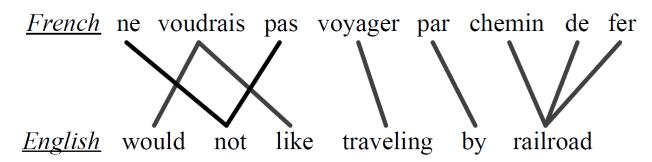
Gappy Phrasal Alignment by Agreement

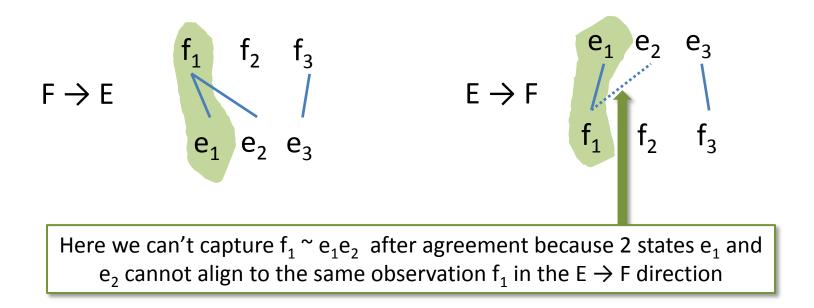

Microsoft[®] **Research**

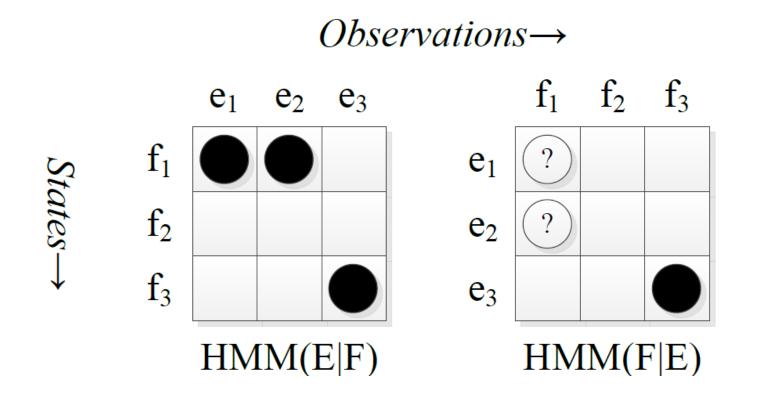
Mohit Bansal, Chris Quirk, and Robert C. Moore Summer 2010, NLP Group

- High level motivation:
 - Word alignment is a pervasive problem
 - Crucial component in MT systems
 - To build phrase tables
 - To extract synchronous syntactic rules
 - Also used in other NLP problems:
 - entailment
 - paraphrase
 - question answering
 - summarization
 - spell correction, etc.

Introduction

• The limitation to *words* is obviously wrong

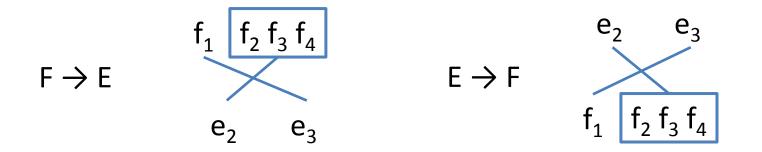



- People have tried to correct this for a while now
 - Phrase-based alignment
 - Pseudo-words
- Our contribution: clean, fast phrasal alignment model hidden semi-markov model (observations can be phrases...) for phrase-to-phrase alignment (...and states...) using alignment by agreement (...meaningful states...no phrase penalty) allowing subsequences (...finally, with ne .. pas !)

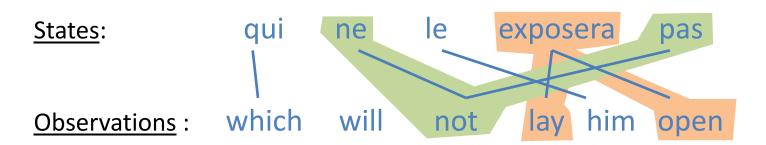
Two major influences :

