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Abstract

If a picture is worth a thousand words, then images
should be utilized together with other available data modal-
ities when predicting the virality of online posts, such as
tweets. In this paper, we re-visit the tweet popularity pre-
diction problem by considering all data modalities: tweet
language semantics, embedded images, author’ social re-
lationships, and the diffusion process of tweets. To model
the content of tweets, we propose a joint-embedding neu-
ral network that combines visual, textual, and social cues
together. Such content features can be either used for pre-
diction directly, or for pre-conditioning a ‘dynamics RNN’,
which models the message propagation process. A novel
Poisson regression loss is optimized to train the network.
We demonstrate that content based features can be used to
improve upon social features and dynamics features via our
joint-embedding regression model. Our model outperforms
the state-of-the-art on multiple large-scale real-world data-
sets collected from Twitter.

1. Introduction

The world is better connected than ever before. On so-

cial networks, users are connected to every other user by an

average separation of 3.57 1. Short communication distance

and ease of access make online social media an increasingly

popular venue for information sharing. However, conve-

nience comes with a cost. Both individuals and organiza-

tions can be easily overwhelmed by the sheer volume of

online posts or misled by wide-spread rumors. Therefore,

the ability to predict which post has a high popularity po-

tential in its early stage can help individuals improve their

communication efficiency and also allow organizations suf-

ficient time for remedial actions. Reliable forecasting of

online content popularity is thus a vital need.

Popularity prediction has long interested various re-

search communities [34]. Previous methods approach this

1Three degrees of separation: https://research.fb.com/
three-and-a-half-degrees-of-separation/

Figure 1: We demonstrate our method on the 2016 US presidential

election tweets. We collected tweets containing relevant keywords

(“president”, “vote”, “election”, “Clinton”, “Trump”) from Oc-

tober 8, 2016 to November 14, 2016. Retweets (solid blue line)

on the presidential campaign were exponentially increasing before

the election day (the orange vertical line). Our proposed method

(dotted yellow line) accurately predicted such a trend. For visual-

ization, the tweets are grouped into bins of one hour width based

on their post time.

problem by analyzing the author’s influence on the so-

cial network [40], or the early dismantling behaviors of

posts [41]. Social features and cascading process model-

ing are the dominant foundations for popularity predictions.

Recently, deep learning based methods have revolutionized

many vision and language tasks, providing new ways to an-

alyze visual and textual content in online posts. Hence, the

question arises whether such visual and textual content can

help improve upon the popularity prediction accuracy? In

this paper, we study the role of content for the popularity

prediction task in both the static setting, where only the

post is known, and the dynamic scenario, where the early

retweeting process is also known. We found that by care-

fully blending the different content modalities together, im-

provement can be brought to the virality prediction task.

Subsequently combining jointly embedded content features

with social cues and temporal cascading processes, we show

that, in addition to who you are, what you say and what you
show are also important indicators of the breadth of mes-

sage’s reach.

We present the virality prediction problem on the Twit-

ter domain. For the static prediction scenario, we propose

a multimodal regression model that jointly considers the vi-
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sual and textual data as well as the authors’ social features

to predict the potential influence of tweets, as measured

by their retweet counts. We adopt the Inception-ResNet

CNNs [36] and LSTM-RNNs [16] to model the visual and

textual features, respectively. We use in-domain word em-

beddings specifically trained on tweet-style language as in-

put to the LSTM-RNNs. We also explicitly model the

shared semantic relationships between the tweet text and

embedded images using a joint embedding model trained

under a bidirectional ranking loss. Deeply learned features,

together with user-specific social features, are then used to

learn a Poisson regression model which predicts the poten-

tial influence of the given tweet. We propose to use recur-

rent neural networks to predict the final retweet count for a

given dynamic sequence of retweeting actions. The static

content based features are used as pre-conditioning for the

recurrent network.

To evaluate our proposed model, we use both existing

as well as our novel large-scale multimodal Twitter data-

sets. We collect and present two datasets: one from the year

2015 with 14 million tweets containing over 3 million im-

ages, and one from the next year (2016) with 10 million

tweets containing 2 million images. The latter is used to

test the generalization of our methods. On both our data-

sets and on the existing MBI-1M dataset [6], our method

outperforms state-of-the-art multimodal methods. We also

assembled a temporal dataset that records the propagation

process of tweets, which we used to study the performance

of our dynamic prediction models.

