
COMP 790.139 (Fall 2017)
Natural Language Processing

Mohit Bansal

Language+Robotics

NLP for Actions/Robotics

Turn right at the
butterfly painting, then
go to the end of the hall	

!   Task-based instructions, e.g., navigation, grasping,
manipulation, skill learning

NLP for Actions/Robotics

Cut some onions, and
add to broth, stir it	

!   Task-based instructions, e.g., navigation, grasping,
manipulation, skill learning

Navigation Instruction Following

Learning to interpret natural language navigation instructions from observations. Chen and Mooney. AAAI 2011.

Learning to Interpret Natural Language
Navigation Instructions from Observations

David L. Chen and Raymond J. Mooney
Department of Computer Science
The University of Texas at Austin
1616 Guadalupe, Suite 2.408
Austin, TX 78701, USA

dlcc@cs.utexas.edu and mooney@cs.utexas.edu

Abstract

The ability to understand natural-language instructions is crit-
ical to building intelligent agents that interact with humans.
We present a system that learns to transform natural-language
navigation instructions into executable formal plans. Given
no prior linguistic knowledge, the system learns by simply
observing how humans follow navigation instructions. The
system is evaluated in three complex virtual indoor environ-
ments with numerous objects and landmarks. A previously
collected realistic corpus of complex English navigation in-
structions for these environments is used for training and test-
ing data. By using a learned lexicon to refine inferred plans
and a supervised learner to induce a semantic parser, the sys-
tem is able to automatically learn to correctly interpret a rea-
sonable fraction of the complex instructions in this corpus.

1 Introduction
An important application of natural language processing is
the interpretation of human instructions. The ability to parse
instructions and perform the intended actions is essential for
smooth interactions with a computer or a robot. Some recent
work has explored how to map natural-language instructions
into actions that can be performed by a computer (Branavan
et al. 2009; Lau, Drews, and Nichols 2009). In particular, we
focus on the task of navigation (MacMahon, Stankiewicz,
and Kuipers 2006; Shimizu and Haas 2009; Matuszek, Fox,
and Koscher 2010; Kollar et al. 2010; Vogel and Jurafsky
2010).
The goal of the navigation task is to take a set of natural-

language directions, transform it into a navigation plan that
can be understood by the computer, and then execute that
plan to reach the desired destination. Route direction is
a unique form of instructions that specifies how to get
from one place to another and understanding them depends
heavily on the spatial context. The earliest work on in-
terpreting route directions was by linguists (Klein 1982;
Wunderlich and Reinelt 1982). While this domain is re-
stricted, there is considerable variation in how different peo-
ple describe the same route. Below are some examples from
our test corpus of instructions given for the route shown in
Figure 1:

Copyright c⃝ 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: This is an example of a route in our virtual world.
The world consists of interconnecting hallways with vary-
ing floor tiles and paintings on the wall (butterfly, fish, or
Eiffel Tower.) Letters indicate objects (e.g. ’C’ is a chair) at
a location.

“Go towards the coat rack and take a left at the coat
rack. go all the way to the end of the hall and this is 4.”
“Position 4 is a dead end of the yellow floored hall with
fish on the walls.”
“turn so that the wall is on your right side. walk forward
once. turn left. walk forward twice.”
“foward to the fish. first left. go tot [sic] the end.”
“Place your back to the wall of the ’T’ intersection.
Turn right. Go forward one segment to the intersection
with the yellow-tiled hall. This intersection contains a
hatrack. Turn left. Go forward two segments to the end
of the hall. This is Position 4.”
As seen in these examples, people may describe routes

using landmarks (e.g. yellow floored hall) or specific actions
(e.g. walk forward once). They may describe the same object
differently (e.g. coat rack vs. hatrack). They also differ in
the amount of detail given, from just information about the

Navigation Instruction Following

Learning to interpret natural language navigation instructions from observations. Chen and Mooney. AAAI 2011.

Figure 2: An overview of our system

is not always a direct correspondence between ei and ai.
Rather, ei corresponds to an unobserved plan pi that when
executed in wi will produce ai. Thus, we need to first infer
the correct pi from the training data and then build a seman-
tic parser that can translate from ei to pi.
To train and test our system, we use the data and virtual

environments assembled by MacMahon et al. (2006). The
data was collected for three different virtual worlds consist-
ing of interconnecting hallways. An overview map of one of
the worlds is shown in Figure 1. Each world consists of sev-
eral short concrete hallways and seven long hallways each
with a different floor pattern (grass, brick, wood, gravel,
blue, flower, and yellow octagons). The worlds are divided
into three areas, each with a different painting on the walls
(butterfly, fish, and Eiffel Tower). There is also furniture
placed at various intersections (hatrack, lamp, chair, sofa,
barstool, and easel). The three worlds contain the same el-
ements but in different configurations. Each world also has
seven chosen positions labeled 1 thorough 7.
MacMahon et al. collected both human instructor data and

human follower data. The instructors first familiarized them-
selves with the environment and the seven positions. They
were then asked to give a set of written instructions on how
to get from a particular position to another. Since they did
not have access to the overview map, they had to rely on
their explorations of the environments. These instructions
were then given to several human followers whose actions
were recorded as they tried to follow the instructions. On
average, each instruction was 5 sentences long. However, to
simplify the learning problem, we manually split the action
sequences and aligned them with their corresponding sen-
tences. All the actions are discrete and consist of turning left,
turning right, and moving from one intersection to another.

4 System Description
Figure 2 shows our system’s general framework. Given the
observation (wi, ai, ei), we first construct a formal naviga-
tion plan pi based on the action sequence ai and the world
state wi. An optional step refines this navigation plan based

Figure 3: Examples of automatically generated plans.

on the instruction ei. The resulting pair (ei, pi) is then used
as supervised training data for learning a semantic parser.
During testing, the semantic parser maps new instructions
ej into formal navigation plans pj which are then carried
out by the execution module.
While we built the top two components that are respon-

sible for creating the supervised training data (ei, pi), we
use existing systems for building semantic parsers and for
executing navigation plans. Since the plans inferred by the
system are not always completely accurate representations
of the instructions, we chose a semantic-parser learner,
KRISP, that has been shown to be particularly robust to
noisy training data (Kate and Mooney 2006). Nevertheless,
other general-purpose supervised semantic-parser learners
(Zettlemoyer and Collins 2005; Wong and Mooney 2006;
Lu et al. 2008) could also be used. To carry out the plans,
we use MARCO’s execution module developed by MacMa-
hon et al. (2006) for executing navigation plans in our test
environments.

4.1 Constructing navigation plans
A simple way to generate a formal navigation plan is to
model only the observed actions. In our case, this means
forming plans that consist of only turning left and right, and
walking forward a certain number of steps. This is often suf-
ficient if the instruction directly refers to the specific action
to be taken (e.g. turn left, walk forward two steps). We refer
to these navigation plans which capture such direct instruc-
tions as basic plans.
To capture more complex instructions that refer to objects

and locations in the environment (e.g. face the pink flower
hallway, go to the sofa), we simulate executing the given
actions in the environment. We collect sensory data during
the execution and form a landmarks plan that adds interleav-
ing verification steps to the basic plan. The verification steps
specify the landmarks that should be observed after execut-
ing each basic action. Examples of both a basic plan and a
landmarks plan are shown in Figure 3.

