
Dependency Link Embeddings:
Continuous Representations
of Syntactic Substructures

Mohit Bansal

TTI-Chicago

Motivation

ate apple

	

(1100 , 0001)
	

(110010 , 000101)

prefix4 !
prefix6 !

(parent) (child)

(n-ary word cluster/embedding features)	

prefix4	

prefix6	

Ms. Haag plays Elianti .*

obj
proot

nmod sbj

Figure 1: An example of a labeled dependency tree. The
tree contains a special token “*” which is always the root
of the tree. Each arc is directed from head to modifier and
has a label describing the function of the attachment.

and clustering, Section 3 describes the cluster-based
features, Section 4 presents our experimental results,
Section 5 discusses related work, and Section 6 con-
cludes with ideas for future research.

2 Background

2.1 Dependency parsing

Recent work (Buchholz and Marsi, 2006; Nivre
et al., 2007) has focused on dependency parsing.
Dependency syntax represents syntactic informa-
tion as a network of head-modifier dependency arcs,
typically restricted to be a directed tree (see Fig-
ure 1 for an example). Dependency parsing depends
critically on predicting head-modifier relationships,
which can be difficult due to the statistical sparsity
of these word-to-word interactions. Bilexical depen-
dencies are thus ideal candidates for the application
of coarse word proxies such as word clusters.

In this paper, we take a part-factored structured
classification approach to dependency parsing. For a
given sentence x, let Y(x) denote the set of possible
dependency structures spanning x, where each y �
Y(x) decomposes into a set of “parts” r � y. In the
simplest case, these parts are the dependency arcs
themselves, yielding a first-order or “edge-factored”
dependency parsing model. In higher-order parsing
models, the parts can consist of interactions between
more than two words. For example, the parser of
McDonald and Pereira (2006) defines parts for sib-
ling interactions, such as the trio “plays”, “Elianti”,
and “.” in Figure 1. The Carreras (2007) parser
has parts for both sibling interactions and grandpar-
ent interactions, such as the trio “*”, “plays”, and
“Haag” in Figure 1. These kinds of higher-order
factorizations allow dependency parsers to obtain a
limited form of context-sensitivity.

Given a factorization of dependency structures
into parts, we restate dependency parsing as the fol-

apple pear Apple IBM bought run of in

01

100 101 110 111000 001 010 011

00

0

10

1

11

Figure 2: An example of a Brown word-cluster hierarchy.
Each node in the tree is labeled with a bit-string indicat-
ing the path from the root node to that node, where 0
indicates a left branch and 1 indicates a right branch.

lowing maximization:

PARSE(x;w) = argmax
y�Y(x)

X

r�y

w · f(x, r)

Above, we have assumed that each part is scored
by a linear model with parameters w and feature-
mapping f(·). For many different part factoriza-
tions and structure domains Y(·), it is possible to
solve the above maximization efficiently, and several
recent efforts have concentrated on designing new
maximization algorithms with increased context-
sensitivity (Eisner, 2000; McDonald et al., 2005b;
McDonald and Pereira, 2006; Carreras, 2007).

2.2 Brown clustering algorithm
In order to provide word clusters for our exper-
iments, we used the Brown clustering algorithm
(Brown et al., 1992). We chose to work with the
Brown algorithm due to its simplicity and prior suc-
cess in other NLP applications (Miller et al., 2004;
Liang, 2005). However, we expect that our approach
can function with other clustering algorithms (as in,
e.g., Li and McCallum (2005)). We briefly describe
the Brown algorithm below.

The input to the algorithm is a vocabulary of
words to be clustered and a corpus of text containing
these words. Initially, each word in the vocabulary
is considered to be in its own distinct cluster. The al-
gorithm then repeatedly merges the pair of clusters
which causes the smallest decrease in the likelihood
of the text corpus, according to a class-based bigram
language model defined on the word clusters. By
tracing the pairwise merge operations, one obtains
a hierarchical clustering of the words, which can be
represented as a binary tree as in Figure 2.

Within this tree, each word is uniquely identified
by its path from the root, and this path can be com-
pactly represented with a bit string, as in Figure 2.
In order to obtain a clustering of the words, we se-
lect all nodes at a certain depth from the root of the

apple ! 00010100010	

(Lei et al., 2014; Chen and Manning, 2014)	

Motivation

ate apple
(parent) (child)

 (0.6 , -0.9) w[i] 	

 !

(n-ary)	

ate 	

 	

! 	

[0.6, 0.9, 0.3, -1.0, 0.1, -0.7]	

apple 	

! 	

[-0.9, 0.1, -0.3, 0.5, 0.1, 0.6]	

Motivation

ate apple

	

(1100 , 0001)
	

(110010 , 000101)

prefix4 !
prefix6 !

(parent) (child)

hierarchy. For example, in Figure 2 we might select
the four nodes at depth 2 from the root, yielding the
clusters {apple,pear}, {Apple,IBM}, {bought,run},
and {of,in}. Note that the same clustering can be ob-
tained by truncating each word’s bit-string to a 2-bit
prefix. By using prefixes of various lengths, we can
produce clusterings of different granularities (Miller
et al., 2004).

For all of the experiments in this paper, we used
the Liang (2005) implementation of the Brown algo-
rithm to obtain the necessary word clusters.

3 Feature design

Key to the success of our approach is the use of fea-
tures which allow word-cluster-based information to
assist the parser. The feature sets we used are simi-
lar to other feature sets in the literature (McDonald
et al., 2005a; Carreras, 2007), so we will not attempt
to give a exhaustive description of the features in
this section. Rather, we describe our features at a
high level and concentrate on our methodology and
motivations. In our experiments, we employed two
different feature sets: a baseline feature set which
draws upon “normal” information sources such as
word forms and parts of speech, and a cluster-based
feature set that also uses information derived from
the Brown cluster hierarchy.

3.1 Baseline features

Our first-order baseline feature set is similar to the
feature set of McDonald et al. (2005a), and consists
of indicator functions for combinations of words and
parts of speech for the head and modifier of each
dependency, as well as certain contextual tokens.1

Our second-order baseline features are the same as
those of Carreras (2007) and include indicators for
triples of part of speech tags for sibling interactions
and grandparent interactions, as well as additional
bigram features based on pairs of words involved
these higher-order interactions. Examples of base-
line features are provided in Table 1.

1We augment the McDonald et al. (2005a) feature set with
backed-off versions of the “Surrounding Word POS Features”
that include only one neighboring POS tag. We also add binned
distance features which indicate whether the number of tokens
between the head and modifier of a dependency is greater than
2, 5, 10, 20, 30, or 40 tokens.

Baseline Cluster-based

ht,mt hc4,mc4

hw,mw hc6,mc6

hw,ht,mt hc

*

,mc

*

hw,ht,mw hc4,mt

ht,mw,mt ht,mc4

hw,mw,mt hc6,mt

hw,ht,mw,mt ht,mc6

· · · hc4,mw

hw,mc4

· · ·
ht,mt,st hc4,mc4,sc4

ht,mt,gt hc6,mc6,sc6

· · · ht,mc4,sc4

hc4,mc4,gc4

· · ·

Table 1: Examples of baseline and cluster-based feature
templates. Each entry represents a class of indicators for
tuples of information. For example, “ht,mt” represents
a class of indicator features with one feature for each pos-
sible combination of head POS-tag and modifier POS-
tag. Abbreviations: ht = head POS, hw = head word,
hc4 = 4-bit prefix of head, hc6 = 6-bit prefix of head,
hc

*

= full bit string of head; mt,mw,mc4,mc6,mc
*

=
likewise for modifier; st,gt,sc4,gc4,. . . = likewise
for sibling and grandchild.