To summarize, our main contributions are:

1. A multi-modal neural network model that harnesses all

available Twitter data modalities: visual, textual, so-

cial, and temporal cues;

2. A joint embedding model, trained under bidirectional

ranking constraints, that explicitly captures the shared

semantic relationships between visual and textual data;

3. A novel Poisson regression model for predicting

retweet count based on all available data modalities;

4. Demonstrated the role of content for popularity predic-

tion in both static and dynamic scenarios;

5. Ablation and attribute analysis to explain model com-

ponent and modality contributions, as well as what vi-

sual and textual features the model is learning.

The remainder of this paper is structured as follows. Sec-

tion 2 briefly reviews the related literature. We describe the

problem formulation and our network architecture in Sec-

tion 3. Section 4 covers experimental results and discussion.

Finally, Section 5 concludes the paper.

2. Related Work
Our work studies the problem of tweet popularity pre-

dictions. We draw inspirations from multiple disciplines.

Social networks Compared with other social media,

Twitter has particularly distinctive features. As pointed out

in [18] and [22], Twitter is not only a social network but

also a news medium. Information spreads on Twitter at

astonishing speeds, providing the possibility for event de-

tection [5], sentiment classification [14], popularity predic-

tion [6], and tweet-based language processing [10]. We not

only train a Twitter-specific word embedding and language

model to learn the Twitter language, but also fine-tune pre-

trained CNN models on Twitter images.

Content-based popularity prediction Popularity pre-

diction for online social networks is a fairly well-studied

problem. Content based prediction infers the popularity us-

ing textual and/or visual features. For example, [25] utilized

textual, visual, and social cues to predict the image popular-

ity on Flickr. [19] used contextual and deeply-learned visual

features to explore the factors influencing an online photo’s

popularity. [40] combined visual, textual, and social fea-

tures to predict popularity in the fashion domain but only

use tag-based text and no joint embedding models. [11]

showed that mid-level image features trained on deep net-

works improved the performance of image virality predic-

tion. [37] showed that carefully crafted wording of the mes-

sage can help propagate the tweets better. Although some

of the previous works incorporate multimodal information,

only simple direct feature fusion is used [19, 40], whereas

our work explicitly exploits the inter-domain relationships

via joint embedding. We find that this joint embedding ap-

proach is crucial to achieve complementary performance

improvements.

Diffusion-based popularity prediction A complemen-

tary line of popularity prediction methods do not rely on the

content but instead use social features such as user influ-

ences, combined with real-time monitoring of the diffusion

process to make predictions. [17] showed social-oriented

features were the best performer to predict image popular-

ity on Twitter. [42] utilized image features extracted from

CNNs and social-oriented features for popularity predic-

tion. [1] used temporal evolution patterns to predict the

popularity of online user-generated content. [7] used tem-

poral and structural features to predict cascades of photo

shares on Facebook. [41] model the retweeting cascades

as a self-exciting point process. Similarity, our work also

uses a recurrent neural network to model the temporal dif-

fusion of the retweet process. In contrast to the above, our

dynamics RNN is explicitly pre-conditioned on the content

features and the social features.

Deep learning Deep neural networks empower com-

putational models to learn rich feature representations at

multiple levels of abstraction. Computer vision has bene-

fited greatly from convolutional neural networks (CNNs),

for classification [15], semantic segmentation [29], and ob-

ject detection [23]. Deep-learning-based methods have also

influenced natural language processing (NLP), from word
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Figure 2: Our proposed multi-modal model to predict tweet pop-

ularity. A state-of-the-art Inception-Resnet CNN model is used

to extract visual features and an LSTM is used to extract textural

features. Visual and textual representations are then mapped to a

common space by a joint embedding network. For static scenario,

the joint content feature together with social cues are used as in-

put to the Poisson regression model. For dynamic settings, jointly

embedded content features and social features are used to pre-

condition the dynamics RNN, which predicts the Poisson model

by looking at early stage propagation data.

embeddings [26] and language modeling with recurrent

neural networks (RNNs) [27] to syntactic parsing [32] and

machine translation [8, 35]. Our work is built upon state-

of-the-art CNN networks to extract rich visual features for

Twitter-style images, and LSTM-RNN models to extract

Twitter-style language semantics.

Multimodal deep learning Multimodal machine learn-

ing integrates and models multiple communicative modal-

ities, such as linguistic, acoustic and visual messages. For

example, [28] used deep autoencoder models to learn multi-

modal features for audio-visual speech classification tasks.