4.2 Plan refinement
While landmarks plans capture more of the meaning of the
instructions, they can also contain a lot of extraneous infor-
mation. Thus, we employ a lexicon learning algorithm to
learn the meanings of words and short phrases. The learned
lexicon is then used to try to identify and remove the extra-
neous details in the landmarks plan.
Learning a lexicon We build a semantic lexicon by find-
ing the common parts of the formal representations associ-

Navigation Instruction Following

Weakly supervised learning of semantic parsers for mapping instructions to actions. Artzi and Zettlemoyer. TACL 2013.

Supervised learning with GENLEX Previous
work (Zettlemoyer & Collins, 2005) introduced a
function GENLEX(x, z) to map a sentence x and its
meaning z to a large set of potential lexical entries.
These entries are generated by rules that consider the
logical form z and guess potential CCG categories.
For example, the rule p ! N : �x.p(x) introduces
categories commonly used to model certain types of
nouns. This rule would, for example, introduce the
category N : �x.chair(x) for any logical form z
that contains the constant chair. GENLEX uses a
small set of such rules to generate categories that
are paired with all possible substrings in x, to create
a large set of lexical entries. The complete learning
algorithm then simultaneously selects a small sub-
set of these entries and estimates parameter values
✓. In Section 8, we will introduce a new way of
using GENLEX to learn from different signals that,
crucially, do not require a labeled logical form z.

5 Spatial Environment Modeling

We will execute instructions in an environment, see
Section 2, which has a set of positions. A position
is a triple (x, y, o), where x and y are horizontal and
vertical coordinates, and o 2 O = {0, 90, 180, 270}
is an orientation. A position also includes properties
indicating the object it contains, its floor pattern and
its wallpaper. For example, the square at (4, 3) in
Figure 2 has four positions, one per orientation.

Because instructional language refers to objects
and other structures in an environment, we introduce
the notion of a position set. For example, in Figure 2,
the position set D = {(5, 3, o) : o 2 O} represents
a chair, while B = {(x, 3, o) : o 2 O, x 2 [0 . . . 5]}
represents the blue floor. Both sets contain all ori-
entations for each (x, y) pair, thereby representing
properties of regions. Position sets can have many
properties. For example, E, in addition to being a
chair, is also an intersection because it overlaps with
the neighboring halls A and B. The set of possi-
ble entities includes all position sets and a few addi-
tional entries. For example, set C = {(4, 3, 90)} in
Figure 2 represents the agent’s position.

6 Modeling Instructional Language

We aim to design a semantic representation that is
learnable, models grounded phenomena such as spa-

X"
y" 1" 2" 3" 4" 5"
1"
2"
3"
4"
5"

270$90$

0$

180$

C"

D"E"

A"

B"

⇢
D" E"

�
(a) chair

�x.chair(x)⇢
A" B"

�
(b) hall

�x.hall(x)

E" (c) the chair
◆x.chair(x)

C" (d) you
you⇢

B"
�

(e) blue hall
�x.hall(x) ^ blue(x)

⇢
E"

� (f) chair in the intersection
�x.chair(x) ^

intersect(◆y.junction(y), x)⇢
A" B" E"

�
(g) in front of you

�x.in front of(you, x)

Figure 2: Schematic diagram of a map environment
and example of semantics of spatial phrases.

tial relations and object reference, and is executable.
Our semantic representation combines ideas from

Carpenter (1997) and Neo-Davidsonian event se-
mantics (Parsons, 1990) in a simply typed �-
calculus. There are four basic types: (1) entities e
that are objects in the world, (2) events ev that spec-
ify actions in the world, (3) truth values t, and (4)
meta-entities m, such as numbers or directions. We
also allow functional types, which are defined by in-
put and output types. For example, he, ti is the type
of function from entities to truth values.

6.1 Spatial Language Modeling

Nouns and Noun Phrases Noun phrases are
paired with e-type constants that name specific en-
tities and nouns are mapped to he, ti-type expres-
sions that define a property. For example, the noun
“chair” (Figure 2a) is paired with the expression
�x.chair(x), which defines the set of objects for

52

Navigation Instruction Following

Weakly supervised learning of semantic parsers for mapping instructions to actions. Artzi and Zettlemoyer. TACL 2013.

facing the lamp go until you reach a chair
AP/NP NP/N N S AP/S NP S\NP/NP NP/N N

�x.�a.pre(a, �f.◆x.f(x) �x.lamp(x) �a.move(a) �s.�a.post(a, s) you �x.�y.intersect(x, y) �f.Ax.f(x) �x.chair(x)
front(you, x))

> >
NP NP

◆x.lamp(x) Ax.chair(x)
> >

AP S\NP

�a.pre(a, front(you, ◆x.lamp(x))) �y.intersect(Ax.chair(x), y)
<

S/S S

�f.�a.f(a) ^ pre(a, front(you, ◆x.lamp(x))) intersect(Ax.chair(x), you)
>

AP

�a.post(a, intersect(Ax.chair(x), you))

S\S
�f.�a.f(a) ^ post(a, intersect(Ax.chair(x), you))

<
S

�a.move(a) ^ post(a, intersect(Ax.chair(x), you))
>

S

�a.move(a) ^ post(a, intersect(Ax.chair(x), you)) ^ pre(a, front(you, ◆x.lamp(x)))

Figure 4: A CCG parse showing adverbial phrases and topicalization.

A
T

: V
T

!
S

s2S D
Ms,T

be the assignment func-
tion, which maps variables to domain objects.

For each model M
s

the domain D
M

s

,ev

is a set
of action sequences {ha1, ..., ani : n � 1}. Each ~a
defines a sequences of states s

i

, as defined in Sec-
tion 6.2, and associated models M

s

i

. The key chal-
lenge for execution is that modifiers of the event will
need to be evaluated under different models from
this sequence. For example, consider the sentence
in Figure 4. To correctly execute, the pre literal, in-
troduced by the “facing” phrase, it must be evaluated
in the model M

s0 for the initial state s0. Similarly,
the literal including post requires the final model
M

s

n+1 . Such state dependent predicates, including
pre and post, are called stateful. The list of stateful
predicates is pre-defined and includes event modi-
fiers, as well the ◆ quantifier, which is evaluated un-
der M

s0 , since definite determiners are assumed to
name objects visible from the start position. In gen-
eral, a logical expression is traversed depth first and
the model is updated every time a stateful predicate
is reached. For example, the two e-type you con-
stants in Figure 4 will be evaluated under different
models: the one within the pre literal under M

s0 ,
and the one inside the post literal under M

s

n+1 .

Evaluation Given a logical expression l, we can
compute the interpretation I

M

s0 ,T
(l) by recursively

mapping each subexpression to an entry on the ap-
propriate model M .

To reflect the changing state of the agent during
evaluation, we define the function update(~a, pred).
Given an action sequence ~a and a stateful predi-
cate pred, update returns a model M

s

, where s
is the state under which the literal containing pred
should be interpreted, either the initial state or one

visited while executing ~a. For example, given the
predicate post and the action sequence ha1, . . . , ani,
update(ha1, . . . , ani, post) = M

s

n+1 , where s
n+1

the state of the agent following action a
n

. By con-
vention, we place the event variable as the first argu-
ment in literals that include one.