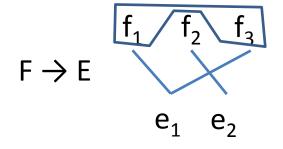
- 1) Conditional phrase-based alignment models
 - Word-to-phrase HMM is one approach (Deng & Byrne'05)
 - model subsequent words from the same state using a bigram model
 - change only the parameterization and not set of possible alignments
 - Phrase-to-phrase alignments (Daume & Marcu'04; DeNero et al.'06)
 - unconstrained model may overfit using unusual segmentations
 - Phrase-based hidden semi-markov model (Ferrer & Juan'09)
 - interpolates with Model 1 and monotonic (no reordering)

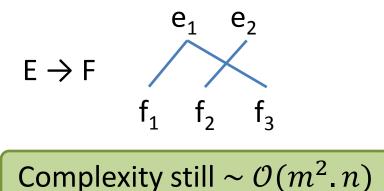
- 2) Alignment by agreement (Liang et al. 2006)
 - soft intersection cleans up and symmetrizes word HMM alignments
 - symmetric portion of HMM space is only word-to-word



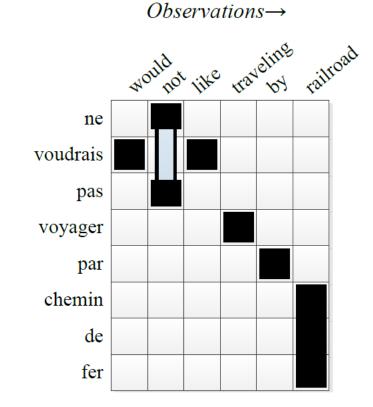
Model of F given E can't represent phrasal alignment $\{e1,e2\} \sim \{f1\}$: probability mass is distributed between $\{f1\} \sim \{e1\}$ and $\{f1\} \sim \{e2\}$. Agreement of forward and backward HMM alignments places less mass on phrasal links and more mass on word-to-word links.

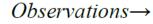

- Unite phrasal alignment and alignment by agreement
 - Allow phrases at both state and observation side

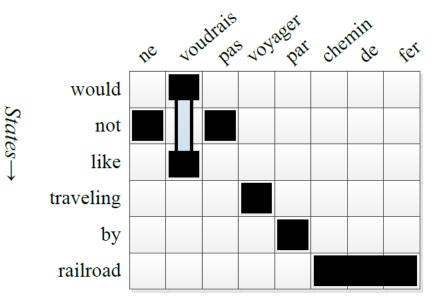

- Agreement favors alignments meaningful in both directions
 - With word alignment, agreement removes phrases 🟵
 - With phrase-to-phrase alignment, agreement reinforces meaningful phrases – avoids overfitting ^(C)