[33] propose to use deep Boltzmann machines to learn gen-

erative models from multimodal data. Recent advances

in computer vision and natural language processing have

piqued a common interest in applications connecting visual

information and textual descriptions, such as image caption-

ing [31, 38] and visual question answering [3, 13]. [2] pro-

posed a deep learning based extension to canonical correla-

tion analysis (CCA). [12] used ranking losses to learn the

linear transformations on visual and textual features. In our

work, we follow the lead of [39] in using a bi-directional

ranking loss to learn non-linear transformations that cor-

relate tweet text and images such that they are in a joint,

shared space and allow easier feature learning for the re-

gression model, leading to stronger improvements for our

task.

3. Methodology
We consider the problem of predicting tweet popularity,

that is the number of times a tweet will be retweeted. A

tweet T containing an image I and language descriptions

L is first issued by its author U . At time ti the tweet of

interest accumulates ri retweets. Such dismantling process

is recorded as D = {(t0, r0), (t1, r1), . . . , (tN , rN )}. Note

that D may only record the early stage of the dismantling

process. The maximum retweet count during the data col-

lection period is used as the ground-truth retweet count rgt.
As a discrete probability model, the Poisson distribution

characterizes the probability of a given number of events

occurring during some time period. Therefore, the retweet

count r of a tweet T (I, L, U,D) follows a Poisson distribu-

tion:

P (R = r|λ) = e−λλ−r

r!
(1)

where the latent variable λ ∈ R
+ defines the mean and vari-

ance of the underlying Poisson distribution. For a static sce-

nario, where the propagation information D is not available,

the dynamics RNN module in Figure 2 is removed and only

(I, L, U) are used in the Poisson regression model.

We propose a neural network model that directly maxi-

mizes the probability of the retweet count r given the tweet

information (namely the image I , the tweet text L, the user

profile U , and the early stage propagation information D):

θ∗ = argmax
θ

∏
(T,r)

P (R = r|T ; θ) (2)

where θ are the neural network parameters. Our proposed

network combines multi-modal information from the un-

seen tweet T̃ to predict the Poisson parameter λ̃ for its latent

Poisson distribution P (R). The retweet count prediction r̃
for t̃ can then be easily inferred by maximizing P (R; λ̃):

r̃ = max
(⌈

λ̃
⌉
− 1,

⌊
λ̃
⌋)

(3)

3.1. Multimodal Feature Network

Figure 2 gives an overview of our overall network archi-

tecture. Our proposed model consists of two stages: a fea-

ture extraction network and a dynamic RNN network. The

feature extraction network processes image I , language L,

as well as user profile U . The output features are used to

pre-condition the dynamic RNN network. The precondi-

tioned dynamics RNN then processes the propagation pro-

cess data D to estimate the hidden Poisson parameter λ.

In the feature network, a convolutional neural network

(CNN) transforms I into a fixed length feature vector

fCNN (I). A long short-term memory recurrent neural net-

work together with tweet-trained word embeddings encodes

the variable length tweet language L into a fixed dimen-

sional feature vector fLSTM (L). We employ an extra joint

embedding network to map the different modality features

fCNN (I) and fLSTM (L) into a common space.

Visual CNN We adopted the state-of-the-art Inception-

Resnet architecture [36] to extract a rich feature representa-

tion from the Twitter images I . We chose such architecture

because: 1) the Inception-Resnet architecture can produce

high quality visual features from images, as shown by its

leading performance on ImageNet challenge [9]; 2) using
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Figure 3: Joint embedding network: the two branches of the net-

work do not share weights. CNN output fCNN and LSTM out-

put fLSTM are fed into separate branches. The output of the two

branches is L2-normalized and have the same dimensions.

Table 1: Tweet text pre-processing rules.

Category Before After

URL t.co/abc abc.xyz
Hashtag #love <hashtag> love
Numbers 3.1415926 <number>
Emoticon :) <smiley face>
Username @POTUS <username>

Long words greeeeeeat great <elong>
Retweet Tag RT: Removed

Capitalization SAD <allcaps> sad

weights trained on another dataset to initialize our model

can greatly reduce the risk of overfitting. We then fine-

tune the Inception-Resnet model on Twitter images. In our

model, we use the feature map before the final softmax layer

as the image representation fCNN (I).

Textual LSTM-RNN The character limitation and the

lightweight retweet operation noticeably differentiate the

Twitter language to be very different from daily languages.

Users tend to use abbreviations, Internet slang, emojis, and

hashtags to emphasize their emotions (see Table 1 for an ex-

ample). Thus, we need a powerful language model to char-

acterize and understand the semantics of the tweeted text.