Given a T -type logical expression l and a start-
ing state s0, we compute its interpretation I

M

s0 ,T
(l)

recursively, following these three base cases:
• If l is a � operator of type hT1, T2i binding vari-

able v and body b, I
M

s

,T

(l) is a set of pairs
from D

T1 ⇥D
T2 , where D

T1 , DT2 2 M
s

. For
each object o 2 D

T1 , we create a pair (o, i)
where i is the interpretation I

M

s

,T2(b) com-
puted under a variable assignment function ex-
tended to map A

T2(v) = o.
• If l is a literal c(c1, . . . , cn) with n argu-

ments where c has type P and each c
i

has
type P

i

, I
M

s

,T

(l) is computed by first in-
terpreting the predicate c to the function
f = I

M

s

,T

(c). In most cases, I
M

s

,T

(l) =

f(I
M

s

,P1(c1), . . . , IMs

,P

n

(c
n

)). However, if c
is a stateful predicate, such as pre or post, we
instead first retrieve the appropriate new model
M

s

0
= update(I

M

s

,P1(c1), c), where c1 is the
event argument and I

M

s

,P1(c1) is its interpre-
tation. Then, the final results is I

M

s

,T

(l) =

f(I
M

s

0 ,P1(c1), . . . , IM
s

0 ,P
n

(c
n

)).
• If l is a T -type constant or variable, I

M

s

,T

(l).

The worst case complexity of the process is ex-
ponential in the number of bound variables. Al-
though in practice we observed tractable evaluation
in the majority of development cases we considered,
a more comprehensive and tractable evaluation pro-
cedure is an issue that we leave for future work.

55

Navigation Instruction Following

Listen, Attend, and Walk: Neural Mapping of Navigational Instructions to Action Sequences. Mei, Bansal, and Walter. AAAI 2016

Listen, Attend, and Walk: Neural Mapping
of Navigational Instructions to Action Sequences

Hongyuan Mei Mohit Bansal Matthew R. Walter
Toyota Technological Institute at Chicago

Chicago, IL 60637
{hongyuan,mbansal,mwalter}@ttic.edu

Abstract

We propose a neural sequence-to-sequence model for direc-
tion following, a task that is essential to realizing effective
autonomous agents. Our alignment-based encoder-decoder
model with long short-term memory recurrent neural net-
works (LSTM-RNN) translates natural language instructions
to action sequences based upon a representation of the ob-
servable world state. We introduce a multi-level aligner that
empowers our model to focus on sentence “regions” salient
to the current world state by using multiple abstractions of
the input sentence. In contrast to existing methods, our model
uses no specialized linguistic resources (e.g., parsers) or task-
specific annotations (e.g., seed lexicons). It is therefore gen-
eralizable, yet still achieves the best results reported to-date
on a benchmark single-sentence dataset and competitive re-
sults for the limited-training multi-sentence setting. We ana-
lyze our model through a series of ablations that elucidate the
contributions of the primary components of our model.

Introduction
Robots must be able to understand and successfully execute
natural language navigational instructions if they are to work
seamlessly alongside people. For example, someone using
a voice-commandable wheelchair might direct it to “Take
me to the room across from the kitchen,” or a soldier may
command a micro aerial vehicle to “Fly down the hallway
into the second room on the right.” However, interpreting
such free-form instructions (especially in unknown environ-
ments) is challenging due to their ambiguity and complexity,
such as uncertainty in their interpretation (e.g., which hall-
way does the instruction refer to), long-term dependencies
among both the instructions and the actions, differences in
the amount of detail given, and the diverse ways in which
the language can be composed. Figure 1 presents an exam-
ple instruction that our method successfully follows.

Previous work in this domain (Chen and Mooney 2011;
Chen 2012; Kim and Mooney 2012; 2013; Artzi and Zettle-
moyer 2013; Artzi, Das, and Petrov 2014) largely requires
specialized resources like semantic parsers, seed lexicons,
and re-rankers to interpret ambiguous, free-form natural lan-
guage instructions. In contrast, the goal of our work is to
learn to map instructions to actions in an end-to-end fash-
ion that assumes no prior linguistic knowledge. Instead, our
model learns the meaning of all the words, spatial relations,

B
Objects

Barstool
C Chair
E Easel
H Hatrack
L Lamp
S Sofa

Wall paintings
Tower
Butterfly
Fish

Floor patterns

Brick
Blue

Concrete
Flower
Grass
Gravel
Wood
Yellow

L

E

H C

S

S

E

C

B

H

L

Place your back against the wall of the “T” intersection. Go
forward one segment to the intersection with the blue-tiled
hall. This interesction [sic] contains a chair. Turn left. Go
forward to the end of the hall. Turn left. Go forward one seg-
ment to the intersection with the wooden-floored hall. This
intersection conatains [sic] an easel. Turn right. Go forward
two segments to the end of the hall. Turn left. Go forward
one segment to the intersection containing the lamp. Turn
right. Go forward one segment to the empty corner.

Figure 1: An example of a route instruction-path pair in one of the
virtual worlds from MacMahon, Stankiewicz, and Kuipers (2006)
with colors that indicate floor patterns and wall paintings, and let-
ters that indicate different objects. Our method successfully infers
the correct path for this instruction.

syntax, and compositional semantics from just the raw train-
ing sequence pairs, and learns to to translate the free-form
instructions to an executable action sequence.

We propose a recurrent neural network with long short-
term memory (LSTM) (Hochreiter and Schmidhuber 1997)
to both encode the navigational instruction sequence bidi-
rectionally and to decode the representation to an action
sequence, based on a representation of the current world
state. LSTMs are well-suited to this task, as they have
been shown to be effective in learning the temporal de-

1

ar
X

iv
:1

50
6.

04
08

9v
4

 [c
s.C

L]
 1

7
D

ec
 2

01
5

Navigation Instruction Following

Listen, Attend, and Walk: Neural Mapping of Navigational Instructions to Action Sequences. Mei, Bansal, and Walter. AAAI 2016

LSTM-RNN

MULTI-LEVEL ALIGNER DECODERENCODER

Aligner

LSTM-RNN

LSTM-RNN

LSTM-RNN

go forward
two segments

to the end
of the hall

E

World State

Action Sequence

Instruction

Figure 2: Our encoder-aligner-decoder model with multi-level alignment

cal, observable world state (which we treat as a third se-
quence type that we add as an extra connection to every de-
coder step). Moreover, our decoder also includes alignment
to focus on the portions of the sentence relevant to the cur-
rent action, a technique that has proven effective in machine
translation (Bahdanau, Cho, and Bengio 2014) and machine
vision (Mnih et al. 2014; Ba, Mnih, and Kavukcuoglu 2014;
Xu et al. 2015). However, unlike the standard alignment
techniques, our model learns to align based not only on the
high-level input abstraction, but also the low-level represen-
tation of the input instruction, which improves performance.
Recently, Andreas and Klein (2015) use a conditional ran-
dom field model to learn alignment between instructions and
actions; our LSTM-based aligner performs substantially bet-
ter than this approach.