3.2 Cluster-based features

The first- and second-order cluster-based feature sets
are supersets of the baseline feature sets: they in-
clude all of the baseline feature templates, and add
an additional layer of features that incorporate word
clusters. Following Miller et al. (2004), we use pre-
fixes of the Brown cluster hierarchy to produce clus-
terings of varying granularity. We found that it was
nontrivial to select the proper prefix lengths for the
dependency parsing task; in particular, the prefix
lengths used in the Miller et al. (2004) work (be-
tween 12 and 20 bits) performed poorly in depen-
dency parsing.2 After experimenting with many dif-
ferent feature configurations, we eventually settled
on a simple but effective methodology.

First, we found that it was helpful to employ two
different types of word clusters:

1. Short bit-string prefixes (e.g., 4–6 bits), which
we used as replacements for parts of speech.

2One possible explanation is that the kinds of distinctions
required in a named-entity recognition task (e.g., “Alice” versus
“Intel”) are much finer-grained than the kinds of distinctions
relevant to syntax (e.g., “apple” versus “eat”).

597

 (0.6 , -0.9) w[i] 	

 !

(McDonald et al., 2005;
Koo et al., 2008)	

(n-ary)	

Motivation

ate apple
(parent) (child)

 0.6

-0.2

 0.9

 0.3

-0.4

 0.5	

!   Train link embeddings on tons of auto-parsed data
(min-count thresholded to get only the popular links)

Motivation

	

 	

 0.4 w[i] 	

 	

!

ate apple
(parent) (child)

(unary)	

ate—apple 	

 	

! 	

[0.4, 0.2, -0.3, 0.4, 0.1, 0.7]	

Motivation

1101
101010

prefix4 	

!
prefix6 	

!

ate apple
(parent) (child)

(unary)	

prefix4	

prefix6	

ate—apple ! 11011100010	

ate—apple	
 ate—pear	
 Cole—Mr.	
 Cruz—Mr.	

0	
 1	

00	
 01	
 10	
 11	

Motivation

boost—revenue

tap—market

build—business

reduce—holdings

attract—investment

boosting—bid

allocating—$
taking—shares

having—losses

N.Y.—Yonkers

N.Y.—Bronx

Ky.—Lexington
Va.—Reston

Md.—Columbia

only—1.5

about—170

almost—15

roughly—50

Swete—Mr.

Leny—Mr.

Case—Mr.

Mantoya—Mr.

Motivation

dense syntactic features	

NLP	
 System	

ate––apple: 	

[0.2, -0.9, 0.4, -0.1, 0.3]	

ate––pear: 	

[0.6, -0.2, 0.1, -0.4, 0.1]
had––water: 	

[0.1, 0.9, -0.2 -0.1, 0.5]

…	

…	

…	

…	

from––home: 	

[0.1, -0.9, 0.2, -0.8, 0.7]
under––tree: 	

[0.9, -0.4, 0.4, 0.5, -0.3]
for––her: 	

[-0.3, 0.9, -0.4, 0.2, 0.2]

Motivation

!   Much fewer, simpler unary features vs. millions of
template-based, n-ary word-cluster features

!   Directly work with higher-order, substructure embeddings
that task factors on, and their hidden relationships

!   Portable as off-the-shelf, dense, syntactic features

(instead of lexicalized or word embedding features)

Training

!   Parse a large corpus with baseline parser

!   Tuples consist of a dependency link and its context
 (Bansal et al., 2014; Levy and Goldberg, 2014)

… said that the regulation of the internet is …

NMOD	
 PMOD	

(child)	
 (parent)	

(dep label)	
 (gp label)	

(gparent)	

of	
 internet	

Training

!   Tuples consist of a dependency link and its context

dings have not proven useful . As an example, we
incorporate them into a constituent parse reranker
and see significant improvements that match state-
of-the-art, non-local reranking features and again
complement them. We make our link embeddings
publicly available and hope they will prove useful in
various other NLP tasks such as sentence classifica-
tion and as initial units in vector composition.

2 Dependency Link Embeddings

To train the link embeddings, we use the skip-gram
neural language model of Mikolov et al. (2013a;
2013b), as implemented in the publicly available
toolkit word2vec1, because of its exceptionally
quick training time (no hidden layers). We keep
the skip-gram model (code) fixed and simply change
the context tuple data on which the model is trained,
similar to Bansal et al. (2014) and Levy and Gold-
berg (2014). The goal is to learn similar embeddings
for links with similar syntactic contextual properties
like label, signed distance, ancestors, etc.

To this end, we first parse the BLLIP corpus
(minus the PTB portion) using the baseline MST-
Parser (McDonald et al., 2005b) and then cre-
ate tuples, each containing a parent-child (head-
argument) link p—c and its various properties such
as the link’s dependency relation label l, the grand-
parent dependency relation label gl, and the signed,
binned distance d:

“d<D> gl<GL> p—c l<L> d<D>”, (1)

We then run the skip-gram model on the the above
context tuples (Eq. 1) with a window-size of 2,
dimension-size of 100, and a min-count cutoff of
4 to give us a vocabulary of around 92K.2 We also
tried another context setting where we add more lex-
icalized, link-based context to the tuple, e.g., the
neighboring grandparent-parent link gp—p:

“gl<GL> gp—p p—c d<D> l<L>”, (2)

but this setting always performs equal or slightly
worse to the tuples in Eq. 1, probably due to spar-
sity issues with lexicalized context. Note that we
chose a link p—c as our representation unit but one

1
https://code.google.com/p/word2vec/

2We add subscripts to all context tokens so as to treat them
differently and remove them from the vocabulary after training.

N.Y.–Yonkers, Md.–Columbia, N.Y.–Bronx, Va.–Reston,
Ky.–Lexington, Mich.–Kalamazoo, Calif.–Calabasas, ...
boost–revenue, tap–markets, take–losses, launch–fight,
reduce–holdings, terminate–contract, identify–bidders, ...
boosting–bid, meeting–schedules, obtaining–order,
having–losses, completing–review, governing–industry, ...
says–mean, adds–may, explains–have, contend–has,
recalls–had, figures–is, asserted–is, notes–would, ...
would–Based, is–Besides, was–Like, is–From, are–Despite,
said–Besides, says–Despite, reported–As, ...
began–Meanwhile, was–Since, are–Often, would–Now,
had–During, were–Over, was–Late, have–Until, ...
Catsimatidis–Mr., Swete–Mr., Case–Mr., Montoya–Mr.,
Byerlein–Mr., Heard–Mr., Leny–Mr., Graham–Mrs., ...
only–1.5, about–170, nearly–eight, approximately–10,
almost–15, some–80, Only–two, about–23, roughly–50, ...

Table 1: Example clusters of the link embeddings.

could also add the distance (d), label (l), or sibling
(c2) information to have bigger units like p—c—d
or p—c—c2, but at the cost of sparsity in training.

Table 1 shows example clusters obtained by clus-
tering link embeddings (via MATLAB’s linkage
+ cluster commands, with 1000 clusters). We
can see that these link embeddings are able to cap-
ture useful groups and subtle distinctions directly at
the link level (without having to work with all pairs
of word types), e.g., based on syntactic properties
like capitalization, verb form, position in sentence,
and on topics like location, time, finance, etc.

3 Dependency Parsing Experiments

3.1 Features
The BROWN cluster features are based on Bansal et
al. (2014), who follow Koo et al. (2008) to add 1st
and 2nd order features to MSTParser based on pre-
fixes (of length 4, 6, 8, and 12) of the 0-1 hierarchi-
cal clustering bit-strings (via the bigram class-based
LM of Brown et al. (1992)) of the head and argu-
ment, siblings, intermediate words, etc. See Table 1
of Koo et al. (2008) for the exact feature templates.

