COMP 790.139 (Fall 2017) Natural Language Processing

Language+Vision; Guest Research Talks by Ramakanth, Hao

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Mohit Bansal

Language+Vision

- Image Captioning
- Referring Expressions
- Image/Visual Question Answering
- Visual Dialog
- Video Captioning

Brief Task Definitions and Example Papers/Models

Image Captioning

Show, Attend, and Tell

Attention:

$$e_{ti} = f_{\text{att}}(\mathbf{a}_i, \mathbf{h}_{t-1})$$

$$\alpha_{ti} = \frac{\exp(e_{ti})}{\sum_{k=1}^{L} \exp(e_{tk})}.$$

Show, Attend, and Tell

A woman is throwing a <u>frisbee</u> in a park.

A $\underline{\text{dog}}$ is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

A little <u>girl</u> sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Visual Referring Expressions

RefCOCO TestB

bottom left banana second banana from left top right banana RefCOCO+ TestA

red shirt man in black blue shirt

Joint Comprehension+Generation Model

[Yu et al., 2017]

Joint Comprehension+Generation Model

Figure 1: Joint generation examples using our full model with "+rerank" on three datasets. Each sentence shows the generated expression for one of the depicted objects (color coded to indicate correspondence).

Figure 2: Example comprehension results using our full model on three datasets. Green box shows the ground-truth region and blue box shows our correct comprehension based on the detected regions.

[Yu et al., 2017]

VQA: Visual Question Answering

What color are her eyes? What is the mustache made of?

Is this person expecting company? What is just under the tree?

How many slices of pizza are there? Is this a vegetarian pizza?

Does it appear to be rainy? Does this person have 20/20 vision?

Demo

Submit

http://vqa.cloudcv.org/

2

1

3

4

0

Predicted top-5 answers with confidence:

	67.267%		
22.324%			
9.115%			
0.945%			
0.242%			

Simple VQA Baseline

[Agrawal et al., 2015]

Hierarchical Co-Attention Model

Figure 1: Flowchart of our proposed hierarchical co-attention model. Given a question, we extract its word level, phrase level and question level embeddings. At each level, we apply co-attention on both the image and question. The final answer prediction is based on all the co-attended image and question features.

Hierarchical Co-Attention Model

Figure 2: (a) Parallel co-attention mechanism; (b) Alternating co-attention mechanism.

Hierarchical Co-Attention Model

Figure 4: Visualization of image and question co-attention maps on the COCO-QA dataset. From left to right: original image and question pairs, word level co-attention maps, phrase level co-attention maps and question level co-attention maps. For visualization, both image and question attentions are scaled (from red:high to blue:low). Best viewed in color.

MCB Model with Attention

[Fukui et al., 2016]

Results

	Test-dev				Test-standard					
	Open Ended			MC	Open Ended				MC	
	Y/N	No.	Other	All	All	Y/N	No.	Other	All	All
MCB	81.2	35.1	49.3	60.8	65.4	_	-	_	-	_
MCB + Genome	81.7	36.6	51.5	62.3	66.4	-	-	-	-	-
MCB + Att.	82.2	37.7	54.8	64.2	68.6	-	-	-	-	-
MCB + Att. + GloVe	82.5	37.6	55.6	64.7	69.1	-	-	-	-	-
MCB + Att. + Genome	81.7	38.2	57.0	65.1	69.5	-	-	-	-	-
MCB + Att. + GloVe + Genome	82.3	37.2	57.4	65.4	69.9	-	-	-	-	-
Ensemble of 7 Att. models	83.4	39.8	58.5	66.7	70.2	83.2	39.5	58.0	66.5	70.1
Naver Labs (challenge 2nd)	83.5	39.8	54.8	64.9	69.4	83.3	38.7	54.6	64.8	69.3
HieCoAtt (Lu et al., 2016)	79.7	38.7	51.7	61.8	65.8	-	-	-	62.1	66.1
DMN+ (Xiong et al., 2016)	80.5	36.8	48.3	60.3	-	-	-	-	60.4	-
FDA (Ilievski et al., 2016)	81.1	36.2	45.8	59.2	-	-	-	-	59.5	-
D-NMN (Andreas et al., 2016a)	81.1	38.6	45.5	59.4	-	-	-	-	59.4	-
AMA (Wu et al., 2016)	81.0	38.4	45.2	59.2	-	81.1	37.1	45.8	59.4	-
SAN (Yang et al., 2015)	79.3	36.6	46.1	58.7	-	-	-	-	58.9	-
NMN (Andreas et al., 2016b)	81.2	38.0	44.0	58.6	-	81.2	37.7	44.0	58.7	-
AYN (Malinowski et al., 2016)	78.4	36.4	46.3	58.4	-	78.2	36.3	46.3	58.4	-
SMem (Xu and Saenko, 2016)	80.9	37.3	43.1	58.0	-	80.9	37.5	43.5	58.2	-
VQA team (Antol et al., 2015)	80.5	36.8	43.1	57.8	62.7	80.6	36.5	43.7	58.2	63.1
DPPnet (Noh et al., 2015)	80.7	37.2	41.7	57.2	-	80.3	36.9	42.2	57.4	-
iBOWIMG (Zhou et al., 2015)	76.5	35.0	42.6	55.7	_	76.8	35.0	42.6	55.9	62.0

[Fukui et al., 2016]

Making the V in the VQA matter !