Long-short term memory based recurrent neural networks

(LSTM-RNNs) have recently demonstrated major success

in different natural language processing tasks [35]. As a

form of memory-based recurrent networks, it is natural for

an LSTM-RNN to model variable length sequences such

as tweet text. Individual words are first mapped to an em-

bedding space by a word embedding layer. The sequence

of embedding vectors are then fed through LSTM to ex-

tract textual features. We randomly initialize the word em-

bedding layer and train it from scratch using only Twitter

data to better model the Twitter specific language. We take

the final output from the LSTM-RNN as the textual feature

fLSTM (L) for tweet T .

Joint Embedding Language L and image I within a

given tweet T are often related to each other. Standard

CNN and LSTM models can extract rich feature represen-

tations from the photo I and language L separately, but

they are not designed to discover and utilize the underly-

ing cross-semantic relationships. Hence, if we just con-

catenate the extracted image and text feature vectors (sim-

ilar to [19, 40]), they will belong to different embedding

spaces and hence will not be very effective for popularity

prediction. Therefore, we propose a nonlinear joint embed-

ding network (see Figure 3) that maps the image feature

fCNN (I) and the textual feature fLSTM (L) into a shared

latent feature space where the two different data modalities

are well correlated.

As shown in Figure 3, our proposed nonlinear joint em-

bedding network consists of two branches. Each branch

processes the input feature vector sequentially using a fully-

connected layer, a Rectified Linear Unit (ReLU) activa-

tion layer, a second fully-connected layer, a batch nor-

malization layer, and an L2 normalization layer. The two

branches are independently initialized and trained. For a

tweet T (I, L, U) with visual features fCNN (I) and lan-

guage features fLSTM (L), the joint embedding network

g(f) maps them to a common latent feature space as

h(L) = g (fLSTM (L)) and h(I) = g (fCNN (I)). h(L)
and h(I) are L2 normalized and are of the same dimen-

sions. The two feature vectors h(L) and h(I) are concate-

nated and fed through two additional fully-connected layers

to produce the joint content feature representation Fd(L, I).

Fd(L, I) = σ(W2 · (σ(W1 · [h(L);h(I)] + b1)) + b2)
(4)

Given a training tweet Ti(Ii, Li, Ui), the joint embed-

ding network will map the visual and textual features in a

shared latent space (H(Ii) and H(Li), respectively). Since

the output of the embedding network is L2 normalized, the

Euclidean distance d(Ii, Li) is used to measure the similar-

ity between image Ii and sentence Li in the latent space. To

discover and utilize the semantic relationships between the

language domain and the image domain, we enforce a bi-

directional distance constraint on the joint space. Similar to

[39], we want the distance between an image Ii and its as-

sociated text Li to be smaller than the distance between the

image Ii and non-related text Lj by some enforced margin

m:

d(Ii, Li) +m < d(Ii, Lj), ∀j �= i (5)

Similarly, we would like to enforce that the distance be-

tween a sentence Lj′ and its associated image Ij′ is less

than the distance between the sentence Lj′ and a non-

related image Ik′ by the same margin m:

d(Ij′ , Lj′ ) +m < d(Ik′ , Lj′ ), ∀k′ �= j
′

(6)

We combine the bidirectional constraints into a loss

1845



function using the hinge loss:

LJE =
1

M

∑
i,j,k

{max [0,m+ d(Ii, Li)− d(Ii, Lj)]

+ αmax [0,m+ d(Ii, Li)− d(Ik, Li)]} (7)

where m is a predefined margin, α is a predefined weighting

scalar, and M is the total number of triplets. We set m =
0.05 and α = 1 for all our experiments.

3.2. Social Features

Tweets are spread over Twitter by its users’ retweet

operations. The content quality of a tweet and the charac-

teristics of its author can significantly affect its potential

reach. Influential and active users can spread the word

much faster and broader on the network than less well-

connected users. Thus, it’s natural to consider the authors’

characteristics and potential influences on the network

when predicting the popularity of a new tweet. We can

directly extract social features from the author’s profile U :

account age, friend count, follower count,

total tweet count, favorited tweet count.

Together with the cross-product transformation features

φ(U) = {ui · uj |ui ∈ U, uj ∈ U, i < j}, we have the

following social feature:

Fs(U) = [U ;φ(U)] (8)

Compared with the textual and the visual features, the

Fc(U) features are of much lower dimensions and are much

easier to interpret. The social features are used together

with the content features to predict the retweet count.