For link embeddings, we tried two feature types:
Bucket features: For each dimension of the link vec-
tor, we fire a simple indicator feature, where the fea-
ture name consists of the dimension index and the
bucketed vector value at that index (using a bucket
of 0.25). We have another feature that additionally
includes the signed, bucketed distance of the partic-
ular link in the given sentence. Note the difference
from the unsuccessful bucket features of Bansal et

dist.	
 dep label	
 gp label	
 parent––child link	

[-2 NMOD<GL> of––internet PMOD<L> -2]
dist.	

Training

!   Tuples consist of a dependency link and its context

!   Run SKIP-gram model to predict context

!   Threshold of 4 to get a vocab of just 92K
(and then backoff to word/unk features)

context window

gp label	
 dist.	
 gp-parent link	
 parent-child link	

[NMOD<GL> regulation––of of––internet -2 PMOD<L>]
dep label	

dings have not proven useful . As an example, we
incorporate them into a constituent parse reranker
and see significant improvements that match state-
of-the-art, non-local reranking features and again
complement them. We make our link embeddings
publicly available and hope they will prove useful in
various other NLP tasks such as sentence classifica-
tion and as initial units in vector composition.

2 Dependency Link Embeddings

To train the link embeddings, we use the skip-gram
neural language model of Mikolov et al. (2013a;
2013b), as implemented in the publicly available
toolkit word2vec1, because of its exceptionally
quick training time (no hidden layers). We keep
the skip-gram model (code) fixed and simply change
the context tuple data on which the model is trained,
similar to Bansal et al. (2014) and Levy and Gold-
berg (2014). The goal is to learn similar embeddings
for links with similar syntactic contextual properties
like label, signed distance, ancestors, etc.

To this end, we first parse the BLLIP corpus
(minus the PTB portion) using the baseline MST-
Parser (McDonald et al., 2005b) and then cre-
ate tuples, each containing a parent-child (head-
argument) link p—c and its various properties such
as the link’s dependency relation label l, the grand-
parent dependency relation label gl, and the signed,
binned distance d:

“d<D> gl<GL> p—c l<L> d<D>”, (1)

We then run the skip-gram model on the the above
context tuples (Eq. 1) with a window-size of 2,
dimension-size of 100, and a min-count cutoff of
4 to give us a vocabulary of around 92K.2 We also
tried another context setting where we add more lex-
icalized, link-based context to the tuple, e.g., the
neighboring grandparent-parent link gp—p:

“gl<GL> gp—p p—c d<D> l<L>”, (2)

but this setting always performs equal or slightly
worse to the tuples in Eq. 1, probably due to spar-
sity issues with lexicalized context. Note that we
chose a link p—c as our representation unit but one

1
https://code.google.com/p/word2vec/

2We add subscripts to all context tokens so as to treat them
differently and remove them from the vocabulary after training.

N.Y.–Yonkers, Md.–Columbia, N.Y.–Bronx, Va.–Reston,
Ky.–Lexington, Mich.–Kalamazoo, Calif.–Calabasas, ...
boost–revenue, tap–markets, take–losses, launch–fight,
reduce–holdings, terminate–contract, identify–bidders, ...
boosting–bid, meeting–schedules, obtaining–order,
having–losses, completing–review, governing–industry, ...
says–mean, adds–may, explains–have, contend–has,
recalls–had, figures–is, asserted–is, notes–would, ...
would–Based, is–Besides, was–Like, is–From, are–Despite,
said–Besides, says–Despite, reported–As, ...
began–Meanwhile, was–Since, are–Often, would–Now,
had–During, were–Over, was–Late, have–Until, ...
Catsimatidis–Mr., Swete–Mr., Case–Mr., Montoya–Mr.,
Byerlein–Mr., Heard–Mr., Leny–Mr., Graham–Mrs., ...
only–1.5, about–170, nearly–eight, approximately–10,
almost–15, some–80, Only–two, about–23, roughly–50, ...

Table 1: Example clusters of the link embeddings.

could also add the distance (d), label (l), or sibling
(c2) information to have bigger units like p—c—d
or p—c—c2, but at the cost of sparsity in training.

Table 1 shows example clusters obtained by clus-
tering link embeddings (via MATLAB’s linkage
+ cluster commands, with 1000 clusters). We
can see that these link embeddings are able to cap-
ture useful groups and subtle distinctions directly at
the link level (without having to work with all pairs
of word types), e.g., based on syntactic properties
like capitalization, verb form, position in sentence,
and on topics like location, time, finance, etc.

3 Dependency Parsing Experiments

3.1 Features
The BROWN cluster features are based on Bansal et
al. (2014), who follow Koo et al. (2008) to add 1st
and 2nd order features to MSTParser based on pre-
fixes (of length 4, 6, 8, and 12) of the 0-1 hierarchi-
cal clustering bit-strings (via the bigram class-based
LM of Brown et al. (1992)) of the head and argu-
ment, siblings, intermediate words, etc. See Table 1
of Koo et al. (2008) for the exact feature templates.

For link embeddings, we tried two feature types:
Bucket features: For each dimension of the link vec-
tor, we fire a simple indicator feature, where the fea-
ture name consists of the dimension index and the
bucketed vector value at that index (using a bucket
of 0.25). We have another feature that additionally
includes the signed, bucketed distance of the partic-
ular link in the given sentence. Note the difference
from the unsuccessful bucket features of Bansal et

Training

!   Tried other context versions, e.g., for link to be able
to predict the individual words (for backing off to
word-level shared info)

context window

gp label	
 dist.	
 gp-parent	
 parent-child	

[NMOD<GL> regulation––of of of––internet internet -2 PMOD<L>]

dep label	
 parent	
 child	

Clusters

[N.Y.–Yonkers, Md.–Columbia, N.Y.–Bronx, Va.–Reston, Ky.–Lexington, Mich.–
Kalamazoo, Calif.–Calabasas, …]

[boost–revenue, tap–markets, take–losses, launch–fight, reduce–holdings, terminate–
contract, identify–bidders, …]

[boosting–bid, meeting–schedules, obtaining–order, having–losses, completing–
review, governing–industry, …]

[began–Meanwhile, was–Since, are–Often, would–Now, had–During, were–Over,
was–Late, have–Until, …]

!   Finds useful groups and subtle distinctions at link level

Clusters

!   Finds useful groups and subtle distinctions at link level

[says–mean, adds–may, explains–have, contend–has, recalls–had, figures–is,
asserted–is, notes–would, …]

[would–Based, is–Besides, was–Like, is–From, are–Despite, said–Besides, says–
Despite, reported–As, …]

[Catsimatidis–Mr., Swete–Mr., Case–Mr., Montoya–Mr., Byerlein–Mr., Heard–Mr.,
Leny–Mr., Graham–Mrs., …]

[only–1.5, about–170, nearly–eight, approximately–10, almost–15, some–80, Only–
two, about–23, roughly–50, …]

Dependency Parsing Features

!   Brown cluster n-ary features (Koo et al., 2008):

prefix4	

prefix6	

Ms. Haag plays Elianti .*

obj
proot

nmod sbj

Figure 1: An example of a labeled dependency tree. The
tree contains a special token “*” which is always the root
of the tree. Each arc is directed from head to modifier and
has a label describing the function of the attachment.

and clustering, Section 3 describes the cluster-based
features, Section 4 presents our experimental results,
Section 5 discusses related work, and Section 6 con-
cludes with ideas for future research.