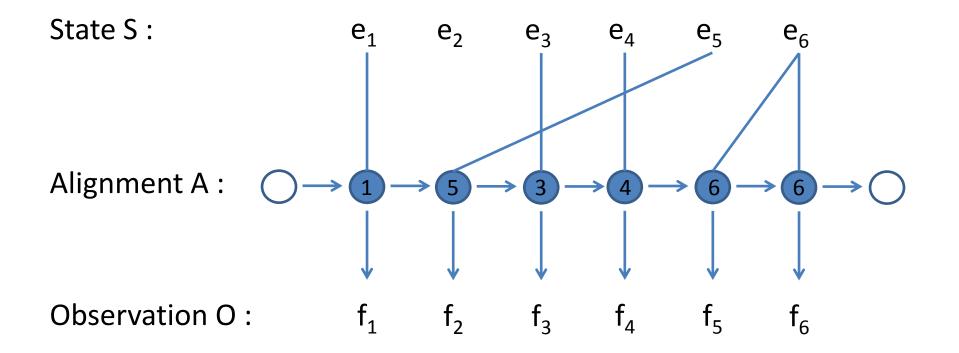


• Furthermore, we can allow subsequences

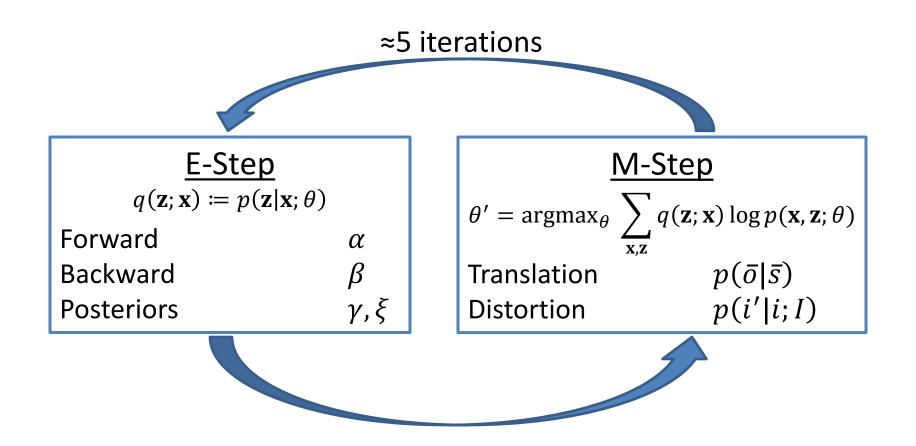

- State space extended to include gappy phrases
- Gappy obsrv phrases approximated as multiple obsrv words emitting from a single state

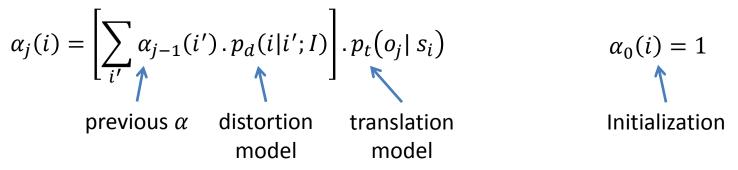





 $States \rightarrow$

Contributions




Model Parameters

Emission/Translation Model $P(O_2 = f_2 | S_{A_2} = e_5)$ Transition/Distortion Model $P(A_2 = 5 | A_1 = 1)$

EM Training (Baum-Welch)

<u>Forward</u>: $\alpha_j(i)$ = probability of generating obsrv o_1 to o_j s.t. state s_i generates o_j

<u>Backward</u>: $\beta_j(i)$ = probability of generating obsrv o_{j+1} to o_j s.t. state s_i generates o_j

$$\beta_{j}(i) = \begin{bmatrix} \sum_{i'} \beta_{j+1}(i') \cdot p_{d}(i'|i;I) p_{t}(o_{j+1}|s_{i'}) \end{bmatrix} \qquad \beta_{J}(i) = 1$$

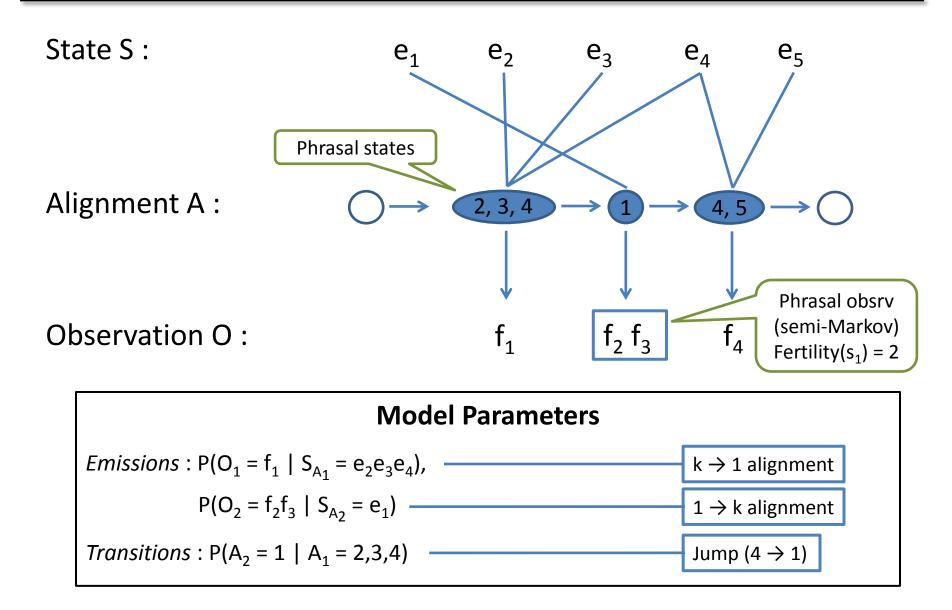
$$next \beta \qquad \text{distortion} \qquad \text{translation} \qquad \text{Initialization}$$

$$model \qquad model$$

p(O|S) = probability of full observation sentence $O = o_1^J$ from full state sentence $S = s_1^J$

$$p(0|S) = \sum_{i} \alpha_{j}(i) \cdot 1 = \sum_{i} 1 \cdot \beta_{0}(i) = \sum_{i} \alpha_{j}(i) \cdot \beta_{j}(i)$$