3.3. Dynamics RNN

Temporal diffusion information are widely used for pop-

ularity prediction. Instead of using a reinforced Poisson

process [30] or Hawkes Process [21], we employ a simple

but effective recurrent neural network to learn the temporal

propagation pattern. Compared with other diffusion based

models [21, 30], our dynamics RNN can easily integrate

content and social features.

Given a tweet T (I, L, U,D), due to data collection lim-

itations, the propagation data D is not uniformly sampled

in the temporal domain. We first use linear interpolation to

uniformly resample the propagation process D in the tem-

poral domain using a fixed time interval. At each time step

i, the dynamics RNN updates its hidden state hi and com-

putes an output prediction λ̃i by iterating the following re-

lations:

c =Whc[Fc(L, I), Fs(U)]

hi =tanh(Whrri−1 +Whhht−1

+ bh + c� I[i = 0])

ln(λi) =Wohhi + bo

(9)

Table 2: Detailed configurations of our proposed network.

Component Layer Dimension/Units

CNN Output 1792

LSTM
WE 512

Hidden 512

Joint Embedding

FC(W1) 768

FC(W2) 256

FC(V1) 512

FC(V2) 256

Concat 512

FC 256

FC 128

Social Features - 25

Dynamics RNN Hidden 256

Weights Whc,Whr,Whh,Woh and biases bh, bo are learn-

able parameters. I is an indicator function. We found that

conditioning the dynamics RNN at its first step works better

than conditioning it at every time step i.

3.4. Poisson Regression

We train our model to maximize the Poisson likelihood

given a collection of N training tuples of tweets Ti and their

retweet counts rgt,i:

θ∗ = argmin
θ

1

N

N∑
i=1

{rgt,i lnλ(Ti) + λ(Ti)} (10)

where θ contains all parameters of our proposed model. The

loss function can be denoted as:

LPoisson =
1

N

N∑
i=1

{rgt,i lnλ(Ti) + λ(Ti)} (11)

4. Experiments
We study the contributions of each data modality, and

each network component on multiple datasets. We compare

our model against several state-of-the-art methods. Please

refer to the supplementary materials for more details on pre-

processing, filtering, visualization, etc.

4.1. Network Architecture and Training

Network configuration We detail the architecture and

configuration of our proposed model in Table 2. Our over-

all network contains multiple components. It’s challenging

to train the entire model from scratch in an end-to-end fash-

ion. Therefore, we first train each individual component

separately. After each component has reached a stable state,

the entire model can be trained jointly.

Warm-up language model We start by training the twit-

ter language model, i.e, the word embedding layer and the

LSTM network. Both word embedding and LSTM are ran-

domly initialized. A generalized linear model is used to pre-

dict the Poisson parameter λ from the LSTM output vector.

ln (λ(T )) = w · fLSTM (L) + b (12)
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where linear weight w and bias b are learnable parameters.

We then train the LSTM network to directly predict the hid-

den variable λ based on Equation (12) with the negative

log-likelihood loss function in Equation (11). The gradient

magnitude is clipped to 5 during back-propagation to avoid

the gradient explosion problem. We train the LSTM with

Poisson loss for 100k iterations.

Fine-tune the CNN We then fine-tune the CNN weights

on Twitter images. Similar to Equation (12), we use a gener-

alized linear model to predict the hidden Poisson parameter

from the CNN feature output fCNN (I). The Poisson loss

(Equation (11)) is used as the objective for fine-tuning.

Learn joint embedding We use the pre-trained CNN

feature concatenated with the warmed-up LSTM output as

the input to train the joint embedding network. The joint

embedding network is also randomly initialized. During

this initial training phase, both the CNN and the LSTM

network are fixed. Only the joint embedding network is

trainable. Unlike [39], we only adopt the bi-directional con-

straints and relax the structural constraints, since only one

sentence/image pair exists within each tweet.

We randomly initialize all the layers of the joint embed-

ding network and optimize them wrt LJE . Triplets con-

taining an associated image/sentence pair (Ii, Li), a non-

relating image Ij , and a non-relating sentence Lk are used

to optimize the loss function LJE . However, it is computa-

tionally prohibitive to optimize the loss function LJE over

all possible triplets in the dataset. Thus we follow a similar

approach to [39] to sample triplets within each mini-batch

of the training dataset during optimization. We first com-

pute the similarity distance d(Ii, Li) for all tweets within

the batch. For each tweet (a ground-truth image/text pair),

we then find the top K non-relating images and the top

K non-relating sentences violating the bi-directional con-

straint. We use K = 20 in all the experiments. We then

train the joint embedding network with the CNN and LSTM

being fixed.