2 Background

2.1 Dependency parsing

Recent work (Buchholz and Marsi, 2006; Nivre
et al., 2007) has focused on dependency parsing.
Dependency syntax represents syntactic informa-
tion as a network of head-modifier dependency arcs,
typically restricted to be a directed tree (see Fig-
ure 1 for an example). Dependency parsing depends
critically on predicting head-modifier relationships,
which can be difficult due to the statistical sparsity
of these word-to-word interactions. Bilexical depen-
dencies are thus ideal candidates for the application
of coarse word proxies such as word clusters.

In this paper, we take a part-factored structured
classification approach to dependency parsing. For a
given sentence x, let Y(x) denote the set of possible
dependency structures spanning x, where each y �
Y(x) decomposes into a set of “parts” r � y. In the
simplest case, these parts are the dependency arcs
themselves, yielding a first-order or “edge-factored”
dependency parsing model. In higher-order parsing
models, the parts can consist of interactions between
more than two words. For example, the parser of
McDonald and Pereira (2006) defines parts for sib-
ling interactions, such as the trio “plays”, “Elianti”,
and “.” in Figure 1. The Carreras (2007) parser
has parts for both sibling interactions and grandpar-
ent interactions, such as the trio “*”, “plays”, and
“Haag” in Figure 1. These kinds of higher-order
factorizations allow dependency parsers to obtain a
limited form of context-sensitivity.

Given a factorization of dependency structures
into parts, we restate dependency parsing as the fol-

apple pear Apple IBM bought run of in

01

100 101 110 111000 001 010 011

00

0

10

1

11

Figure 2: An example of a Brown word-cluster hierarchy.
Each node in the tree is labeled with a bit-string indicat-
ing the path from the root node to that node, where 0
indicates a left branch and 1 indicates a right branch.

lowing maximization:

PARSE(x;w) = argmax
y�Y(x)

X

r�y

w · f(x, r)

Above, we have assumed that each part is scored
by a linear model with parameters w and feature-
mapping f(·). For many different part factoriza-
tions and structure domains Y(·), it is possible to
solve the above maximization efficiently, and several
recent efforts have concentrated on designing new
maximization algorithms with increased context-
sensitivity (Eisner, 2000; McDonald et al., 2005b;
McDonald and Pereira, 2006; Carreras, 2007).

2.2 Brown clustering algorithm
In order to provide word clusters for our exper-
iments, we used the Brown clustering algorithm
(Brown et al., 1992). We chose to work with the
Brown algorithm due to its simplicity and prior suc-
cess in other NLP applications (Miller et al., 2004;
Liang, 2005). However, we expect that our approach
can function with other clustering algorithms (as in,
e.g., Li and McCallum (2005)). We briefly describe
the Brown algorithm below.

The input to the algorithm is a vocabulary of
words to be clustered and a corpus of text containing
these words. Initially, each word in the vocabulary
is considered to be in its own distinct cluster. The al-
gorithm then repeatedly merges the pair of clusters
which causes the smallest decrease in the likelihood
of the text corpus, according to a class-based bigram
language model defined on the word clusters. By
tracing the pairwise merge operations, one obtains
a hierarchical clustering of the words, which can be
represented as a binary tree as in Figure 2.

Within this tree, each word is uniquely identified
by its path from the root, and this path can be com-
pactly represented with a bit string, as in Figure 2.
In order to obtain a clustering of the words, we se-
lect all nodes at a certain depth from the root of the

apple ! 00010100010	

ate apple
VBD NN
1100 0001
110010 000101

tag	

 	

 	

!
prefix4	

 	

!
prefix6 	

!

(parent) (child)

hierarchy. For example, in Figure 2 we might select
the four nodes at depth 2 from the root, yielding the
clusters {apple,pear}, {Apple,IBM}, {bought,run},
and {of,in}. Note that the same clustering can be ob-
tained by truncating each word’s bit-string to a 2-bit
prefix. By using prefixes of various lengths, we can
produce clusterings of different granularities (Miller
et al., 2004).

For all of the experiments in this paper, we used
the Liang (2005) implementation of the Brown algo-
rithm to obtain the necessary word clusters.

3 Feature design

Key to the success of our approach is the use of fea-
tures which allow word-cluster-based information to
assist the parser. The feature sets we used are simi-
lar to other feature sets in the literature (McDonald
et al., 2005a; Carreras, 2007), so we will not attempt
to give a exhaustive description of the features in
this section. Rather, we describe our features at a
high level and concentrate on our methodology and
motivations. In our experiments, we employed two
different feature sets: a baseline feature set which
draws upon “normal” information sources such as
word forms and parts of speech, and a cluster-based
feature set that also uses information derived from
the Brown cluster hierarchy.

3.1 Baseline features

Our first-order baseline feature set is similar to the
feature set of McDonald et al. (2005a), and consists
of indicator functions for combinations of words and
parts of speech for the head and modifier of each
dependency, as well as certain contextual tokens.1

Our second-order baseline features are the same as
those of Carreras (2007) and include indicators for
triples of part of speech tags for sibling interactions
and grandparent interactions, as well as additional
bigram features based on pairs of words involved
these higher-order interactions. Examples of base-
line features are provided in Table 1.

1We augment the McDonald et al. (2005a) feature set with
backed-off versions of the “Surrounding Word POS Features”
that include only one neighboring POS tag. We also add binned
distance features which indicate whether the number of tokens
between the head and modifier of a dependency is greater than
2, 5, 10, 20, 30, or 40 tokens.

Baseline Cluster-based

ht,mt hc4,mc4

hw,mw hc6,mc6

hw,ht,mt hc

*

,mc

*

hw,ht,mw hc4,mt

ht,mw,mt ht,mc4

hw,mw,mt hc6,mt

hw,ht,mw,mt ht,mc6

· · · hc4,mw

hw,mc4

· · ·
ht,mt,st hc4,mc4,sc4

ht,mt,gt hc6,mc6,sc6

· · · ht,mc4,sc4

hc4,mc4,gc4

· · ·

Table 1: Examples of baseline and cluster-based feature
templates. Each entry represents a class of indicators for
tuples of information. For example, “ht,mt” represents
a class of indicator features with one feature for each pos-
sible combination of head POS-tag and modifier POS-
tag. Abbreviations: ht = head POS, hw = head word,
hc4 = 4-bit prefix of head, hc6 = 6-bit prefix of head,
hc

*

= full bit string of head; mt,mw,mc4,mc6,mc
*

=
likewise for modifier; st,gt,sc4,gc4,. . . = likewise
for sibling and grandchild.

3.2 Cluster-based features

The first- and second-order cluster-based feature sets
are supersets of the baseline feature sets: they in-
clude all of the baseline feature templates, and add
an additional layer of features that incorporate word
clusters. Following Miller et al. (2004), we use pre-
fixes of the Brown cluster hierarchy to produce clus-
terings of varying granularity. We found that it was
nontrivial to select the proper prefix lengths for the
dependency parsing task; in particular, the prefix
lengths used in the Miller et al. (2004) work (be-
tween 12 and 20 bits) performed poorly in depen-
dency parsing.2 After experimenting with many dif-
ferent feature configurations, we eventually settled
on a simple but effective methodology.

First, we found that it was helpful to employ two
different types of word clusters:

1. Short bit-string prefixes (e.g., 4–6 bits), which
we used as replacements for parts of speech.

2One possible explanation is that the kinds of distinctions
required in a named-entity recognition task (e.g., “Alice” versus
“Intel”) are much finer-grained than the kinds of distinctions
relevant to syntax (e.g., “apple” versus “eat”).

597

(McDonald et al., 2005;
Koo et al., 2008)	

Dependency Parsing Features

!   Word embedding n-ary features (Bansal et al., 2014):
!   Per-dimension bucket features:

!   Hierarchical clustering (bit string) features:

prefix4	

prefix6	

Ms. Haag plays Elianti .*

obj
proot

nmod sbj

Figure 1: An example of a labeled dependency tree. The
tree contains a special token “*” which is always the root
of the tree. Each arc is directed from head to modifier and
has a label describing the function of the attachment.

and clustering, Section 3 describes the cluster-based
features, Section 4 presents our experimental results,
Section 5 discusses related work, and Section 6 con-
cludes with ideas for future research.