<u>Node Posterior</u> : $\gamma_j(i)$ = probability, given O, that obsrv o_j generated by state s_i $\gamma_j(i) = \frac{\alpha_j(i).\beta_j(i)}{p(0|S)}$


 $\underline{\text{Edge Posterior}}: \quad \xi_j(i',i) = \text{probability, given } 0, \text{ that obsrv } o_j \text{ and } o_{j+1} \text{ generated by} \\ \xi_j(i',i) = \frac{\alpha_j(i'). p_d(i|i';I) p_t(o_{j+1}|s_i). \beta_{j+1}(i)}{p(0|S)} \text{ states } s_i, \text{ and } s_i \text{ resp.}$

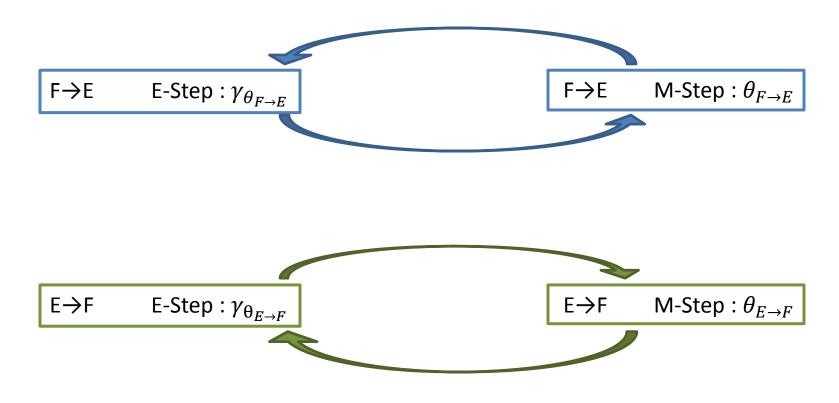
Parameter Re-estimation :

$$p_t(\bar{o}|\bar{s}) = \frac{1}{Z} \sum_{\substack{o,s \\ o_i = \bar{s} \\ o_j = \bar{o}}} \sum_{\substack{i,j \\ s_i = \bar{s} \\ o_j = \bar{o}}} \gamma_j(i)$$

$$p_{d}(i|i';I) = \frac{1}{Z} \sum_{\substack{O,S \\ |S|=I}} \sum_{j} \xi_{j}(i',i)$$

Hidden Semi-Markov Model

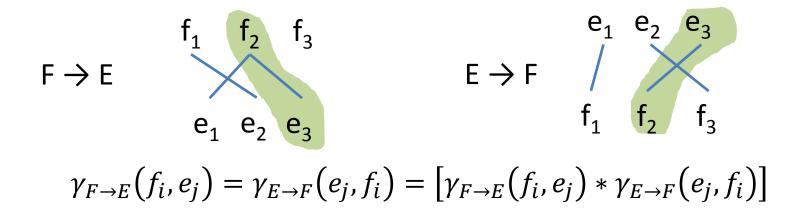
 $\alpha_j(i, \phi) = \text{probability of generating observations } o_1 \text{to } o_j \text{ such that}$ last observation-phrase $o_{j-\phi+1}^j$ generated by state s_i

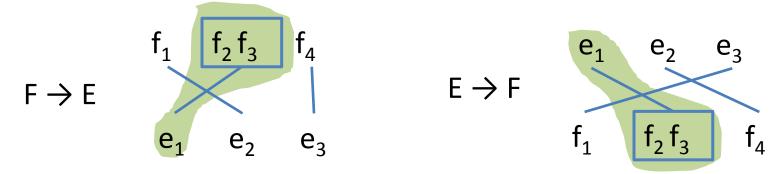

$$\alpha_{j}(i,\phi) = \left[\sum_{i',\phi'} \alpha_{j-\phi}(i',\phi') \cdot p_{d}(i|i';I)\right] \cdot n(\phi|s_{i}) \cdot \eta^{-\phi} \cdot \eta^{-|s_{i}|} \cdot p_{t}\left(o_{j-\phi+1}^{j}|s_{i}\right)$$
previous α distortion fertility penalty penalty translation model model for obsrv for state model phrase-len phrase-len