Warm-up dynamics RNN We randomly initialize the

dynamics RNN. The dynamics RNN is designed to pre-

dict the hidden Poisson parameter λ from past observations.

Thus we train the dynamics RNN using the Poisson loss

Equation (11). We fix the CNN, language LSTM, and the

joint embedding network during the warm-up phase of the

dynamics RNN and train it for for 100k iterations. The gra-

dient magnitude is clipped to 5 during training.

Preventing overfitting Real-world Twitter data can be

very noisy. We adopted multiple techniques, to avoid over-

fitting the noisy training data. Similar to [38], initializing

the CNN using pre-trained weights greatly helps to prevent

overfitting. We also use dropout layers in the LSTM net-

work. Each fully-connected layer in the joint embedding

model is also followed by a dropout layer. The keep proba-

bility of all dropout layers is 0.7. Additionally, L2 regular-

ization is applied during training.

Optimization We initialize and warm up each compo-

nent of our network separately as discussed above. Then

we combine the negative log-likelihood LPoisson (Equa-

tion (11)), the joint embedding loss LJE (Equation (7)), and

the weight θ regularization as the joint loss function:

L = LPoisson + κ1LJE + κ2‖θ‖2 (13)

Weight parameters κ1 = 0.5, κ2 = 0.05 are selected via

cross-validation. We train the network end-to-end by mini-

mizing the above loss function (Equation (13)).

Our model,implemented in TensorFlow, is optimized us-

ing Adam [20] on three nVidia K20 GPUs. We use a learn-

ing rate of 10−5. The learning rate decays every 100k iter-

ations with an exponential rate of 0.9.

4.2. Datasets

We train our model and evaluate their prediction accu-

racy on multiple Twitter datasets collected from real-world

Twitter streams across different time periods.

Our model employed an LSTM network to learn an un-

derlying language model for tweets. In principle, it would

require a dedicated LSTM network for each language used

on Twitter. Without loss of generality, we only studied the

popularity prediction problem for English tweets.

MBI-1M The MicroBlog-Images (MBI-1M) dataset [6]

collected in 2013 contains 1 million tweets. Retweet counts

and favorite counts for the contained tweets were collected

later in 2014. Only English tweets containing images from

the MBI-1M dataset are used in our experiments. We fol-

low [6] to split the English tweets from the MBI-1M dataset

into 70% training, 10% validation, and 20% test sets respec-

tively.

Twitter2015 We also collected over 40 million tweets

from Nov. 2015 to Apr. 2016 using the Twitter API. The

Twitter streaming API returns a small random set of all pub-

lic tweets (up to 1%). Similarly, we only used tweets that

are written in English and contain at least one image. We

randomly split the Twitter2015 dataset into 80% training,

10% validation, and 10% testing sets.

Twitter2016 Topics on Twitter change rapidly and con-

tinuously over time. Machine learning based approaches

must have good generalization capabilities to deal with such

rapid topic drift. To evaluate the generalization capabilities,

we collected another dataset using the Twitter public API in

Oct. 2016. This dataset contains 9 million English tweets.

We reserve this entire dataset for testing purposes only. The

maximum retweet count encountered when the data collec-

tion ends is used as the ground-truth retweet value for Twit-

ter2015 and Twitter2016 dataset. Detailed statistics for the

three datasets can be found in the supplementary materials.

TemporalTwitter2015 Due to the limited sampling ra-

tio of the Twitter public API. we can only collect partial
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propagation data. During the Twitter2015 collection period,

we recorded tweets with over 50 retweeted sampling points

and assemble them into a new TemporalTwitter2015 data-

set. Tweets propagating longer than 72 hours are discarded.

The TemporalTwitter2015 contains 12,187 valid tweets.

4.3. Dataset Preprocessing

We resize the images to 299×299 pixels to be compatible

with the Inception-Resnet model.

Messages on Twitter usually contain informal language.

Accordingly, we preprocess the text to reduce irregularities

to lessen the burden on the later LSTM network. We first

reduce the irrelevant information in tweet text by simplify-

ing hashtags, numbers, usernames, etc. Please refer to Ta-

ble 1 for detailed pre-processing rules. URLs embedded in

tweets usually point to external resources. According to [4],

URLs elicited more positive feelings or rated more interest-

ing were more likely to spread. Hence instead of using a

single symbolic word <URL>, we expanded and parsed the

hashed/shortened URL within tweets. Only domain names

are recorded as words. After the text is pre-processed, we

tokenize the pre-processed text string into words and build

a Twitter vocabulary. Rare words appearing no more than

10 times in the corpus are replaced by a symbolic word

<unknown> in the vocabulary. Our vocabulary contains

over 500k distinct words.