2 Background

2.1 Dependency parsing

Recent work (Buchholz and Marsi, 2006; Nivre
et al., 2007) has focused on dependency parsing.
Dependency syntax represents syntactic informa-
tion as a network of head-modifier dependency arcs,
typically restricted to be a directed tree (see Fig-
ure 1 for an example). Dependency parsing depends
critically on predicting head-modifier relationships,
which can be difficult due to the statistical sparsity
of these word-to-word interactions. Bilexical depen-
dencies are thus ideal candidates for the application
of coarse word proxies such as word clusters.

In this paper, we take a part-factored structured
classification approach to dependency parsing. For a
given sentence x, let Y(x) denote the set of possible
dependency structures spanning x, where each y �
Y(x) decomposes into a set of “parts” r � y. In the
simplest case, these parts are the dependency arcs
themselves, yielding a first-order or “edge-factored”
dependency parsing model. In higher-order parsing
models, the parts can consist of interactions between
more than two words. For example, the parser of
McDonald and Pereira (2006) defines parts for sib-
ling interactions, such as the trio “plays”, “Elianti”,
and “.” in Figure 1. The Carreras (2007) parser
has parts for both sibling interactions and grandpar-
ent interactions, such as the trio “*”, “plays”, and
“Haag” in Figure 1. These kinds of higher-order
factorizations allow dependency parsers to obtain a
limited form of context-sensitivity.

Given a factorization of dependency structures
into parts, we restate dependency parsing as the fol-

apple pear Apple IBM bought run of in

01

100 101 110 111000 001 010 011

00

0

10

1

11

Figure 2: An example of a Brown word-cluster hierarchy.
Each node in the tree is labeled with a bit-string indicat-
ing the path from the root node to that node, where 0
indicates a left branch and 1 indicates a right branch.

lowing maximization:

PARSE(x;w) = argmax
y�Y(x)

X

r�y

w · f(x, r)

Above, we have assumed that each part is scored
by a linear model with parameters w and feature-
mapping f(·). For many different part factoriza-
tions and structure domains Y(·), it is possible to
solve the above maximization efficiently, and several
recent efforts have concentrated on designing new
maximization algorithms with increased context-
sensitivity (Eisner, 2000; McDonald et al., 2005b;
McDonald and Pereira, 2006; Carreras, 2007).

2.2 Brown clustering algorithm
In order to provide word clusters for our exper-
iments, we used the Brown clustering algorithm
(Brown et al., 1992). We chose to work with the
Brown algorithm due to its simplicity and prior suc-
cess in other NLP applications (Miller et al., 2004;
Liang, 2005). However, we expect that our approach
can function with other clustering algorithms (as in,
e.g., Li and McCallum (2005)). We briefly describe
the Brown algorithm below.

The input to the algorithm is a vocabulary of
words to be clustered and a corpus of text containing
these words. Initially, each word in the vocabulary
is considered to be in its own distinct cluster. The al-
gorithm then repeatedly merges the pair of clusters
which causes the smallest decrease in the likelihood
of the text corpus, according to a class-based bigram
language model defined on the word clusters. By
tracing the pairwise merge operations, one obtains
a hierarchical clustering of the words, which can be
represented as a binary tree as in Figure 2.

Within this tree, each word is uniquely identified
by its path from the root, and this path can be com-
pactly represented with a bit string, as in Figure 2.
In order to obtain a clustering of the words, we se-
lect all nodes at a certain depth from the root of the

apple ! 00010100010	

ate apple

dim=3 -0.6 0.7

ate ! [0.2 0.7 -0.6 0.9]
apple ! [0.6 -0.1 0.7 0.2]

hierarchy. For example, in Figure 2 we might select
the four nodes at depth 2 from the root, yielding the
clusters {apple,pear}, {Apple,IBM}, {bought,run},
and {of,in}. Note that the same clustering can be ob-
tained by truncating each word’s bit-string to a 2-bit
prefix. By using prefixes of various lengths, we can
produce clusterings of different granularities (Miller
et al., 2004).

For all of the experiments in this paper, we used
the Liang (2005) implementation of the Brown algo-
rithm to obtain the necessary word clusters.

3 Feature design

Key to the success of our approach is the use of fea-
tures which allow word-cluster-based information to
assist the parser. The feature sets we used are simi-
lar to other feature sets in the literature (McDonald
et al., 2005a; Carreras, 2007), so we will not attempt
to give a exhaustive description of the features in
this section. Rather, we describe our features at a
high level and concentrate on our methodology and
motivations. In our experiments, we employed two
different feature sets: a baseline feature set which
draws upon “normal” information sources such as
word forms and parts of speech, and a cluster-based
feature set that also uses information derived from
the Brown cluster hierarchy.

3.1 Baseline features

Our first-order baseline feature set is similar to the
feature set of McDonald et al. (2005a), and consists
of indicator functions for combinations of words and
parts of speech for the head and modifier of each
dependency, as well as certain contextual tokens.1

Our second-order baseline features are the same as
those of Carreras (2007) and include indicators for
triples of part of speech tags for sibling interactions
and grandparent interactions, as well as additional
bigram features based on pairs of words involved
these higher-order interactions. Examples of base-
line features are provided in Table 1.

1We augment the McDonald et al. (2005a) feature set with
backed-off versions of the “Surrounding Word POS Features”
that include only one neighboring POS tag. We also add binned
distance features which indicate whether the number of tokens
between the head and modifier of a dependency is greater than
2, 5, 10, 20, 30, or 40 tokens.

Baseline Cluster-based

ht,mt hc4,mc4

hw,mw hc6,mc6

hw,ht,mt hc

*

,mc

*

hw,ht,mw hc4,mt

ht,mw,mt ht,mc4

hw,mw,mt hc6,mt

hw,ht,mw,mt ht,mc6

· · · hc4,mw

hw,mc4

· · ·
ht,mt,st hc4,mc4,sc4

ht,mt,gt hc6,mc6,sc6

· · · ht,mc4,sc4

hc4,mc4,gc4

· · ·

Table 1: Examples of baseline and cluster-based feature
templates. Each entry represents a class of indicators for
tuples of information. For example, “ht,mt” represents
a class of indicator features with one feature for each pos-
sible combination of head POS-tag and modifier POS-
tag. Abbreviations: ht = head POS, hw = head word,
hc4 = 4-bit prefix of head, hc6 = 6-bit prefix of head,
hc

*

= full bit string of head; mt,mw,mc4,mc6,mc
*

=
likewise for modifier; st,gt,sc4,gc4,. . . = likewise
for sibling and grandchild.

3.2 Cluster-based features

The first- and second-order cluster-based feature sets
are supersets of the baseline feature sets: they in-
clude all of the baseline feature templates, and add
an additional layer of features that incorporate word
clusters. Following Miller et al. (2004), we use pre-
fixes of the Brown cluster hierarchy to produce clus-
terings of varying granularity. We found that it was
nontrivial to select the proper prefix lengths for the
dependency parsing task; in particular, the prefix
lengths used in the Miller et al. (2004) work (be-
tween 12 and 20 bits) performed poorly in depen-
dency parsing.2 After experimenting with many dif-
ferent feature configurations, we eventually settled
on a simple but effective methodology.

First, we found that it was helpful to employ two
different types of word clusters:

1. Short bit-string prefixes (e.g., 4–6 bits), which
we used as replacements for parts of speech.

2One possible explanation is that the kinds of distinctions
required in a named-entity recognition task (e.g., “Alice” versus
“Intel”) are much finer-grained than the kinds of distinctions
relevant to syntax (e.g., “apple” versus “eat”).

