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Example
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They considered running the ad during the Super Bowl.
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Canonical Ambiguity Type 1

» Prepositional phrase (PP) attachment ambiguities (isolated)
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VBD NN PP
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spent time  with family

spent with

[Volk 2001; Nakov & Hearst 2005b]
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Canonical Ambiguity Type 2

» NP coordination ambiguities
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car and truck  production car

[Nakov & Hearst 2005b; Bergsma et al. 2011]



Canonical Ambiguity Type 3

» Noun compound bracketing ambiguities
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[Lapata & Keller 2004; Nakov & Hearst 2005a; Pitler et al. 2010]



Parsing Errors

» Berkeley parser - errors cast as incorrect dependency attachments

» This work - single system that addresses various kinds of ambiguities
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WSJ Errors

N

... ordered full pages in the Monday editions of half a dozen newspapers .

NP

PDT DT NN NNS

... half a dozen newspapers



WSJ Errors
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NP

PDT DT NN NNS

... half a dozen newspapers



WSJ

Errors

.. a familiar message : Keep on

M\

investing , the market 's just fine .
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just fine



WSJ Errors
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.. a familiar message : Keep on investing , the market 's just fine .
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Using Web-Scale Features

» |dea: Edge-factored features that encode web-counts 7N
@(head arg)

a
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raising $ 30 million from debt




Web-Scale Statistics

» Prepositional Phrase (PP) disambiguation

verb / noun attachment ?
(v n, P n,)

c(v, p, no) N c(n1, p; n2) TV N| (Volk, 2001)

c(v) c(nq)

Only 2 competing attachments !




Dependency Features

Discriminative dependency parsing

¢(h a)

1[h, a] (McDonald et al., 2005; inter alia)

1 [Cluster(h), Cluster(a)] (Koo et al., 2008 Finkel et al., 2008)



Web-Scale Features

> Affinity based Web features
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¢(raising +3  from)

GOQSIQ ’ raising * from Search \

Advance d searc h
Web-count

Binning

c(raising * from) = 20K ‘ 20




Web-Scale Features

> Affinity based Web features
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Web-Scale Features

> Affinity based Web features

7N

¢(h [distance] a)

1[POS(h) — d — POS(a), webcnti]



Web-Scale Features

» Paraphrase (context) based Web features

7N

P(raising from)
GOOS[Q raising * from Search

Advanced search
‘ Top trigrams

raising money from
raising funds from
raising him  from
raising it from
raising capital from

[Nakov and Hearst 2005Db]



Web-Scale Features

Paraphrase (context) based Web features

7N

¢(raising from)

1[VBG — it — IN]



Web-Scale Features

» Paraphrase (context) based Web features

¢(h a)

1[POS(h) — context — POS(a)]



Web-Scale Features

Collecting top context words

¢(h/—\é)
middle : k-argmaxc(h*a)
before k-argmax c(*x h a)
after k—argmax c(h a *)

*



. Computing Web Statistics Efficiently

» Search engines inefficient — use Google n-grams (n =1 to 5)

» Batch — Collect all queries beforehand, then scan all n-grams

4 billion n-grams

4.5 million queries
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Parsing Results

» Dependency Parsing
» Web-features integrated into underlying dynamic program

» Error reduction (relative) of 7.0% over order-2 features

McDonald & Pereira 2006 [ 91.4
This work [T 92.0
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Parsing Results

» Constituent Parsing

» Get k-best parses and rerank them discriminatively

» Error reduction (relative) of 9.2% and 12.2%

Petrov et al. 2006 _ 90.2
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Error Analysis

» Errors reduced for a variety of child (argument) types
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Error Analysis

» Error reduction for each type of parent attachment for a given
child

N
o
w
o
w
o

33

30 23

23

22
17 17

20

w
o

% Error Reduction
N
o

% Error Reduction

18

N
o
1
N
o
1

11 11

-
o
1
-
o
1

o
% Error Reduction

o
o
o

IN NN VB NNP VBN NN VBDNNS VB VBG NN NNSVBD JJ CD
Parent Tag Parent Tag Parent Tag

-9 NN IN JJ

Tag



High-Weight Features

Affinity features
N "
RB IN their bridge back into the big-time
" "
NN IN an Oct. 19 review of “The, Misanthrope”
v VR

DT NN The new rate will be payable Feb. 15



High-Weight Features

Paraphrase features

N N
The MW DX sow a row of male-fertile plants
/—_\ /—\V
lediBY  thits  fidin the guile learned from his years in
/_\ /——\‘

purchdd&s and siNSS about stock purchases and sales by



Conclusion

Web-features are powerful disambiguators
Incorporation into end-to-end full-scale parsing

Uniform treatment of all attachment error types
7-12% relative error reduction in state-of-the-art parsers

Intuitive features surface in the learning setup



Thank you!
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Questions?