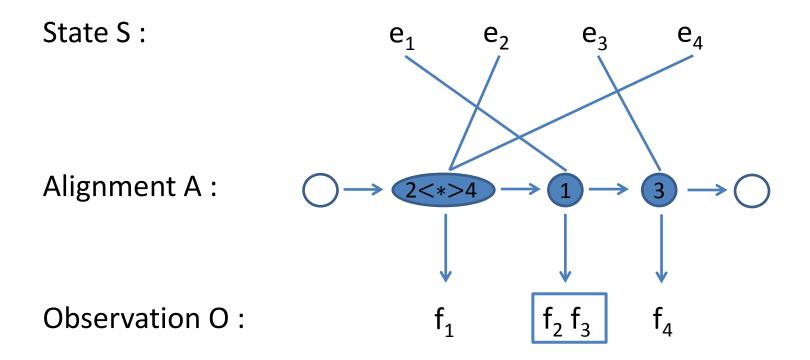
Initialize:

$$\alpha_0(i,0) = 1$$

$$\alpha_\phi(i,\phi) = p_{d_{init}}(i) \cdot n(\phi|s_i) \cdot \eta^{-\phi} \cdot \eta^{-|s_i|} \cdot p_t\left(o_1^{\phi}|s_i\right)$$


- Multiply posteriors of both directions E→F and F→E after every E-step of EM
- $q(\mathbf{z}; \mathbf{x}) \coloneqq \prod_{i,j} p_1(z_{ij} | \mathbf{x}; \theta_1) p_2(z_{ij} | \mathbf{x}; \theta_2)$


- Multiply posteriors of both directions E→F and F→E after every E-step of EM
- $q(\mathbf{z}; \mathbf{x}) \coloneqq \prod_{i,j} p_1(z_{ij} | \mathbf{x}; \theta_1) p_2(z_{ij} | \mathbf{x}; \theta_2)$


Agreement

• Phrase Agreement : need phrases on both observation and state sides

 $\gamma_{F \to E}(f_a^b, e_k) = \gamma_{E \to F}(e_k, f_a^b) = [\gamma_{F \to E}(f_a^b, e_k) * \gamma_{E \to F}(e_k, f_a^b)]$

• Asymmetry

- Computing posterior of gappy observation phrase is inefficient
- Hence, approximate posterior of $e_k^{\{f_i < * > f_j\}}$ using posteriors of $e_k^{\{f_i\}}$ and $e_k^{\{f_j\}}$

- Modified agreement, with approximate computation of posterior
 - Reverse direction of gapped state corresponds to a revisited state emitting two discontiguous observations

 $\gamma_{F \to E} (f_i < * > f_j, e_k) *= \min^{\dagger} \{ \gamma_{E \to F} (e_k, f_i), \gamma_{E \to F} (e_k, f_j) \}$

$$\gamma_{E \to F}(e_k, f_i) = \gamma_{F \to E}(f_i, e_k) + \sum_{h < i < j} \{\gamma_{F \to E}(f_h < *> f_i, e_k) + \gamma_{F \to E}(f_i < *> f_j, e_k)\}$$

 \pm min is an upper bound on the posterior that both observations f_i and f_j are $\sim e_k$, since every path that passes through $e_k \sim f_i \& e_k \sim f_j$ must pass through $e_k \sim f_i$, therefore the posterior of $e_k \sim f_i \& e_k \sim f_j$ is less than that of $e_k \sim f_i$, and likewise less than that of $e_k \sim f_j$

- Only allow certain 'good' phrases instead of all possible ones
- Run word-to-word HMM on full data
- Get observation phrases (contiguous and gapped) aligned to single state, i.e. $o_i^j \sim s$ for both languages/directions

• Weight the phrases o_i^j by discounted probability $\max(0, c(o_i^j \sim s) - \delta)/c(o_i^j)$ and choose top X phrases