597

(McDonald et al., 2005;
Koo et al., 2008)	

Dependency Parsing Features

!   Link embedding unary features (this work):
!   Per-dimension bucket features:

!   Hierarchical clustering (bit string) features:

prefix4	

prefix6	

ate—apple ! 11011100010	

ate apple

dim=3 	

 	

0.6

ate—apple ! [-0.5 0.3 0.6 0.8]

ate—apple	
 ate—pear	
 Cole—Mr.	
 Cruz—Mr.	

0	
 1	

00	
 01	
 10	
 11	
 ate apple

1101

110111

Feature Comparison (Memory, Speed)

!   Setup: MSTParser (2nd order), standard data splits,
parameters, preprocessing, threshold (Bansal et al., 2014)

!   Much fewer features compared to n-ary, word-based

!   Quicker to train these SKIP-based link features

(15 mins.)

(2.5 days)

3 Dependency Parsing Experiments

In this section, we will first discuss how we use the
link embeddings as features in dependency parsing.
Next, we will present empirical results on feature
space reduction and on parsing performance on both
in-domain and out-of-domain datasets.

3.1 Features

The BROWN cluster features are based on Bansal et
al. (2014), who follow Koo et al. (2008) to add 1st
and 2nd order features to MSTParser based on pre-
fixes (of length 4, 6, 8, and 12) of the 0-1 hierarchi-
cal clustering bit-strings (via the bigram class-based
language model of Brown et al. (1992)) of the head
and argument, siblings, intermediate words, etc. See
McDonald et al. (2005a) and Koo et al. (2008) for
the exact feature templates.

For link embeddings, we tried two feature types:

Bucket features: For each dimension of the link
vector, we fire a simple indicator feature, where the
feature name consists of the dimension index d and
the bucketed vector value b at that index (using a
bucket of 0.25), i.e., simply d^b, as compared to the
large list of n-ary feature templates in previous work,
which include various conjunctions, in-between and
surrounding word information, etc. (see McDonald
et al. (2005a) and Koo et al. (2008)). We have an-
other feature that additionally includes the signed,
bucketed distance of the particular link in the given
sentence.

Also note the difference of our unary bucket fea-
tures from the binary bucket features of Bansal et al.
(2014), who had to work with pairwise, conjoined
features of the head and the argument. Hence, they
used features on conjunctions of the two bucket val-
ues from the head and argument word vectors, firing
one pairwise feature per dimension, because firing
features on all dimension pairs (corresponding to an
outer product) led to an infeasible number of fea-
tures. The result discussion of these feature differ-
ences in presented in §3.2.

Bit-string features: We first hierarchically cluster
the link vectors via MATLAB’s linkage function
with {method=ward, metric=euclidean} to get 0-1
bit-strings (similar to BROWN). Next, we again fire a
small set of unary indicator features that simply con-

System Number of features
Baseline 5M
BROWN 13M
Bansal et al. (2014) 30M
Bucket 15K
Bit-string 1M

Table 2: Number of features.

System Dev Test
Baseline 92.4 91.9
+ BROWN 93.2 92.7
+ Bucket 93.0 92.3
+ Bit-string 92.9 92.6
+ BROWN + Bucket 93.4 93.0
+ BROWN + Bit-string 93.4 93.1

Table 3: UAS results on WSJ.

sist of the link’s bit-string prefix, the prefix-length,
and another feature that adds the signed, bucketed
distance of that link in the sentence.6

3.2 Setup and Results

For all experiments (unless otherwise noted), we fol-
low the 2nd-order MSTParser setup of Bansal et al.
(2014), in terms of data splits, parameters, prepro-
cessing, and feature thresholding. Statistical signifi-
cance is reported based on the bootstrap test (Efron
and Tibshirani, 1994) with 1 million samples.

First, we compare the number of features in
Table 2. Our dense, unary, link-embedding based
Bucket and Bit-string features are substantially
fewer than the sparse, n-ary, template-based features
used in the MSTParser baseline, in BROWN, and
in the word embedding SKIPDEP result of Bansal et
al. (2014). This in turn also improves our parsing
speed and memory. Moreover, regarding the pre-
processing time taken to generate these various fea-
ture types, our Bucket features, which just need the
fast word2vec training, take 2-3 orders of magni-
tude lesser time than the BROWN features (15 mins.
versus 2.5 days)7; this is also advantageous when

6We again used prefixes of length 4, 6, 8, 12, same as the
BROWN feature setting. For unknown links’ features, we re-
place the bucket or bit-string prefix with a special ‘UNK’ string.

7Based on a modern 3.50 GHz desktop and 1 thread. The
Bit-string features additionally need hierarchical clustering, but
are still at least twice as fast as BROWN features.

(1 day)

Dependency Parsing Results

!   Stat-equal improvements as Brown and stat-significant
stacking, at much fewer, simpler, quicker features

!   Similar improvements and stacking for out-of-domain

!   Allows practical, accurate per-dimension features

System Number of features
Baseline 5M
BROWN 13M
Bit-string 1M
Bucket 15K

Table 2: Number of features.

al. (2014), who had to use pairwise conjunctions of
buckets (per-dimension) because they were working
with pairwise (head and argument) word features.
Bit-string features: We first hierarchically cluster
the link embeddings via the MATLAB linkage

function with {method=ward, metric=euclidean}.
Next, we again fire a small set of unary indicator fea-
tures that just consist of the 0-1 prefix of the link’s
bit-string and another feature that adds the signed,
bucketed distance of the link in the sentence.3

3.2 Setup and Results
For all the experiments (unless otherwise noted), we
follow the second-order MSTParser setup used by
Bansal et al. (2014), with the standard parameters,
data splits, and preprocessing. Statistical signifi-
cance is reported based on the bootstrap test (Efron
and Tibshirani, 1994) with 1 million samples.

First, we compare the number of features in Ta-
ble 2. Our dense, link-embedding based Bucket
and Bit-string features (unary, linear) are substan-
tially fewer than the sparse, template-based MST-
Parser baseline and BROWN features (n-ary). This
in turn also improves our parsing speed and mem-
ory. Moreover, reg. the preprocessing time taken
to generate these various feature types, our Bucket
features, which just need the fast word2vec train-
ing, take 2-3 orders of magnitude lesser time than
the BROWN features (15 mins. versus 2.5 days).4

Table 3 shows the main UAS results on WSJ,
where each ‘+ X’ row denotes adding type X fea-
tures to the MSTParser baseline. Reg. statistical
significance of the final test results, all the improve-
ments, i.e., Bucket (92.3) and Bit-string (92.6) w.r.t.

3Unlike the large, sparse set of n-ary, template-based fea-
tures in MSTParser and BROWN. We again used prefixes of
length 4, 6, 8, and 12, imitating the BROWN feature setting. For
unknown links, we replace the bucket or bit-string prefix with a
special ‘UNK’ string in all the features.

4Based on a modern 3.50 GHz desktop and 1 thread. The
Bit-string features additionally need hierarchical clustering, but
are still at least twice as fast as BROWN features.

System Dev Test
Baseline 92.4 91.9
+ BROWN 93.2 92.7
+ Bucket 93.0 92.3
+ Bit-string 92.9 92.6
+ BROWN + Bucket 93.4 93.0
+ BROWN + Bit-string 93.4 93.1

Table 3: UAS results on WSJ.