Task Definition
We consider the problem of mapping natural language nav-
igational instructions to action sequences based only on
knowledge of the local, observable environment. These in-
structions may take the form of isolated sentences (single-
sentence) or full paragraphs (multi-sentence). We are inter-
ested in learning this mapping from corpora of training data
of the form (x

(i)
, a

(i)
, y

(i)
) for i = 1, 2, . . . , n, where x

(i)

is a variable length natural language instruction, a(i) is the
corresponding action sequence, and y

(i) is the observable
environment representation. The model learns to produce
the correct action sequence a

(i) given a previously unseen
(x

(i)
, y

(i)
) pair. The challenges arise from the fact that the

instructions are free-form and complex, contain numerous
spelling and grammatical errors, and are ambiguous in their
meaning. Further, the model is only aware of the local envi-
ronment in the agent’s line-of-sight.

In this paper, we consider the route instruction dataset
generated by MacMahon, Stankiewicz, and Kuipers (2006).
The data includes free-form route instructions and their cor-
responding action sequences within three different virtual
worlds. The environments (Fig. 1) consist of interconnected
hallways with a pattern (grass, brick, wood, gravel, blue,
flower, or yellow octagons) on each hallway floor, a paint-
ing (butterfly, fish, or Eiffel Tower) on the walls, and ob-
jects (hat rack, lamp, chair, sofa, barstool, and easel) at in-
tersections. After having explored an environment, instruc-

tors were asked to give written commands that describe how
to navigate from one location to another without subsequent
access to the map. Each instruction was then given to sev-
eral human followers who were tasked with navigating in the
virtual world without a map, and their paths were recorded.
Many of the raw instructions include spelling and grammat-
ical errors, others are incorrect (e.g., misusing “left” and
“right”), approximately 10% of the single sentences have no
associated action, and 20% have no feasible path.

The Model
We formulate the problem of interpreting natural language
route instructions as inference over a probabilistic model
P (a1:T |y1:T , x1:N), where a1:T = (a1, a2, . . . , aT) is the
action sequence, yt is the world state at time t, and x1:N =

(x1, x2, . . . , xN) is the natural language instruction,
a

⇤
1:T = arg max

a1:T

P (a1:T |y1:T , x1:N) (1a)

= arg max
a1:T

TY

t=1

P (at|a1:t�1, yt, x1:N) (1b)

This problem can be viewed as one of mapping the given
instruction sequence x1:N to the action sequence a1:T . An
effective means of learning this sequence-to-sequence map-
ping is to use a neural encoder-decoder architecture. We first
use a bidirectional recurrent neural network model to encode
the input sentence

hj = f(xj , hj�1, hj+1) (2a)
zt = c(h1, h2, . . . hN), (2b)

where hj is the encoder hidden state for word
j 2 {1, . . . , N}, and f and c are nonlinear functions
that we define shortly. Next, the context vector zt (com-
puted by the aligner) encodes the language instruction at
time t 2 {1, . . . , T}. Next, another RNN decodes the
context vector zt to arrive at the desired likelihood (1)

P (a1:T |y1:T , x1:N) =

TY

t=1

P (at|a1:t�1, yt, x1:N) (3a)

P (at|a1:t�1, yt, x1:N) = g(st�1, zt, yt), (3b)
where st�1 is the decoder hidden state at time t�1, and g is
a nonlinear function. Inference then follows by maximizing
this posterior to determine the desired action sequence.

3

Navigation Instruction Following

Listen, Attend, and Walk: Neural Mapping of Navigational Instructions to Action Sequences. Mei, Bansal, and Walter. AAAI 2016

B
Objects

Barstool
C Chair
E Easel
H Hatrack
L Lamp
S Sofa

Wall paintings
Tower
Butterfly
Fish

Floor patterns

Brick
Blue

Concrete
Flower
Grass
Gravel
Wood
Yellow

L

E

H C

S

S

E

C

B

H

Lgo stopgo
go

forward
two

segments
to

the

the

end
of

hall

stopgo
go

intersection

forward
one

segment
to

the

containing
the

lamp

go

intersection

forward
one

segment
to

the

with
the

wooden-floored
hall

go stop go
forward

to
the

the

end
of

hall

go stopgogo

go

stop

go
go

go

go
go

stop

stop

go

stop

Figure 4: Visualization of the alignment between words to actions in a map for a multi-sentence instruction.

References
Andreas, J., and Klein, D. 2015. Alignment-based composi-
tional semantics for instruction following. In Proceedings of
the Conference on Empirical Methods in Natural Language
Processing (EMNLP).
Artzi, Y., and Zettlemoyer, L. 2013. Weakly supervised
learning of semantic parsers for mapping instructions to ac-
tions. Transactions of the Association for Computational
Linguistics 1:49–62.
Artzi, Y.; Das, D.; and Petrov, S. 2014. Learning com-
pact lexicons for ccg semantic parsing. In Proceedings of
the Conference on Empirical Methods in Natural Language
Processing (EMNLP).
Ba, J.; Mnih, V.; and Kavukcuoglu, K. 2014. Multiple object
recognition with visual attention. arXiv:1412.7755.
Bahdanau, D.; Cho, K.; and Bengio, Y. 2014. Neural ma-
chine translation by jointly learning to align and translate.
arXiv:1409.0473.
Chen, D. L., and Mooney, R. J. 2011. Learning to interpret
natural language navigation instructions from observations.
In Proceedings of the National Conference on Artificial In-
telligence (AAAI).
Chen, X., and Zitnick, C. L. 2015. Mind’s eye: A recurrent
visual representation for image caption generation. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).
Chen, D. L. 2012. Fast online lexicon learning for grounded
language acquisition. In Proceedings of the Annual Meeting
of the Association for Computational Linguistics (ACL).

Cho, K.; van Merrienboer, B.; Gulcehre, C.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learn-
ing phrase representations using RNN encoder-decoder for
statistical machine translation. In Proceedings of the Confer-
ence on Empirical Methods in Natural Language Processing
(EMNLP).
Donahue, J.; Hendricks, L. A.; Guadarrama, S.; Rohrbach,
M.; Venugopalan, S.; Saenko, K.; and Darrell, T. 2014.
Long-term recurrent convolutional networks for visual
recognition and description. arXiv:1411.4389.
Graves, A.; Abdel-rahman, M.; and Hinton, G. 2013.
Speech recognition with deep recurrent neural networks. In
ICASSP.
Harnad, S. 1990. The symbol grounding problem. Physica
D 42:335–346.
Hemachandra, S.; Duvallet, F.; Howard, T. M.; Roy, N.;
Stentz, A.; and Walter, M. R. 2015. Learning models for
following natural language directions in unknown environ-
ments. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA).
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural Computation 9(8).
Karpathy, A., and Fei-Fei, L. 2015. Deep visual-semantic
alignments for generating image descriptions. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR).
Kim, J., and Mooney, R. J. 2012. Unsupervised PCFG in-
duction for grounded language learning with highly ambigu-
ous supervision. In Proceedings of the Conference on Em-

7

Navigation Instruction Following

Listen, Attend, and Walk: Neural Mapping of Navigational Instructions to Action Sequences. Mei, Bansal, and Walter. AAAI 2016

training corpora. We use the negative log-likelihood of the
demonstrated action at each time step t as our loss function,

L = � logP (a

⇤
t |yt, x1:N). (9)

As the entire model is a differentiable function, the parame-
ters can be learned by back-propagation.

