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Abstract

In this contribution we intend to present a complete system that takes a video sequence of
a static scene as input and outputs a 3D model. The system can deal with images acquired by
an uncalibrated hand-held camera, with intrinsic camera parameters possibly varying during
the acquisition. In a fist stage features are extracted and tracked throughout the sequence. Us-
ing robust statistics and multiple view relations the 3D structure of the observed features and
the camera motion and calibration are computed. In a second stage stereo matching is used
to obtain a detailed estimate of the geometry of the observed scene. The presented approach
integrates state-of-the-art algorithms developed in computer vision, computer graphics and
photogrammetry.

Keywords: 3D modeling, video sequences, structure from motion, self-calibration, stereo match-
ing.
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1 Introduction
In recent years the emphasis for applications of 3D modelling has shifted from measurements
to visualization. New communication and visualization technology have created an important
demand for photo-realistic 3D content. In most cases virtual models of existing scenes are de-
sired. This has created a lot of interest for image-based approaches. Applications can be found in
e-commerce, real estate, games, post-production and special effects, simulation, etc. For most of
these applications there is a need for simple and flexible acquisition procedures. Therefore cali-
bration should be absent or restricted to a minimum. Many new applications also require robust
low cost acquisition systems. This stimulates the use of consumer photo- or video cameras. The
approach presented in this paper allows to captures photo-realistic virtual models from images.
The user acquires the images by freely moving a camera around an object or scene. Neither the
camera motion nor the camera settings have to be known a priori. There is also no need for
preliminary models. The approach can also be used to combine virtual objects with real video,
yielding augmented video sequences.
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The approach proposed in this papers builds further on earlier work [17]. Several important
improvements were made to the system. To deal more efficiently with video, we have developed
an approach that can automatically select key-frames suited for structure and motion recovery.
The projective structure and motion recovery stage has been made completely independent of
the initialisation which avoids some instability problems that occured with the quasi-euclidean
initialization proposed in [1]. Several optimisatons have been implemented to obtain more effi-
cient robust algorithms [11]. To guarantee a maximum likelyhood reconstruction at the different
levels a state-of-the-art bundle adjustment algorithm was implemented that can be used both at
the projective and the euclidean level. A much more robust linear self-calibration algorithm was
obtained by incorporating general a priori knowledge on meaningful values for the camera in-
trinsics. This allows to avoid most problems related to critical motion sequences [21] (i.e. some
motions do not yield a unique solution for the calibration of the intrinsics) that caused the initial
linear algorithm proposed in [14] to yield poor results under some circumstances. A solution
was also developed for another problem. Previously observing a purely planar scene at some
point during the acqusition would have caused uncalibrated approaches to fail. A solution that
detects this case and deals with it accordingly has been proposed [18]. Both correction for radial
distortion and stereo rectification have been integrated in a single image resampling pass. This
allows to minimize the image degradation. Our processing pipeline uses a non-linear rectifica-
tion scheme [16] that can deal with all types of camera motion (including forward motion). For
the integration of multiple depth maps into a single surface representation a volumetric approach
has been implemented [3]. The texture is obtained by blending the original images based on the
surface geometry so that the texture quality is optimized. The resulting system is much more
robust and accurate. This makes it possible to efficiently use it for many different applications.

2 From video to 3D models
Starting from a sequence of images the first step consists of recovering the relative motion be-
tween consecutive images. This process goes hand in hand with finding corresponding image
features between these images (i.e. image points that originate from the same 3D feature). In
the case of video data features are tracked until disparities become sufficiently large so that an
accurate estimation of the epipolar geometry becomes possible.

The next step consists of recovering the motion and calibration of the camera and the 3D
structure of the tracked/matched features. This process is done in two phases. At first the re-
construction contains a projective skew (i.e. parallel lines are not parallel, angles are not correct,
distances are too long or too short, etc.). This is due to the absence of a priori calibration. Using
a self-calibration algorithm [15] this distortion can be removed, yielding a reconstruction equiv-
alent to the original up to a global scale factor. This uncalibrated approach to 3D reconstruction
allows much more flexibility in the acquisition process since the focal length and other intrin-
sic camera parameters do not have to be measured –calibrated– beforehand and are allowed to
change during the acquisition.