Who is wearing glasses? man woman

Is the umbrella upside down?

no

Where is the child sitting? fridge arms

arms

How many children are in the bed?

[Goyal et al., 2017]

Results

Approach	Ans Type	UU	UB	$\mathbf{B}_{half}\mathbf{B}$	BB
MCB [9]	Yes/No	81.20	70.40	74.89	77.37
	Number	34.80	31.61	34.69	36.66
	Other	51.19	47.90	47.43	51.23
	All	60.36	54.22	56.08	59.14
HieCoAtt [25]	Yes/No	79.99	67.62	70.93	71.80
	Number	34.83	32.12	34.07	36.53
	Other	45.55	41.96	42.11	46.25
	All	57.09	50.31	51.88	54.57

Visual Dialog

Demo

http://visualchatbot.cloudcv.org/

Visual Dialog vs VQA

VQA

Q: How many people on wheelchairs ?

- A: Two
- Q: How many wheelchairs ?
- A: One

Captioning Two people are in a wheelchair and one is holding a racket.

Visual Dialog

- Q: How many people are on wheelchairs ?
- A: Two
- Q: What are their genders?
- A: One male and one female
- Q: Which one is holding a racket ?
- A: The woman

Visual Dialog

- Q: What is the gender of the one in the white shirt ?
- A: She is a woman
- Q: What is she doing ?
- A: Playing a Wii game
- Q: Is that a man to her right
- A: No, it's a woman

Results

	Model	MRR	R@1	R@5	R@10	Mean
seline	Answer prior	0.3735	23.55	48.52	53.23	26.50
	NN-Q	0.4570	35.93	54.07	60.26	18.93
Bas	NN-QI	0.4274	33.13	50.83	58.69	19.62
(LF-Q-G	0.5048	39.78	60.58	66.33	17.89
	LF-QH-G	0.5055	39.73	60.86	66.68	17.78
	LF-QI-G	0.5204	42.04	61.65	67.66	16.84
ltiv	LF-QIH-G	0.5199	41.83	61.78	67.59	17.07
lera	- HRE-QH-G	0.5102	$4\bar{0}.\bar{1}5$	61.59	67.36	17.47
jen	HRE-QIH-G	0.5237	42.29	62.18	67.92	17.07
\sim	HREA-QIH-G	0.5242	42.28	62.33	68.17	16.79
	$\bar{M}\bar{N}-\bar{Q}\bar{H}-\bar{G}$	0.5115	40.42	61.57	67.44	17.74
l	MN-QIH-G	0.5259	42.29	62.85	68.88	17.06
(LF-Q-D	0.5508	41.24	70.45	79.83	7.08
	LF-QH-D	0.5578	41.75	71.45	80.94	6.74
Discriminative	LF-QI-D	0.5759	43.33	74.27	83.68	5.87
	LF-QIH-D	0.5807	43.82	74.68	84.07	5.78
	- HRE-QH-D	0.5695	$4\bar{2}.\bar{7}0$	73.25	82.97	6.11
	HRE-QIH-D	0.5846	44.67	74.50	84.22	5.72
	HREA-QIH-D	0.5868	44.82	74.81	84.36	5.66
	$\overline{MN}-\overline{QH}-\overline{D}$	0.5849	44.03	75.26	84.49	5.68
	MN-QIH-D	0.5965	45.55	76.22	85.37	5.46
VQA {	SAN1-QI-D	0.5764	43.44	74.26	83.72	5.88
	HieCoAtt-QI-D	0.5788	43.51	74.49	83.96	5.84

Video Captioning

Ground truth: A woman is slicing a red pepper.

Early Video Captioning

[Venugopalan et al., 2014]

Hierarchical Encoder

(a) Stacked LSTM video encoder

(b) Hierarchical Recurrent Neural Encoder

M-to-M Multi-Task for Video Captioning

[Pasunuru and Bansal, 2017a]

Reinforced Video Captioning w/ Entailment

Guest Research Talks by Ramakanth Pasunuru:

Multi-Task Video Captioning with Video and Entailment Generation (ACL 2017) 1) 2)

Reinforced Video Captioning with Entailment Rewards (EMNLP 2017)

(45 mins)

Guest Research Talks by Hao Tan:

- 1) A Joint Speaker-Listener-Reinforcer Model for Referring Expressions (CVPR 2017)
- 2) Source-Target Inference Models for Spatial Instruction Understanding (AAAI 2018)

(45 mins)