Inference Having trained the model, we generate action
sequences by finding the maximum a posteriori actions un-
der the learned model (1). One action sequence is completed
when the “stop” action is emitted. For the single-sentence
task, we perform this search using standard beam search to
maintain a list of the current k best hypotheses.1 We itera-
tively consider the k-best sequences up to time t as candi-
dates to generate sequences of size t + 1 and keep only the
resulting best k of them. For multi-sentence, we perform the
search sentence-by-sentence, and initialize the beam of the
next sentence with the list of previous k best hypotheses. As
a common denoising method in deep learning (Sutskever,
Vinyals, and Lee 2014; Zaremba, Sutskever, and Vinyals
2014; Vinyals et al. 2015), we perform inference over an
ensemble of randomly initialized models.2

Experimental Setup
Dataset We train and evaluate our model using the pub-
licly available SAIL route instruction dataset collected
by MacMahon, Stankiewicz, and Kuipers (2006). We use
the raw data in its original form (e.g., we do not correct any
spelling errors). The dataset contains 706 non-trivial naviga-
tional instruction paragraphs, produced by six instructors for
126 unique start and end position pairs spread evenly across
three virtual worlds. These instructions are segmented into
individual sentences and paired with an action sequence.
See corpus statistics in Chen and Mooney (2011).

World State The world state yt encodes the local, observ-
able world at time t. We make the standard assumption that
the agent is able to observe all elements of the environment
that are within line-of-sight. In the specific domain that we
consider for evaluation, these elements include the floor pat-
terns, wall paintings, and objects that are not occluded by
walls. We represent the world state as a concatenation of
a simple bag-of-words vector for each direction (forward,
left, and right). The choice of bag-of-words representation
avoids manual domain-specific feature-engineering and the
combinatoriality of modeling exact world configurations.

Evaluation Metrics We evaluate our end-to-end model on
both the single-sentence and multi-sentence versions of the
corpus. For the single-sentence task, following previous
work, the strict evaluation metric deems a trial to be success-
ful iff the final position and orientation exactly match those
of the original demonstration. For multi-sentence, we disre-
gard the final orientation, as previous work does. However,

1We use a beam width of 10 to be consistent with existing work.
2At each time step t, we generate actions using the avg. of the

posterior likelihoods of 10 ensemble models, as in previous work.

this setting is still more challenging than single-sentence due
to cascading errors over individual sentences.

Training Details We follow the same procedure as Chen
and Mooney (2011), training with the segmented data and
testing on both single- and multi-sentence versions. We train
our models using three-fold cross-validation based on the
three maps. In each fold, we retain one map as test and
partition the two-map training data into training (90%) and
validation (10%) sets, the latter of which is used to tune
hyperparameters.3 We repeat this process for each of the
three folds and report (size-weighted) average test results
over these folds. We later refer to this training procedure as
“vDev.” Additionally, some previous methods (p.c.) adopted
a slightly different training strategy whereby each fold trains
on two maps and uses the test map to decide on the stopping
iteration. In order to compare against these methods, we also
train a separate version of our model in this way, which we
refer to as “vTest.”

For optimization, we found Adam (Kingma and Ba 2015)
to be very effective for training with this dataset. The train-
ing usually converges within 50 epochs. We performed early
stopping based on the validation task metric. Similar to pre-
vious work (Xu et al. 2015), we found that the validation
log-likelihood is not well correlated with the task metric.

Results and Analysis
In this section, we compare the overall performance of our
model on the single- and multi-sentence benchmarks against
previous work. We then present an analysis of our model
through a series of ablation studies.

Table 1: Overall accuracy (state-of-the-art in bold)

Method Single-sent Multi-sent

Chen and Mooney (2011) 54.40 16.18

Chen (2012) 57.28 19.18

Kim and Mooney (2012) 57.22 20.17

Kim and Mooney (2013) 62.81 26.57

Artzi and Zettlemoyer (2013) 65.28 31.93

Artzi, Das, and Petrov (2014) 64.36 35.44
Andreas and Klein (2015) 59.60 –
Our model (vDev) 69.98 26.07

Our model (vTest) 71.05 30.34

Primary Result We first investigate the ability to navigate
to the intended destination for a given natural language in-
struction. Figure 1 illustrates an output example for which
our model successfully executes the input natural language
instruction. Table 1 reports the overall accuracy of our
model for both the single- and multi-sentence settings. We
report two statistics with our model (vDev and vTest) in or-
der to directly compare with existing work.4

3We only tuned the no. of hidden units and the drop-out
rate (Srivastava et al. 2014; Zaremba, Sutskever, and Vinyals 2014).

4Subsequent evaluations are on vDev unless otherwise noted.

5

Navigation Instruction Following

Listen, Attend, and Walk: Neural Mapping of Navigational Instructions to Action Sequences. Mei, Bansal, and Walter. AAAI 2016

Table 2: Model components ablations

Full Model High-level Aligner No Aligner Unidirectional No Encoder

Single-sentence 69.98 68.09 68.05 67.44 61.63

Multi-sentence 26.07 24.79 25.04 24.50 16.67

As we can see from Table 1, we surpass state-of-the-art re-
sults on the single-sentence route instruction task (for both
vDev and vTest settings), despite using no linguistic knowl-
edge or resources. Our multi-sentence accuracy, which is
working with a really small amount of training data (a few
hundred paragraph pairs), is competitive with state-of-the-
art and outperforms several previous methods that use addi-
tional, specialized resources in the form of semantic parsers,
logical-form lexicons, and re-rankers.5 We note that our
model yields good results using only greedy search (beam
width of one). For vDev, we achieve 68.05 on single-
sentence and 23.93 on multi-sentence, while for vTest, we
get 70.56 on single-sentence and 27.91 on multi-sentence.

Distance Evaluation Our evaluation required that the ac-
tion sequence reach the exact desired destination. It is of
interest to consider how close the model gets to the destina-
tion when it is not reached. Table 3 displays the fraction of
test results that reach within d nodes of the destination. Of-
ten, the method produces action sequences that reach points
close to the desired destination.

Table 3: Accuracy as a function of distance from destination

Distance (d) 0 1 2 3

Single-sentence 71.73 86.62 92.86 95.74

Multi-sentence 26.07 42.88 59.54 72.08

Multi-level Aligner Ablation Unlike most existing meth-
ods that align based only on the hidden annotations hj , we
adopt a different approach by also including the original in-
put word xj (Eqn. 5). As shown in Table 2, the multi-level
representation (“Full Model”) significantly improves perfor-
mance over a standard aligner (“High-level Aligner”). Fig-
ure 4 visualizes the alignment of words to actions in the map
environment for several sentences from the instruction para-
graph depicted in Figure 1.

Aligner Ablation Our model utilizes alignment in the de-
coder as a means of focusing on word “regions” that are
more salient to the current world state. We analyze the effect
of the learned alignment by training an alternative model

5Note that with no ensemble, we are still state-of-the-art on
single-sentence and better than all comparable approaches on
multi-sentence: Artzi et al. (2013, 2014) use extra annotations with
a logical-form lexicon and Kim and Mooney (2013) use discrim-
inative reranking, techniques that are orthogonal to our approach
and should likely improve our results as well.

in which the context vector zt is an unweighted average
(Eqn. 5). As shown in the Table 2, learning the alignment
does improve the accuracy of the resulting action sequence.
Note that the “No Aligner” model still maintains all connec-
tions between the instruction and actions, but is just using
non-learned, uniform weights.