Research

Complexity

			State length	Obsrv length	
Model1 :	$\prod_{i=1}^n p_t(o_i s_{a_i})$		0((m.n)	
w2w HMM :	$\prod_{i=1}^{n} p_d(a_i a_{i-1}, m). p_t(a_i a_{i-1}, m). p_t(a_i $	$p_i s_{a_i})$	$\mathcal{O}(m^2 . n)$		
HSMM (phrasal obsrv of bounded length k):			$\mathcal{O}(n)$	n^2 . kn)	
+ Phrasal states of bounded length k :			$\mathcal{O}((km)^2 . kn) = \mathcal{O}(k^3m^2n)$		
+ Gappy phrasal states of form w <*> w :			$\mathcal{O}((km + m^2)^2 . kn) = \mathcal{O}(km^4n)$ Still smaller than exact ITG $\mathcal{O}(n^6)$		
Phrases (obsrv ar from pruned lists	d states (contig and gappy)) :	0((m	$(n+p)^2 \cdot (n+p)$	$\sim \mathcal{O}(m^2.n)$	

$$Precision = \frac{|A \cap P|}{|A|} * 100\%, \qquad Recall = \frac{|A \cap S|}{|S|} * 100\%$$

where *S*, *P* and *A* are gold-sure, gold-possible and predicted edge-sets respectively

$$F_{\beta} = (1 + \beta^2) \cdot \frac{Precision * Recall}{\beta^2 \cdot Precision + Recall} * 100\%$$

$$BLEU_{n} = \min\left(1, \frac{output - len}{ref - len}\right) \cdot \exp\sum_{\substack{i=1\\i=1}}^{n} \lambda_{i} \log p_{i}$$
$$p_{i} = \frac{\sum_{c \in \{Candidates\}} \sum_{i-gram \in C} Count_{clip}(i - gram)}{\sum_{c \in \{Candidates\}} \sum_{i-gram \in C} Count (i - gram)}$$

- Datasets
 - <u>French-English</u> : Hansards NAACL 2003 shared-task
 - 1.1M sentence-pairs
 - Hand-alignments from Och&Ney03
 - 137 dev-set, 347 test-set (Liang06)
 - <u>German-English</u> : Europarl from WMT 2010
 - 1.6M sentence-pairs
 - Hand-alignments from ChrisQ
 - 102 dev-set, 258 test-set
- Training Regimen :
 - 5 iterations of Model 1 (independent training)
 - 5 iterations of w2w HMM (independent training)
 - Initialize the p2p model using phrase-extraction from w2w Viterbi alignments
 - Minimality : Only allow 1-K or K-1 alignments, since 2-3 can be generally be decomposed into 1-1 U 1-2, etc.

Alignment F1 Results

Data	Decoding method	Word-to-word	+Contig phrases	+Gappy phrases
FE 10K	Viterbi	89.7	90.6	90.3
FE 10K	Posterior ≥ 0.1	90.1	90.4	90.7
FE 100K	Viterbi	93.0	93.6	93.8
FE 100K	Posterior ≥ 0.1	93.1	93.7	93.8
FE All	Viterbi	94.1	94.3	94.3
FE All	Posterior ≥ 0.1	94.2	94.4	94.5
GE 10K	Viterbi	76.2	79.6	79.7
GE 10K	Posterior ≥ 0.1	76.7	79.3	79.3
GE 100K	Viterbi	81.0	83.0	83.2
GE 100K	Posterior ≥ 0.1	80.7	83.1	83.4
GE All	Viterbi	83.0	85.2	85.6
GE All	Posterior ≥ 0.1	83.7	85.3	85.7

- Phrase-based system using only contiguous phrases consistent with the potentially gappy alignment –
 - 4 channel models, lexicalized reordering model
 - word and phrase count features, distortion penalty
 - 5-gram language model (weighted by MERT)
- Parameters tuned on dev-set BLEU using grid search
- A syntax-based or non-contiguous phrasal system (Galley and Manning, 2010) may benefit more from gappy phrases

Language pair	Word-to-word	Gappy
French-English	34.0	34.5
German-English	19.3	19.8

- Start with HMM alignment by agreement
- Allow phrasal observations (HSMM)
- Allow phrasal states
- Allow gappy phrasal states
- Agreement between F→E and E→F finds meaningful phrases and makes phrase penalty almost unnecessary
- Maintain $\sim \mathcal{O}(m^2, n)$ complexity

- Limiting the gap length also prevents combinatorial explosion
- Translation system using discontinuous mappings at runtime (Chiang, 2007; Galley and Manning, 2010) may make better use of discontinuous alignments
- Apply model at the morpheme or character level, allowing joint inference of segmentation and alignment
- State space could be expanded and enhanced to include more possibilities: states with multiple gaps might be useful for alignment in languages with template morphology, such as Arabic or Hebrew
- A better distortion model might place a stronger distribution on the likely starting and ending points of phrases

Thank you!