The reconstruction obtained as described in the previous paragraph only contains a sparse set
of 3D points. Although interpolation might be a solution, this yields models with poor visual
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quality. Therefore, the next step consists in an attempt to match all image pixels of an image
with pixels in neighboring images, so that these points too can be reconstructed. This task is
greatly facilitated by the knowledge of all the camera parameters which we have obtained in the
previous stage. Since a pixel in the image corresponds to a ray in space and the projection of
this ray in other images can be predicted from the recovered pose and calibration, the search of a
corresponding pixel in other images can be restricted to a single line. Additional constraints such
as the assumption of a piecewise continuous 3D surface are also employed to further constrain
the search. It is possible to warp the images so that the search range coincides with the horizontal
scanlines. An algorithm that can achieve this for arbitrary camera motion is described in [16].
This allows us to use an efficient stereo algorithm that computes an optimal match for the whole
scanline at once [25]. Thus, we can obtain a depth estimate (i.e. the distance from the camera
to the object surface) for almost every pixel of an image. By fusing the results of all the images
together a complete dense 3D surface model is obtained. The images used for the reconsruction
can also be used for texture mapping so that a final photo-realistic result is achieved. The different
steps of the process are illustrated in Figure 1. In the following paragraphs the different steps are
described in some more detail.

2.1 Relating images
Starting from a collection of images or a video sequence the first step consists of relating the
different images to each other. This is not an easy problem. A restricted number of corre-
sponding points is sufficient to determine the geometric relationship or multi-view constraints
between the images. Since not all points are equally suited for matching or tracking (e.g. a
pixel in a homogeneous region), feature points need to be selected [7, 19]. Depending on the
type of image data (i.e. video or still pictures) the feature points are tracked or matched and a
number of potential correspondences are obtained. From these the multi-view constraints can
be computed. However, since the correspondence problem is an ill-posed problem, the set of
corresponding points can (and almost certainly will) be contaminated with an important number
of wrong matches or outliers. A traditional least-squares approach will fail and therefore a robust
method is used [22, 6]. Once the multi-view constraints have been obtained they can be used to
guide the search for additional correspondences. These can then be employed to further refine
the results for the multi-view constraints.

In case of video computing the epipolar geometry between two consecutive views is not well
determined. In fact as long as the camera has not sufficiently moved, the motion of the features
can just as well be explained by a homography. The Geometric Robust Information Criterion
(GRIC) proposed by Torr [23] allows to evaluate which of the two models –epipolar geometry
(F) or homography (H)– is best suited to explain the data. Typically, for very small baselines the
homography model is always selected, as the baseline gets larger both models become equivalent
and eventually the epipolar geometry model outperforms the homography based one. This can
be seen in Figure 2. One can reliably compute the epipolar geometry from the moment that the
F-GRIC value drops below the H-GRIC value. We then select as a new key-frame the last frame
for which the number of tracked features is above 90% of the number of features tracked at the
F-GRIC/H-GRIC intersection.
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Figure 1: Overview of our image-based 3D recording approach.
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Figure 2: Comparison of epipolar geometry (F-GRIC/solid line) and homography model (H-
GRIC/dashed line) for tracked features. The lowest GRIC value yields the best model.

2.2 Structure and motion recovery
The relation between the views and the correspondences between the features, retrieved as ex-
plained in the previous section, will be used to retrieve the structure of the scene and the motion
of the camera. Our approach is fully projective so that it does not depend on the initialization.
This is achieved by strictly carrying out all measurements in the images, i.e. using reprojection
errors instead of 3D errors.

At first two images are selected and an initial projective reconstruction frame is set-up [5, 8].
Matching feature points are reconstructed through triangulation. Features points that are also
observed in a third view can then be used to determine the pose of this view in the reference
frame defined by the two first views. The initial reconstruction is then refined and extended. By
sequentially applying the same procedure the structure and motion of the whole sequence can
be computed. The pose estimation procedure is illustrated in Figure 3. These results can be
refined through a global least-squares minimization of all reprojection errors. Efficient bundle
adjustment techniques [24, 20] have been developed for this. Then the ambiguity is restricted to
metric through self-calibration [15]. Finally, a second bundle adjustment is carried out that takes
the camera calibration into account to obtain an optimal estimation of the metric structure and
motion.