Bidirectionality Ablation We train an alternative model
that uses only a unidirectional (forward) encoder. As shown
in Table 2, the bidirectional encoder (“Full Model”) signifi-
cantly improves accuracy.

Encoder Ablation We further evaluate the benefit of en-
coding the input sentence and consider an alternative model
that directly feeds word vectors as randomly initialized em-
beddings into the decoder and relies on the alignment model
to choose the salient words. Table 2 presents the results
with and without the encoder and demonstrates that there
is a substantial gain in encoding the input sentence into its
context representation. We believe the difference is due to
the RNN’s ability to incorporate sentence-level information
into the word’s representation as it processes the sentence
sequentially (in both directions). This advantage helps re-
solve ambiguities, such as “turn right before . . . ” versus
“turn right after . . . ”.

Conclusion
We presented an end-to-end, sequence-to-sequence ap-
proach to mapping natural language navigational instruc-
tions to action plans given the local, observable world
state, using a bidirectional LSTM-RNN model with a multi-
level aligner. We evaluated our model on a benchmark
route instruction dataset and demonstrates that it achieves a
new state-of-the-art on single-sentence execution and yields
competitive results on the more challenging multi-sentence
domain, despite working with very small training datasets
and using no specialized linguistic knowledge or resources.
We further performed a number of ablation studies to eluci-
date the contributions of our primary model components.

Acknowledgments
We thank Yoav Artzi, David Chen, Oriol Vinyals, and
Kelvin Xu for their helpful comments. This work was sup-
ported in part by the Robotics Consortium of the U.S. Army
Research Laboratory under the Collaborative Technology
Alliance Program, Cooperative Agreement W911NF-10-2-
0016, and by an IBM Faculty Award.

6

Table 2: Model components ablations

Full Model High-level Aligner No Aligner Unidirectional No Encoder

Single-sentence 69.98 68.09 68.05 67.44 61.63

Multi-sentence 26.07 24.79 25.04 24.50 16.67

As we can see from Table 1, we surpass state-of-the-art re-
sults on the single-sentence route instruction task (for both
vDev and vTest settings), despite using no linguistic knowl-
edge or resources. Our multi-sentence accuracy, which is
working with a really small amount of training data (a few
hundred paragraph pairs), is competitive with state-of-the-
art and outperforms several previous methods that use addi-
tional, specialized resources in the form of semantic parsers,
logical-form lexicons, and re-rankers.5 We note that our
model yields good results using only greedy search (beam
width of one). For vDev, we achieve 68.05 on single-
sentence and 23.93 on multi-sentence, while for vTest, we
get 70.56 on single-sentence and 27.91 on multi-sentence.

Distance Evaluation Our evaluation required that the ac-
tion sequence reach the exact desired destination. It is of
interest to consider how close the model gets to the destina-
tion when it is not reached. Table 3 displays the fraction of
test results that reach within d nodes of the destination. Of-
ten, the method produces action sequences that reach points
close to the desired destination.

Table 3: Accuracy as a function of distance from destination

Distance (d) 0 1 2 3

Single-sentence 71.73 86.62 92.86 95.74

Multi-sentence 26.07 42.88 59.54 72.08

Multi-level Aligner Ablation Unlike most existing meth-
ods that align based only on the hidden annotations hj , we
adopt a different approach by also including the original in-
put word xj (Eqn. 5). As shown in Table 2, the multi-level
representation (“Full Model”) significantly improves perfor-
mance over a standard aligner (“High-level Aligner”). Fig-
ure 4 visualizes the alignment of words to actions in the map
environment for several sentences from the instruction para-
graph depicted in Figure 1.

Aligner Ablation Our model utilizes alignment in the de-
coder as a means of focusing on word “regions” that are
more salient to the current world state. We analyze the effect
of the learned alignment by training an alternative model

5Note that with no ensemble, we are still state-of-the-art on
single-sentence and better than all comparable approaches on
multi-sentence: Artzi et al. (2013, 2014) use extra annotations with
a logical-form lexicon and Kim and Mooney (2013) use discrim-
inative reranking, techniques that are orthogonal to our approach
and should likely improve our results as well.

in which the context vector zt is an unweighted average
(Eqn. 5). As shown in the Table 2, learning the alignment
does improve the accuracy of the resulting action sequence.
Note that the “No Aligner” model still maintains all connec-
tions between the instruction and actions, but is just using
non-learned, uniform weights.

Bidirectionality Ablation We train an alternative model
that uses only a unidirectional (forward) encoder. As shown
in Table 2, the bidirectional encoder (“Full Model”) signifi-
cantly improves accuracy.

Encoder Ablation We further evaluate the benefit of en-
coding the input sentence and consider an alternative model
that directly feeds word vectors as randomly initialized em-
beddings into the decoder and relies on the alignment model
to choose the salient words. Table 2 presents the results
with and without the encoder and demonstrates that there
is a substantial gain in encoding the input sentence into its
context representation. We believe the difference is due to
the RNN’s ability to incorporate sentence-level information
into the word’s representation as it processes the sentence
sequentially (in both directions). This advantage helps re-
solve ambiguities, such as “turn right before . . . ” versus
“turn right after . . . ”.

Conclusion
We presented an end-to-end, sequence-to-sequence ap-
proach to mapping natural language navigational instruc-
tions to action plans given the local, observable world
state, using a bidirectional LSTM-RNN model with a multi-
level aligner. We evaluated our model on a benchmark
route instruction dataset and demonstrates that it achieves a
new state-of-the-art on single-sentence execution and yields
competitive results on the more challenging multi-sentence
domain, despite working with very small training datasets
and using no specialized linguistic knowledge or resources.
We further performed a number of ablation studies to eluci-
date the contributions of our primary model components.

Acknowledgments
We thank Yoav Artzi, David Chen, Oriol Vinyals, and
Kelvin Xu for their helpful comments. This work was sup-
ported in part by the Robotics Consortium of the U.S. Army
Research Laboratory under the Collaborative Technology
Alliance Program, Cooperative Agreement W911NF-10-2-
0016, and by an IBM Faculty Award.

6

Navigation + Manipulation Instructions

Understanding Natural Language Commands
for Robotic Navigation and Mobile Manipulation

Stefanie Tellex1 and Thomas Kollar1 and Steven Dickerson1 and
Matthew R. Walter and Ashis Gopal Banerjee and Seth Teller and Nicholas Roy

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139

In Proceedings of the National Conference on Artificial Intelligence (AAAI 2011).

Abstract

This paper describes a new model for understanding natural
language commands given to autonomous systems that per-
form navigation and mobile manipulation in semi-structured
environments. Previous approaches have used models with
fixed structure to infer the likelihood of a sequence of ac-
tions given the environment and the command. In contrast,
our framework, called Generalized Grounding Graphs (G3),
dynamically instantiates a probabilistic graphical model for a
particular natural language command according to the com-
mand’s hierarchical and compositional semantic structure.
Our system performs inference in the model to successfully
find and execute plans corresponding to natural language
commands such as “Put the tire pallet on the truck.” The
model is trained using a corpus of commands collected us-
ing crowdsourcing. We pair each command with robot ac-
tions and use the corpus to learn the parameters of the model.
We evaluate the robot’s performance by inferring plans from
natural language commands, executing each plan in a realistic
robot simulator, and asking users to evaluate the system’s per-
formance. We demonstrate that our system can successfully
follow many natural language commands from the corpus.