Baseline (91.9), and BROWN + Bucket (93.0) and
BROWN + Bit-string (93.1) w.r.t. BROWN (92.7),
are significant at p < 0.01 (or better). More-
over, the Bit-string result (92.6) is the same (i.e.,
no statistically significant difference) as BROWN
(92.7). Therefore, our small set of unary link em-
bedding features can match the performance of com-
plex, template-based BROWN features (and hence
also of the word embedding features of Bansal et al.
(2014)), and are also complementary to them.5

Unlike Bansal et al. (2014), our per-dimension
Bucket features achieve significant improvements,
most likely because they had to use conjoined fea-
tures with pairs of embedding values (per dimen-
sion) from the head and argument word vectors,
which would disallow the classifier to learn use-
ful linear combinations of the various dimensions;
whereas we have a single vector for head+argument,
allowing the learning of dimension combinations.

We also report out-of-domain performance, in Ta-
ble 4, on the Web treebank (Petrov and McDonald,
2012) test sets, directly using the WSJ-trained mod-
els.6 Again, both our Bucket and Bit-string link-
embedding features achieve good improvements
over the baseline and over BROWN. Moreover, one
can hopefully achieve even bigger gains by training
link embeddings on Web or Wikipedia data (since
BLLIP is news-domain).

4 Off-the-shelf: Constituent Parsing

Finally, these link embeddings can also be directly
imported as off-the-shelf, dense, syntactic features
into any supervised NLP task, either to incorporate

5We also get similar trends of improvements on the labeled
attachment score (LAS) metric. Note that one can achieve even
stronger results by tuning separate prefix lengths for the Bit-
string versus the BROWN + Bit-string cases.

6We report just the avg. results on the 5 Web domains due
to space constraints but will add all results in any final version.

System Number of features
Baseline 5M
BROWN 13M
Bit-string 1M
Bucket 15K

Table 2: Number of features.

al. (2014), who had to use pairwise conjunctions of
buckets (per-dimension) because they were working
with pairwise (head and argument) word features.
Bit-string features: We first hierarchically cluster
the link embeddings via the MATLAB linkage

function with {method=ward, metric=euclidean}.
Next, we again fire a small set of unary indicator fea-
tures that just consist of the 0-1 prefix of the link’s
bit-string and another feature that adds the signed,
bucketed distance of the link in the sentence.3

3.2 Setup and Results
For all the experiments (unless otherwise noted), we
follow the second-order MSTParser setup used by
Bansal et al. (2014), with the standard parameters,
data splits, and preprocessing. Statistical signifi-
cance is reported based on the bootstrap test (Efron
and Tibshirani, 1994) with 1 million samples.

First, we compare the number of features in Ta-
ble 2. Our dense, link-embedding based Bucket
and Bit-string features (unary, linear) are substan-
tially fewer than the sparse, template-based MST-
Parser baseline and BROWN features (n-ary). This
in turn also improves our parsing speed and mem-
ory. Moreover, reg. the preprocessing time taken
to generate these various feature types, our Bucket
features, which just need the fast word2vec train-
ing, take 2-3 orders of magnitude lesser time than
the BROWN features (15 mins. versus 2.5 days).4

Table 3 shows the main UAS results on WSJ,
where each ‘+ X’ row denotes adding type X fea-
tures to the MSTParser baseline. Reg. statistical
significance of the final test results, all the improve-
ments, i.e., Bucket (92.3) and Bit-string (92.6) w.r.t.

3Unlike the large, sparse set of n-ary, template-based fea-
tures in MSTParser and BROWN. We again used prefixes of
length 4, 6, 8, and 12, imitating the BROWN feature setting. For
unknown links, we replace the bucket or bit-string prefix with a
special ‘UNK’ string in all the features.

4Based on a modern 3.50 GHz desktop and 1 thread. The
Bit-string features additionally need hierarchical clustering, but
are still at least twice as fast as BROWN features.

System Dev Test
Baseline 92.4 91.9
+ BROWN 93.2 92.7
+ Bucket 93.0 92.3
+ Bit-string 92.9 92.6
+ BROWN + Bucket 93.4 93.0
+ BROWN + Bit-string 93.4 93.1

Table 3: UAS results on WSJ.

Baseline (91.9), and BROWN + Bucket (93.0) and
BROWN + Bit-string (93.1) w.r.t. BROWN (92.7),
are significant at p < 0.01 (or better). More-
over, the Bit-string result (92.6) is the same (i.e.,
no statistically significant difference) as BROWN
(92.7). Therefore, our small set of unary link em-
bedding features can match the performance of com-
plex, template-based BROWN features (and hence
also of the word embedding features of Bansal et al.
(2014)), and are also complementary to them.5

Unlike Bansal et al. (2014), our per-dimension
Bucket features achieve significant improvements,
most likely because they had to use conjoined fea-
tures with pairs of embedding values (per dimen-
sion) from the head and argument word vectors,
which would disallow the classifier to learn use-
ful linear combinations of the various dimensions;
whereas we have a single vector for head+argument,
allowing the learning of dimension combinations.

We also report out-of-domain performance, in Ta-
ble 4, on the Web treebank (Petrov and McDonald,
2012) test sets, directly using the WSJ-trained mod-
els.6 Again, both our Bucket and Bit-string link-
embedding features achieve good improvements
over the baseline and over BROWN. Moreover, one
can hopefully achieve even bigger gains by training
link embeddings on Web or Wikipedia data (since
BLLIP is news-domain).

4 Off-the-shelf: Constituent Parsing

Finally, these link embeddings can also be directly
imported as off-the-shelf, dense, syntactic features
into any supervised NLP task, either to incorporate

5We also get similar trends of improvements on the labeled
attachment score (LAS) metric. Note that one can achieve even
stronger results by tuning separate prefix lengths for the Bit-
string versus the BROWN + Bit-string cases.

6We report just the avg. results on the 5 Web domains due
to space constraints but will add all results in any final version.

Off-the-shelf Results

!   Portable as simple, dense, syntactic features

!   E.g., on constituent reranking, stat-equal improvements

as global reranking features and stat-signif. stacking
 (Bansal and Klein, 2011)

 System Test Average
Baseline 83.5
+ BROWN 84.2
+ Bucket 84.0
+ Bit-string 83.8
+ BROWN + Bucket 84.6
+ BROWN + Bit-string 84.4

Table 4: UAS results on Web treebanks.

novel parsing information, or to replace sparse (lex-
icalized or n-ary template-based) parsing features,
or where word embedding features are not appropri-
ate and one needs higher-order embeddings, e.g., in
constituent parsing (see Andreas and Klein (2014)).

In this work, we import our link embedding fea-
tures into a constituent parse reranker. We follow
the setup of Bansal and Klein (2011), who rank 50-
best lists of the Berkeley parser (Petrov et al., 2006).
We extract dependency links in each candidate con-
stituent parse tree (based on the head-modifier rules
of Collins (2000)), and then simply fire our Bit-
string features on each link, where the feature again
contains just the prefix length, the prefix bit-string,
and the signed, bucketed distance of the link in the
sentence.7

Table 5 shows these reranking results, where 1-
best and log p(t|w) are the two Berkeley parser base-
lines and Config is the non-local configurational fea-
tures of Huang (2008). We again achieve statisti-
cal significance on all our final test improvements
at p < 0.01 (or better): Bit-string (90.9) over both
the baselines (90.2, 89.9); and Config + Bit-string
(91.4) over Config (91.1). Moreover, the Bit-string
result (90.9) is the same (i.e., no statistically signif-
icant difference) as the Config result (91.1). There-
fore, we can again match (and complement) the im-
provements of various complex, non-local reranking
features with a much smaller set of simple, dense,
off-the-shelf link-embedding features.