If in some views all tracked feature are located on a plane, the approach explained above
would fail. This problem can be detected and solved by using the approach proposed in [18]. A
statistical information criterion is used to detect the images that only observe planar features and
for these views the pose of the camera is only computed after the intrinsic camera parameters
have been obtained through self-calibration (assuming they are all kept constant). In this way
problems of amiguities are avoided.
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Figure 3: The pose estimation of a new view uses inferred structure-to-image matches.

Figure 4: Example of a rectified stereo pair.

2.3 Dense surface estimation
To obtain a more detailed model of the observed surface a dense matching technique is used.
The structure and motion obtained in the previous steps can be used to constrain the correspon-
dence search. Since the calibration between successive image pairs was computed, the epipolar
constraint that restricts the correspondence search to a 1-D search range can be exploited. Image
pairs are warped so that epipolar lines coincide with the image scan lines. For this purpose the
rectification scheme proposed in [16] is used. This approach can deal with arbitrary relative cam-
era motion which is not the case for standard homography-based approaches which fail when the
epipole is contained in the image. The approach proposed in [16] also guarantees minimal image
size. The correspondence search is then reduced to a matching of the image points along each
image scan-line. This results in a dramatic increase of the computational efficiency of the algo-
rithms by enabling several optimizations in the computations. An example of a rectified stereo
pair is given in Figure 4. Note that all corresponding points are located on the same horizontal
scanline in both images.
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In addition to the epipolar geometry other constraints like preserving the order of neighbor-
ing pixels, bidirectional uniqueness of the match, and detection of occlusions can be exploited.
These constraints are used to guide the correspondence towards the most probable scan-line
match using a dynamic programming scheme [25]. The matcher searches at each pixel in one
image for maximum normalized cross correlation in the other image by shifting a small measure-
ment window along the corresponding scan line. The algorithm employs a pyramidal estimation
scheme to reliably deal with very large disparity ranges of over 50% of image size. The disparity
search range is limited based on the disparities that were observed for the features in the previous
reconstruction stage.

The pairwise disparity estimation allows to compute image to image correspondence between
adjacent rectified image pairs and independent depth estimates for each camera viewpoint. An
optimal joint estimate is achieved by fusing all independent estimates into a common 3D model
using a Kalman filter. The fusion can be performed in an economical way through controlled
correspondence linking and was discussed more in detail in [9]. This approach combines the
advantages of small baseline and wide baseline stereo. It can provide a very dense depth map by
avoiding most occlusions. The depth resolution is increased through the combination of multiple
viewpoints and large global baseline while the matching is simplified through the small local
baselines.

2.4 Building virtual models
In the previous sections a dense structure and motion recovery approach was explained. This
yields all the necessary information to build photo-realistic virtual models. The 3D surface is
approximated by a triangular mesh to reduce geometric complexity and to tailor the model to
the requirements of computer graphics visualization systems. A simple approach consists of
overlaying a 2D triangular mesh on top of one of the images and then build a corresponding 3D
mesh by placing the vertices of the triangles in 3D space according to the values found in the
corresponding depth map. The image itself is used as texture map. If no depth value is available
or the confidence is too low the corresponding triangles are not reconstructed. The same happens
when triangles are placed over discontinuities. This approach works well on dense depth maps
obtained from multiple stereo pairs.

The texture itself can also be enhanced through the multi-view linking scheme. A median
or robust mean of the corresponding texture values can be computed to discard imaging artifacts
like sensor noise, specular reflections and highlights [9, 12].

To reconstruct more complex shapes it is necessary to combine multiple depth maps. Since
all depth-maps are located in a single metric frame, registration is not an issue. To integrate the
mutliple depth maps into a single surface representation, the volumetric technique proposed by
Curless and Levoy [3] is used.

Alternatively, when the purpose is to render new views from similar viewpoints image-based
approaches can be used [10]. This approach avoids the difficult problem of obtaining a consistent
3D model by using view-dependent texture and geometry. This also allows to take more complex
visual effects such as reflections and highlights into account.

