by striking a better balance be-
tween scene accumulation and change response and by resolving
temporal inconsistencies between unsynchronized sensors.

7. ACKNOWLEDGMENTS

This work was supported in part by the National Science Foun-
dation (award CNS-0751187) and by the BeingThere Centre, a
collaboration of UNC Chapel Hill, ETH Zurich, NTU Singapore,
and the Media Development Authority of Singapore.

8. REFERENCES

[1] C. Kuster, T. Popa, C. Zach, C. Gotsman, and M. Gross,
“Freecam: A hybrid camera system for interactive free-
viewpoint video,” in Proceedings of Vision, Modeling, and
Visualization (VMV), 2011.

Figure 6. Left column: Noise between frames (amplified 5×). Rows top to
bottom: 1) rendering of [6] (PNSR = 28.01 dB), 2) rendering of this work
with projective texture mapping (PSNR = 32.08), and 3) voxel coloring
(PSNR = 41.81 dB). Center and right column: two frames of a capture
session showing support for motion.

[2] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe,
P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison, and
A. Fitzgibbon, “Kinectfusion: real-time 3d reconstruction and
interaction using a moving depth camera,” in Proceedings of
ACM UIST, 2011.

[3] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox, “Rgb-
d mapping: Using kinect-style depth cameras for dense 3d
modeling of indoor environments,” I. J. Robotic Res., vol. 31,
no. 5, pp. 647–663, April 2012.

[4] J. Tong, J. Zhou, L. Liu, Z. Pan, and H. Yan, “Scanning 3d
full human bodies using kinects,” Visualization and Computer
Graphics, IEEE Transactions on, vol. 18, no. 4, april 2012.

[5] A. Maimone and H. Fuchs, “A first look at a telepresence
system with room-sized real-time 3d capture and large tracked
display,” in Artificial Reality and Telexistence (ICAT), The
21st International Conference on, nov 2011.

[6] A. Maimone, J. Bidwell, K. Peng, and H. Fuchs, “En-
hanced personal autostereoscopic telepresence system using
commodity depth cameras,” Computers & Graphics, vol. 36,
no. 7, pp. 791 – 807, 2012.

[7] M. Eisemann, B. De Decker, M. Magnor, P. Bekaert,
E. de Aguiar, N. Ahmed, C. Theobalt, and A. Sellent, “Float-
ing textures,” Computer Graphics Forum (Proc. of Euro-
graphics), vol. 27, no. 2, pp. 409–418, Apr. 2008.

