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(Lei et al., 2014; Chen and Manning, 2014)



Motivation

(n-ary)
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Motivation

(n-ary)
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Motivation

» Train link embeddings on tons of auto-parsed data
(min-count thresholded to get only the popular links)
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Motivation

(unary)
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Motivation

(unary)
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Motivation
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dense syntactic features

ate—apple: [0.2,-09,04,-0.1,0.3]
ate—pear: [0.6,-0.2,0.1,-0.4,0.1]
had—water: [0.1,0.9,-0.2-0.1,0.5]

from—home: [0.1,-09,0.2,-0.8,0.7]
under—tree: [09,-04,04,0.5,-0.3]
for—her: [-0.3,09,-04,0.2,0.2]




Motivation

Much fewer, simpler unary features vs. millions of
template-based, n-ary word-cluster features

Directly work with higher-order, substructure embeddings
that task factors on, and their hidden relationships

Portable as off-the-shelf, dense, syntactic features
(instead of lexicalized or word embedding features)



Training

Parse a large corpus with baseline parser

Tuples consist of a dependency link and its context
(Bansal et al., 2014; Levy and Goldberg, 2014)
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Training

» Tuples consist of a dependency link and its context

dep> 9glegL> p—c lcp> dep>

dist. gp label parent—child link  dep label dist.
-2 NMOD..,.  of—internet PMOD_,. -2]



Training

» Tuples consist of a dependency link and its context

glegL> gp—p p—Cc d<p> lai>

gp label gp-parent link parent-child link dist.  dep label

[NMOD<GL> regulation—of of—internet -2 PMOD<L>]
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INPUT PROJECTION OUTPUT

» Run SKIP-gram model to predict context

» Threshold of 4 to get a vocab of just 92K .
(and then backoff to word/unk features)



Training

» Tried other context versions, e.g., for link to be able
to predict the individual words (for backing off to
word-level shared info)

gp label gp-parent parent parent-child child dist. dep label
[INMOD_,. regulation—of of of—internet internet -2  PMOD_,.]
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Clusters

Finds useful groups and subtle distinctions at link level

[N.Y—Yonkers, Md.—Columbia, N.Y.—Bronx, Va.—Reston, Ky.—Lexington, Mich.—
Kalamazoo, Calif—Calabasas, ...]

[boost—revenue, tap—markets, take—losses, launch—fight, reduce—holdings, terminate—
contract, identify—bidders, ...]

[boosting—bid, meeting—schedules, obtaining—order, having—losses, completing—
review, governing—industry, ...]

[began—Meanwhile, was—Since, are—Often, would—Now, had—During, were—QOver,
was—Late, have—Until, ...]



Clusters

Finds useful groups and subtle distinctions at link level

[says—mean, adds—may, explains—have, contend—has, recalls—had, figures—is,
asserted—is, notes—would, ...]

[would—Based, is—Besides, was—Like, is—From, are—Despite, said—Besides, says—
Despite, reported—As, ...]

[ Catsimatidis—Myr., Swete—Mr., Case—Mr., Montoya—Myr., Byerlein—Mr., Heard—Mr.,
Leny—Mpr., Graham—Mrs., ...]

lonly—1.5, about—170, nearly—eight, approximately—10, almost—15, some—80, Only—
two, about-23, roughly—50, ...]



Dependency Parsing Features

Brown cluster n-ary features (koo et al., 2008):
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Dependency Parsing Features

» Word embedding n-ary features (Bansal et al., 2014):
» Per-dimension bucket features:

l—» dim=3 -OH7

ate > [0.2 0.7 -0.6 0.9] ate apple
apple - [0.6 -0.1 0.7 0.2]

T P
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Dependency Parsing Features

Link embedding unary features (this work):
Per-dimension bucket features:

dim=3 0.6

"

ate—apple 2 [-0.5 0.3/0.6 0.8] ate apple

Hierarchical clustering (bit string) features:

linkage(E, ‘ward’, ‘euclidean’)
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Setup: MSTParser (2" order), standard data splits,
parameters, preprocessing, threshold (Bansal et al., 2014)

Much fewer features compared to n-ary, word-based

Quicker to train these SKIP-based link features

System Number of features

Baseline SM

BROWN 13M (2.5 days)
Bansal et al. (2014) 30M

Bucket 15K (15 mins.)
Bit-string IM (1 day)




Dependency Parsing Results

Stat-equal improvements as Brown and stat-significant
stacking, at much fewer, simpler, quicker features

System Test
Baseline 91.9
+ BROWN 92.7
+ Bucket 92.3
+ Bit-string 92.6
+ BROWN + Bucket 93.0
+ BROWN + Bit-string 93.1

Similar improvements and stacking for out-of-domain

Allows practical, accurate per-dimension features



Off-the-shelf Results

Portable as simple, dense, syntactic features

E.g., on constituent reranking, stat-equal improvements
as global reranking features and stat-signif. stacking
(Bansal and Klein, 2011)

Test
Parsing Model Fl EX
Baseline (1-best) 90.2 37.3
Baseline (log p(t|w)) |89.9 37.3
+ Config 91.1 40.6
+ Bit-string 90.9 40.6
+ Config + Bit-string |91.4 42.0




Conclusion

Dense dependency link embeddings allow simpler, fewer
(unary) features in dependency parsing

Get similar improvements to n-ary template-based word
cluster/embedding features

Portable as useful, dense, syntactic features to downstream
tasks, e.g., constituent reranking



Current/Future Work

Export to other extrinsic tasks, e.g., sentence classification or
initial units in vector-space composition

Newer, better representation learning tools, e.g., deeper NNs,
GloVe (Pennington et al., 2014)

Training on larger quantities of automatically-parsed data

Other back-off approaches for unknown links, e.g., tag-based
links (fag1—tag?2) and one-sided links (UNK-word or UNK-tag)

Compare to approaches like relation matrices on dependency
labels, concatenation+SVD of head and argument vectors



Thank you!

Data (link embeddings and features) at:
ttic.uchicago.edu/~mbansal/codedata/linkEmbeddings-skiplink.zip