1 Introduction

To be useful teammates to human partners, robots must be
able to robustly follow spoken instructions. For example,
a human supervisor might tell an autonomous forklift, “Put
the tire pallet on the truck,” or the occupant of a wheelchair
equipped with a robotic arm might say, “Get me the book
from the coffee table.” Such commands are challenging be-
cause they involve events (“Put”), objects (“the tire pallet”),
and places (“on the truck”), each of which must be grounded
to aspects of the world and which may be composed in many
different ways. Figure 1 shows some of the wide variety of
human-generated commands that our system is able to fol-
low for the robotic forklift domain.
We frame the problem of following instructions as infer-

ring the most likely robot state sequence from a natural lan-
guage command. Previous approaches (Kollar et al., 2010;
Shimizu and Haas, 2009) assume that natural language com-
mands have a fixed and flat structure that can be exploited
when inferring actions for the robot. However, this kind of
fixed and flat sequential structure does not allow for variable

1The first three authors contributed equally to this paper.

(a) Robotic forklift

Commands from the corpus

- Go to the first crate on the left
and pick it up.

- Pick up the pallet of boxes in the
middle and place them on the
trailer to the left.

- Go forward and drop the pallets to
the right of the first set of
tires.

- Pick up the tire pallet off the
truck and set it down

(b) Sample commands

Figure 1: A target robotic platform for mobile manipulation
and navigation (Teller et al., 2010), and sample commands
from the domain, created by untrained human annotators.
Our system can successfully follow these commands.

arguments or nested clauses. At training time, when using
a flat structure, the system sees the entire phrase “the pallet
beside the truck” and has no way to separate the meanings of
relations like “beside” from objects such as “the truck.” Fur-
thermore, a flat structure ignores the argument structure of
verbs. For example, the command “put the box on the pallet
beside the truck,” has two arguments (“the box” and “on the
pallet beside the truck”), both of which are necessary to learn
an accurate meaning for the verb “put.” In order to infer the
meaning of unconstrained natural language commands, it is
critical for the model to exploit these compositional and hi-
erarchical linguistic structures at both learning and inference
time.

To address these issues, we introduce a new model called
Generalized Grounding Graphs (G3). A grounding graph is
a probabilistic graphical model that is instantiated dynami-
cally according to the compositional and hierarchical struc-
ture of a natural language command. Given a natural lan-
guage command, the structure of the grounding graphmodel
is induced using Spatial Description Clauses (SDCs), a se-
mantic structure introduced by Kollar et al. (2010). Each
SDC represents a linguistic constituent from the command
that can be mapped to an aspect of the world or grounding,
such as an object, place, path or event. In the G3 frame-

Understanding Natural Language Commands for Robotic Navigation and Mobile Manipulation. Tellex, Kollar, Dickerson, Walter, Banerjee, Teller, and Roy. AAAI 2011.

Navigation + Manipulation Instructions

Understanding Natural Language Commands for Robotic Navigation and Mobile Manipulation. Tellex, Kollar, Dickerson, Walter, Banerjee, Teller, and Roy. AAAI 2011.

EV ENT1(r = Put,
l = OBJ2(f = the pallet),
l2 = PLACE3(r = on,

l = OBJ4(f = the truck)))

(a) SDC tree

λr
1

“Put”

γ1

φ1

λf
2

“the pallet”

γ2

φ2

λr
3

“on”

γ3

φ3

λf
4

“the truck”

γ4

φ4

(b) Induced model

Figure 2: (a) SDC tree for “Put the pallet on the truck.” (b)
Induced graphical model and factorization.

• PLACE A place in the world (e.g. “on the truck,” or “next
to the tire pallet”).

• PATH A path or path fragment through the world (e.g.
“past the truck,” or “toward receiving”).

Each EVENT and PATH SDC contains a relation with
one or more core arguments. Since almost all relations (e.g.
verbs) take two or fewer core arguments, we use at most
two landmark fields l1 and l2 for the rest of the paper. We
have built an automatic SDC extractor that uses the Stan-
ford dependencies, which are extracted using the Stanford
Parser (de Marneffe, MacCartney, and Manning, 2006).

3.2 Generalized Grounding Graphs

We present an algorithm for constructing a grounding graph
according to the linguistic structure defined by a tree of
SDCs. The induced grounding graph for a given command
is a bipartite factor graph corresponding to a factorization of
the distribution from Equation 1 with factorsΨi and normal-
ization constant Z:

p(Φ|commands,Γ) =p(Φ|SDCs,Γ) (2)

=
1

Z

∏

i

Ψi(φi, SDCi,Γ) (3)

The graph has two types of nodes: random variables and
factors. First we define the following random variables:

• φi True if the grounding γi corresponds to ith SDC, and
false otherwise.

EV ENT1(r = Go

l = PATH2(r = to,
l = OBJ3(f = OBJ4(f = the pallet),

r = on,
l = OBJ5(f = the truck))))

(a) SDC tree

λr
1

“Go”

γ1

φ1

λr
2

“to

γ2

φ2

λf
4

“the pallet”

φ4

λr
3

“on”

γ4

φ3

λf
5

“the truck”

γ5

φ5

(b) Induced model

Figure 3: (a) SDC tree for “Go to the pallet on the truck.” (b)
A different induced factor graph from Figure 2. Structural
differences between the two models are highlighted in gray.

• λf
i The words of the figure field of the ith SDC.

• λr
i The words of the relation field of the i

th SDC.
• λl1

i , λ
l2
i The words of the first and second landmark fields

of the ith SDC; if non-empty, always a child SDC.

• γf
i , γ

l1
i , γl2

i ∈ Γ The groundings associated with the cor-

responding field(s) of the ith SDC: the state sequence of
the robot (or an object), or a location in the semantic map.

For a phrase such as “the pallet on the truck,” λr
i is the

word “on,” and γf
i and γl1

i correspond to objects in the
world, represented as a location, a bounding box, and a list
of labels. φi would be true if the induced features between

γf
i and γl1

i correspond to “on,” and false otherwise.
Each random variable connects to one or more factor

nodes, Ψi. Graphically, there is an edge between a variable
and a factor if the factor takes that variable as an argument.
The specific factors created depend on the structure of the
SDC tree. The factorsΨ fall into two types:

• Ψ(φi,λ
f
i , γi) for leaf SDCs.

• Ψ(φi,λ
r
i , γ

f
i , γ

l1
i) or Ψ(φi,λ

r
i , γ

f
i , γ

l1
i , γl2

i) for internal
SDCs.

Leaf SDCs contain only λf
i and a grounding γf

i . For ex-
ample, the phrase “the truck” is a leaf SDC that generates

the subgraph in Figure 3 containing variables γ5, φ5 and λ
f
5 .