5 Related Work

As mentioned earlier, there has been a lot of pre-
vious work on using word embeddings for NLP
tasks such as similarity, tagging, NER, and pars-
ing (Turian et al., 2010; Huang et al., 2012; Al-Rfou’

7Based on dev-set tuning, we use prefixes 4, 6, 8, and then
gaps of 4 up to the full-length for ‘+ Bit-string’ and prefixes 4,
6, 8, 12, 16, and full-length for ‘+ Config + Bit-string’.

Dev Test
Parsing Model F1 EX F1 EX
Baseline (1-best) 90.6 39.4 90.2 37.3
Baseline (log p(t|w)) 90.4 38.9 89.9 37.3
+ Config 91.8 43.8 91.1 40.6
+ Bit-string 91.1 40.3 90.9 40.6
+ Config + Bit-string 92.0 43.9 91.4 42.0

Table 5: F1 results of constituent reranker on WSJ.

et al., 2013; Hisamoto et al., 2013; Andreas and
Klein, 2014; Bansal et al., 2014; Levy and Gold-
berg, 2014), inter alia. There has been some re-
cent related work on reducing the sparsity of features
in dependency parsing, e.g., low-rank tensors (Lei
et al., 2014), neural network parsers that learn tag
and label embeddings (Chen and Manning, 2014),
and feature embeddings and clusters (but still with
manually-designed feature templates) (Chen et al.,
2014; Chen et al., 2013; Suzuki et al., 2011).

Srikumar and Manning (2014) learn distributed
structured output by representing and composing la-
bels as dense vectors. Madhyastha et al. (2014)
learn bilexical operator embeddings applied on
word embedding pairs, e.g., adjectives and nouns.
Hashimoto et al. (2014) jointly learn word repre-
sentations and their composition functions. Finally,
word2vec (Mikolov et al., 2013b) was also ex-
tended to contiguous bigrams like san francisco.

Our main goal is to learn embeddings on non-
contiguous, linguistically-intuitive units like depen-
dency links that can be used as non-sparse, unary
features in dependency parsing, and also as off-the-
shelf, dense, syntactic features in other NLP tasks
(versus intrinsic approaches based on feature em-
beddings or NN parsers, which are harder to export).

6 Conclusion

We presented dependency link embeddings, which
can be added to a dependency parser as a small set of
non-sparse, unary features, achieving significant im-
provements, similar and complementary to state-of-
the-art (but sparse) word-template features. Our link
vectors are also useful as off-the-shelf syntactic fea-
tures in other supervised NLP tasks, e.g., constituent
parse reranking, where they again rival and comple-
ment state-of-the-art non-local reranking features.
We publicly release our link embeddings and hope
that they will prove useful in various other tasks.

System Test Average
Baseline 83.5
+ BROWN 84.2
+ Bucket 84.0
+ Bit-string 83.8
+ BROWN + Bucket 84.6
+ BROWN + Bit-string 84.4

Table 4: UAS results on Web treebanks.

novel parsing information, or to replace sparse (lex-
icalized or n-ary template-based) parsing features,
or where word embedding features are not appropri-
ate and one needs higher-order embeddings, e.g., in
constituent parsing (see Andreas and Klein (2014)).

In this work, we import our link embedding fea-
tures into a constituent parse reranker. We follow
the setup of Bansal and Klein (2011), who rank 50-
best lists of the Berkeley parser (Petrov et al., 2006).
We extract dependency links in each candidate con-
stituent parse tree (based on the head-modifier rules
of Collins (2000)), and then simply fire our Bit-
string features on each link, where the feature again
contains just the prefix length, the prefix bit-string,
and the signed, bucketed distance of the link in the
sentence.7

Table 5 shows these reranking results, where 1-
best and log p(t|w) are the two Berkeley parser base-
lines and Config is the non-local configurational fea-
tures of Huang (2008). We again achieve statisti-
cal significance on all our final test improvements
at p < 0.01 (or better): Bit-string (90.9) over both
the baselines (90.2, 89.9); and Config + Bit-string
(91.4) over Config (91.1). Moreover, the Bit-string
result (90.9) is the same (i.e., no statistically signif-
icant difference) as the Config result (91.1). There-
fore, we can again match (and complement) the im-
provements of various complex, non-local reranking
features with a much smaller set of simple, dense,
off-the-shelf link-embedding features.

5 Related Work

As mentioned earlier, there has been a lot of pre-
vious work on using word embeddings for NLP
tasks such as similarity, tagging, NER, and pars-
ing (Turian et al., 2010; Huang et al., 2012; Al-Rfou’

7Based on dev-set tuning, we use prefixes 4, 6, 8, and then
gaps of 4 up to the full-length for ‘+ Bit-string’ and prefixes 4,
6, 8, 12, 16, and full-length for ‘+ Config + Bit-string’.

Dev Test
Parsing Model F1 EX F1 EX
Baseline (1-best) 90.6 39.4 90.2 37.3
Baseline (log p(t|w)) 90.4 38.9 89.9 37.3
+ Config 91.8 43.8 91.1 40.6
+ Bit-string 91.1 40.3 90.9 40.6
+ Config + Bit-string 92.0 43.9 91.4 42.0

Table 5: F1 results of constituent reranker on WSJ.

et al., 2013; Hisamoto et al., 2013; Andreas and
Klein, 2014; Bansal et al., 2014; Levy and Gold-
berg, 2014), inter alia. There has been some re-
cent related work on reducing the sparsity of features
in dependency parsing, e.g., low-rank tensors (Lei
et al., 2014), neural network parsers that learn tag
and label embeddings (Chen and Manning, 2014),
and feature embeddings and clusters (but still with
manually-designed feature templates) (Chen et al.,
2014; Chen et al., 2013; Suzuki et al., 2011).

Srikumar and Manning (2014) learn distributed
structured output by representing and composing la-
bels as dense vectors. Madhyastha et al. (2014)
learn bilexical operator embeddings applied on
word embedding pairs, e.g., adjectives and nouns.
Hashimoto et al. (2014) jointly learn word repre-
sentations and their composition functions. Finally,
word2vec (Mikolov et al., 2013b) was also ex-
tended to contiguous bigrams like san francisco.

Our main goal is to learn embeddings on non-
contiguous, linguistically-intuitive units like depen-
dency links that can be used as non-sparse, unary
features in dependency parsing, and also as off-the-
shelf, dense, syntactic features in other NLP tasks
(versus intrinsic approaches based on feature em-
beddings or NN parsers, which are harder to export).

6 Conclusion

We presented dependency link embeddings, which
can be added to a dependency parser as a small set of
non-sparse, unary features, achieving significant im-
provements, similar and complementary to state-of-
the-art (but sparse) word-template features. Our link
vectors are also useful as off-the-shelf syntactic fea-
tures in other supervised NLP tasks, e.g., constituent
parse reranking, where they again rival and comple-
ment state-of-the-art non-local reranking features.
We publicly release our link embeddings and hope
that they will prove useful in various other tasks.

Conclusion

!   Dense dependency link embeddings allow simpler, fewer
(unary) features in dependency parsing

!   Get similar improvements to n-ary template-based word

cluster/embedding features

!   Portable as useful, dense, syntactic features to downstream

tasks, e.g., constituent reranking

Current/Future Work

!   Export to other extrinsic tasks, e.g., sentence classification or
initial units in vector-space composition

!   Newer, better representation learning tools, e.g., deeper NNs,

GloVe (Pennington et al., 2014)

!   Training on larger quantities of automatically-parsed data

!   Other back-off approaches for unknown links, e.g., tag-based
links (tag1—tag2) and one-sided links (UNK-word or UNK-tag)

!   Compare to approaches like relation matrices on dependency
labels, concatenation+SVD of head and argument vectors

Thank you!

Data (link embeddings and features) at:

ttic.uchicago.edu/~mbansal/codedata/linkEmbeddings-skiplink.zip