4.4. Popularity Prediction Evaluation

Evaluation metric We evaluate our proposed method on

the aforementioned datasets and compare our results against

multiple state-of-the-art methods [6, 24, 25, 19]. The Spear-

man’s ranking correlation and mean absolute percentage er-

ror (MAPE) are adopted as the evaluation metric.

Static Setting Evaluation We first evaluate our multi-

modal regression method in the static setting. We compare

our multi-modal model with state-of-the-art content-based

methods [6, 24, 25, 19]. For fair comparison, we discard

the dynamics RNN and only use Poisson regression on the

joint content and social features. More formally ln(λ) =
W [Fc(L, I), Fs(U)] + b is used for prediction.

Table 4 demonstrates that our proposed joint model

has superior performance compared to other content-based

methods. Compared with our model, [25] only use sim-

ple visual features such as scene categories, the number

of human faces, and color information. [6] and [19] were

originally proposed to predict online photo popularities.

Neglecting textual information hinders its performance in

tweet popularity prediction tasks. [24] utilized visual, tex-

tual, and social cues to predict brand-related popularities,

thus outperforming the other three baseline methods. Com-

pared to the baseline content-based methods, our model

not only utilizes more advanced feature representations, but

also a joint embedding model to maximize the correlation

across modalities, which helped us outperform the state-of-

the-art.

Dynamic Setting Evaluation We evaluate our dynamic-

RNN model on the TemporalTwitter2015 datasets against

the state-of-the-art TiDeH method [21]. For a tweet, the

retweet count at 72 hours after its issue is predicted. See

Table 6 for quantitative results.

Using propagation data alone, the simple RNN model

demonstrated slightly inferior performance compared to the

baseline method. However, by properly combining content

features and social cues, our model can achieve slightly bet-

ter prediction accuracy than baseline methods. Utilizing all

available data modalities (image I , text L, social cue S, and

propagation information D), as well as the proper Poisson

loss, contributed to the performance improvement.

4.5. Ablation Studies

We thoroughly studied the prediction performance with

different loss functions and different joint modeling meth-

ods. Detailed statistics can be found in Table 5 and Table 6.

Compared with simple linear loss, Poisson loss can im-

prove prediction performance on different data modalities.

Poisson distribution is more suitable to model discrete data

distributions, thus outperforming the simple linear loss.

Social features generally outperform visual and textural

features when used in isolation. Our observation agrees

with the literature [40]. However, naively concatenating

features from different modalities does not significantly im-

prove the performance over simple social features or dy-

namics features. However, our Poisson regression model

and our joint embedding are key to our performance im-

provement. By explicitly aligning different modality fea-

tures in the common space, the regression model can pay

more attention to the common salient features, and neglects

the differences between the image and text description. Ta-

ble 5 shows that combining textual or visual features with

social cues can outperform all single modality. Thus, both

visual and textual features can benefit social cues when pre-

dicting the popularities.

On the TemporalTwitter2015 dataset, the dynamics fea-

ture when used alone, outperforms both visual and textual

features. When properly combined with content based fea-

tures, we achieve the best performance on the evaluation

dataset. Diffusion based methods require a sequence of

early retweeting/propagation observations to predict future

message outreach. Compared with content based methods,

such early observations are hard or sensitive to acquire, lim-

iting the practical applicability of diffusion based methods.

Being able to make the prediction based on content alone,

or combining content into the diffusion models, is of great

practical importance.
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Table 3: Dataset statistics. For all the three datasets, we first filter for English tweets (the English column). Then we discard tweets without

visual images (English+Image column). If we capture multiple retweets of the same tweet, we group them as one tweet and record its

maximum retweet number (the Unique Tweets column). Such filters help us remove redundancies in the datasets and make training time

manageable.

Dataset Collection Time Total English English + Image Unique Tweets Unique Users

MBI1M [6] 2013 1,007,197 347,865 347,865 347,865 318,591

Twitter2015 2015 40,467,493 13,651,796 3,104,566 1,886,498 475,291

Twitter2016 2016 32,173,022 9,655,915 1,923,507 1,076,958 350,519

Table 4: Comparison against state-of-the-art baseline methods. By

using advanced CNN and LSTM models and joint embedding, our

method outperform previous approaches. Spearman: higher is bet-

ter. MAPE: lower is better.