7
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Figure 5: 3D reconstruction of Dionysos. (a) one of the original video frames, (b) corresponding
depth map, (c) shaded view of the 3D reconstruction, (d) view of the textured 3D model.

(a) (b) (c) (d)

Figure 6: 3D reconstruction of a Medusa head. (a) one of the original video frames, (b) corre-
sponding depth map, (c) and (d) two views of the 3D model.

3 Results
In this section a few results are presented to illustrate the possibilities of our approach.

A first example is one of the Dionysos statues found in Sagalassos. This 2m high statue was
placed on the monumental fountain on the upper marketsquare of Sagalassos. The statue is now
located in the garden of the museum in Burdur. In our case it was simple to record a 1-minute
video. Bringing in more advanced equipment such as laser range scanner would much more
difficult. In Figure 5 different steps of the reconstruction process are illustrated. The 3D model
was obtained from a single depth map. A more complete and accurate model could be obtained
by combining multiple depth maps (see further). A more smooth look could be obtained for
the shaded model by filtering the 3D mesh in accordance with the standard deviations that are
obtained as a by product depth computation. This is not so important when the model is textured
mapped with the original images.

A second example is shown in Figure 6. It is a Medusa head which is located on the entab-
lature of a monumental fountain in Sagalassos. The head itself is about 30cm large. The 3D
model was obtained from a short video sequence. In this case also a single depth map was used
to reconstruct the 3D model. Notice that realistic views can be rendered from viewpoints that are
very different from the original viewpoint.
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An important advantage of our approach compared to more interactive techniques [4, 13] is
that much more complex objects can be dealt with. Compared to non-image based techniques
we have the important advantage that surface texture is directly extracted from the images. This
does not only result in a much higher degree of realism, but is also important for the authenticity
of the reconstruction. Therefore the reconstructions obtained with this system can also be used
as a scale model on which measurements can be carried out or as a tool for planning restaura-
tions. A disadvantage of our approach (and more in general of most image-based approaches) is
that our technique can not directly capture the photometric properties of an object, but only the
combination of these with lighting. It is therefore not possible to re-render the 3D model under
different lighting. This is a topic of future research.

Another challenging application consists of seamlessly integrating virtual objects in real
video. In this case the ultimate goal is to make it impossible to differentiate between real and
virtual objects. Several problems need to be overcome before achieving this goal. Amongst them
are the rigid registration of virtual objects into the real environment, the problem of mutual oc-
clusion of real and virtual objects and the extraction of the illumination distribution of the real
environment in order to render the virtual objects with this illumination model.

Here we will concentrate on the first of these problems, although the computations described
in the previous section also provide most of the necessary information to solve for occlusions and
other interactions between the real and virtual components of the augmented scene. Accurate
registration of virtual objects into a real environment is a challenging problem. Systems that fail
to do so will also fail to give the user a real-life impression of the augmented outcome. Since our
approach does not use markers or a-priori knowledge of the scene or the camera, this allows for
us to deal with video footage of unprepared environments or archive video footage. More details
on our approach can be found in [2].

The following example was recorded at Sagalassos in Turkey, where footage of the ruins of
an ancient fountain was taken. A large part of the original monument is missing. Based on results
of archaeological excavations and architectural studies, it was possible to generate a virtual copy
of the missing part. Using the proposed approach the virtual reconstruction could be placed back
on the remains of the original monument, at least in the recorded video sequence. This material is
of great interest to the archaeologists, not only for education and dissemination, but also for fund
raising to achieve a real restoration of the fountain. In Figure 7 a frame of the video sequence is
shown. This sequence was recorded for a documentary by Axell Communication. Our approach
was used to compute the camera motion and calibration.

4 Conclusion
In this paper an automatic approach was presented that takes a video sequence as input and
computes a 3D model as output. By combining state-of-the-art approaches developed in the field
of computer vision, computer graphics and photogrammetry, our system is able to obtain good
quality results on video as well as on photographic material.
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Figure 7: Architect contemplating a virtual reconstruction of the nymphaeum of the upper agora
at Sagalassos.
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