Method
Spearman MAPE

MBI1M T2015 T2016 MBI1M T2015 T2016

McParlane et al 0.188 0.269 0.257 0.093 0.121 0.137

Khosla et al 0.185 0.273 0.254 0.097 0.103 0.124

Cappallo et al 0.189 0.265 0.258 0.089 0.095 0.119

Mazloom et al 0.190 0.287 0.262 0.073 0.097 0.117

Ours 0.229 0.358 0.350 0.057 0.084 0.103

Table 5: Quantitative evaluation of each data modality. ‘V’: vi-

sual, ‘T’: textual, ‘S’: social features. ‘L’ = linear loss, ‘P’ = Pois-

son loss. ‘FC’ = fully-connected layers without joint embedding,

‘Joint’ = joint embedding model. For multi-modal FC models, fea-

tures from different modalities are concatenated together. Spear-

man: higher is better. MAPE: lower is better.

F
ea

tu
re

M
o

d
el

L
o

ss Spearman MAPE

MBI1M T2015 T2016 MBI1M T2015 T2016

V FC L 0.149 0.248 0.232 0.147 0.152 0.157

T FC L 0.157 0.267 0.248 0.132 0.140 0.145

S FC L 0.175 0.281 0.269 0.113 0.128 0.130

V FC P 0.163 0.278 0.261 0.135 0.149 0.153

T FC P 0.172 0.283 0.275 0.129 0.138 0.142

S FC P 0.181 0.301 0.289 0.103 0.125 0.129

TS FC P 0.198 0.325 0.319 0.090 0.109 0.116

VS FC P 0.193 0.321 0.313 0.092 0.111 0.118

VTS FC L 0.188 0.311 0.294 0.097 0.112 0.119

VTS FC P 0.212 0.341 0.327 0.083 0.103 0.115

VTSJointL 0.207 0.339 0.325 0.071 0.097 0.112

VTSJoint P 0.229 0.358 0.350 0.057 0.084 0.103

4.6. Attributes Analysis

To gain more insights on the influencing factors lead-

ing to the popularity of tweets, we analyze the common at-

tributes of highly retweeted posts. We first manually labeled

images and sentences with an attribute set. The common at-

tributes of the highly scoring tweets are then analyzed.

For visual features, the following attributes are manu-

ally collected on 5K images: dynamic GIF, animal, human,
beautiful, not beautiful, sexual, containing text, syntheti-
cally generated. We notice the following attributes to be

highly correlated with the virality of tweets: animal, not
beautiful, sexual, containing text, synthetically generated.

Especially, images containing text are quite popular. Users

Table 6: Quantitative evaluation of dynamic propagation features.

‘V’: visual, ‘T’: textual, ‘S’: social features, ‘D’: dynamic fea-

tures. ‘L’ = linear loss, ‘P’ = Poisson loss. ‘FC’ = fully-connected

layers without joint embedding, ‘Joint’ = joint embedding model.

Spearman: higher is better. MAPE: lower is better.

Feature Loss Model Spearman MAPE

V L FC 0.217 0.152

T L FC 0.223 0.147

S L FC 0.247 0.139

D L FC 0.290 0.109

V P FC 0.232 0.142

T P FC 0.241 0.129

S P FC 0.260 0.120

D P FC 0.297 0.097

TD P FC 0.317 0.096

VD P FC 0.320 0.097

SD P FC 0.339 0.095

VTSD L FC 0.310 0.095

VTSD P FC 0.349 0.091

VTSD L Joint 0.357 0.089

VTSD P Joint 0.366 0.085
TiDeH - - 0.364 0.087

also like to generate images by composing multiple images,

or adding textual descriptions in the image. Such synthetic

generated or augmented images are likely to go viral.

For textual attributes, we labeled 5K sentences with the

following attributes: political, religious, emotional, having
emoji, having Twitter slang, having URL. We found politi-
cal and URL to be influential. Emoji expressions and slangs

are “ubiquitous” on Twitter, thus not providing extra infor-

mation for popularity prediction. URLs may contain extra

information that leads to users’ retweet actions.

5. Conclusion
In this paper, we studied the problem of predicting tweet

popularity. Our method estimates the potential reach of a

tweet based on its image, language, author relationships,

and propagating behaviors. We show that naively com-

bining multimodal features does not improve upon social

features but via a joint embedding model, our Poisson re-

gression approach not only shows complementary improve-

ments, but also achieves state-of-the-art results on multiple

datasets. We evaluated our model on Twitter data but our

proposed method is also applicable to other social networks.
Acknowledgements: Supported in part by the NSF No. IIS-

1349074, No. CNS-1405847.
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