The value of γ5 is an object in the world, and φ5 is true if the

Navigation + Manipulation Instructions

✖✕
✗✔

Grounding for γ4

❤Grounding for γ3

♠
Grounding for γ2

(a) Object groundings (b) Pick up the pallet

Grounding for γ1

(c) Put it on the truck

Figure 4: A sequence of the actions that the forklift takes in response to the command, “Put the tire pallet on the truck.” (a) The
search grounds objects and places in the world based on their initial positions. (b) The forklift executes the first action, picking
up the pallet. (c) The forklift puts the pallet on the trailer.

of low-scoring examples were due to words that did not ap-
pear many times in the corpus.
For PLACE SDCs, the system often correctly classifies

examples involving the relation “on,” such as “on the trailer.”
However, the model often misclassifies PLACE SDCs that
involve frame-of-reference. For example, “just to the right
of the furthest skid of tires” requires the model to have fea-
tures for “furthest” and the principal orientation of the “skid
of tires” to reason about which location should be grounded
to the language “to the right,” or “between the pallets on the
ground and the other trailer” requires reasoning about mul-
tiple objects and a PLACE SDC that has two arguments.
For EVENT SDCs, the model generally performs well on

“pick up,” “move,” and “take” commands. The model cor-
rectly predicts commands such as “Lift pallet box,” “Pick up
the pallets of tires,” and “Take the pallet of tires on the left
side of the trailer.” We incorrectly predict plans for com-
mands like, “move back to your original spot,” or “pull par-
allel to the skid next to it.” The word “parallel” appeared
in the corpus only twice, which was probably insufficient
to learn a good model. “Move” had few good negative ex-
amples, since we did not have in the training set, to use as
contrast, paths in which the forklift did not move.

4.3 End-to-end Evaluation

The fact that the model performswell at predicting the corre-
spondence variable from annotated SDCs and groundings is
promising but does not necessarily translate to good end-to-
end performance when inferring groundings associated with
a natural language command (as in Equation 1).
To evaluate end-to-end performance, we inferred plans

given only commands from the test set and a starting lo-
cation for the robot. We segmented commands containing
multiple top-level SDCs into separate clauses, and utilized
the system to infer a plan and a set of groundings for each
clause. Plans were then simulated on a realistic, high-fidelity
robot simulator fromwhich we created a video of the robot’s
actions. We uploaded these videos to AMT, where subjects
viewed the video paired with a command and reported their

agreement with the statement, “The forklift in the video is
executing the above spoken command” on a five-point Likert
scale. We report command-video pairs as correct if the sub-
jects agreed or strongly agreed with the statement, and in-
correct if they were neutral, disagreed or strongly disagreed.
We collected five annotator judgments for each command-
video pair.
To validate our evaluation strategy, we conducted the eval-

uation using known correct and incorrect command-video
pairs. In the first condition, subjects saw a command paired
with the original video that a different subject watched when
creating the command. In the second condition, the subject
saw the command paired with random video that was not
used to generate the original command. As expected, there
was a large difference in performance in the two conditions,
shown in Table 2. Despite the diverse and challenging lan-
guage in our corpus, new annotators agree that commands
in the corpus are consistent with the original video. These
results show that language in the corpus is understandable
by a different annotator.

Precision

Command with original video 0.91 (±0.01)
Command with random video 0.11 (±0.02)

Table 2: The fraction of end-to-end commands considered
correct by our annotators for known correct and incorrect
videos. We show the 95% confidence intervals in parenthe-
ses.

We then evaluated our system by considering three differ-
ent configurations. Serving as a baseline, the first consisted
of ground truth SDCs and a random probability distribution,
resulting in a constrained search over a random cost func-
tion. The second configuration involved ground truth SDCs
and our learned distribution, and the third consisted of auto-
matically extracted SDCs with our learned distribution.
Due to the overhead of the end-to-end evaluation, we con-

Understanding Natural Language Commands for Robotic Navigation and Mobile Manipulation. Tellex, Kollar, Dickerson, Walter, Banerjee, Teller, and Roy. AAAI 2011.

Navigation + Manipulation Instructions

A Natural Language Planner Interface for Mobile Manipulators. Howard, Tellex, and Roy. ICRA 2014.

A Natural Language Planner Interface for Mobile Manipulators

Thomas M. Howard1, Stefanie Tellex2 and Nicholas Roy1

In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2014).

Abstract— Natural language interfaces for robot control

aspire to find the best sequence of actions that reflect the

behavior intended by the instruction. This is difficult because

of the diversity of language, variety of environments, and

heterogeneity of tasks. Previous work has demonstrated that

probabilistic graphical models constructed from the parse

structure of natural language can be used to identify motions

that most closely resemble verb phrases. Such approaches

however quickly succumb to computational bottlenecks imposed

by construction and search the space of possible actions.

Planning constraints, which define goal regions and separate

the admissible and inadmissible states in an environment model,

provide an interesting alternative to represent the meaning of

verb phrases. In this paper we present a new model called

the Distributed Correspondence Graph (DCG) to infer the

most likely set of planning constraints from natural language

instructions. A trajectory planner then uses these planning

constraints to find a sequence of actions that resemble the

instruction. Separating the problem of identifying the action

encoded by the language into individual steps of planning

constraint inference and motion planning enables us to avoid

computational costs associated with generation and evaluation

of many trajectories. We present experimental results from

comparative experiments that demonstrate improvements in

efficiency in natural language understanding without loss of

accuracy.

I. INTRODUCTION
Advances in human-robot interaction have improved our

ability to communicate with robots. Though progress has
been made, contemporary approaches are often tailored for
specific platforms and domains. Robots still require detailed,
low-level guidance in the form of commands in a restrictive
language to perform non-trivial tasks. Although more recent
work based on probabilistic graphical models has pushed
towards connecting natural language to robot actions [1],
grounding language in this manner is quite difficult in
practice as even coarse approximations of the state-action
space can be computationally prohibitive for inferring how
a robot should respond to an instruction.

Rather than inferring a sequence of actions directly from
the instruction, a more natural approach may be to in-
fer a representation of the task that permits the robot to
independently compute the desirable sequence of actions.
It is then the responsibility of the individual platforms to
determine how best to articulate its degrees of freedom to
satisfy the objectives of the inferred task in the current
environment model. Planning constraints are a logical choice
of representation, because they partition the state-space into

1T.M. Howard and N. Roy are with the Computer Science and Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge,
MA 02139, USA

2S. Tellex is with the Computer Science Department at Brown University,
Providence, RI, 02912, USA

x(t)

o1

o2

o3

o4

Fig. 1. An illustration of the robot trajectory x(t) generated from planning
constraints that were inferred from the natural language instruction “move
near the red box and the blue crate” using the Distributed Correspondence
Graph (DCG) model. The dark gray, light gray, and white regions represent
the goal states, admissible states, and inadmissible states respectively. The
variables o1 . . .o4 identify the four objects in the environment model.

admissible, inadmissible, and goal regions. If we can infer
how the shape of the admissible and goal regions varies over
the course of the tasks, we can apply trajectory planning
algorithms to solve for the sequence of actions that navigate
through this space. An example of our approach is illustrated
in Figure 1 where a trajectory and the admissible and goals
regions are shown for the command “move near the red
box and the blue crate”. We could try to identify the best
state-action sequence directly from the instructions, but the
number of state-action sequences to be considered quickly
becomes intractable with the complexity of the robot and
the utterance. If instead we identify the admissible region of
states and the goal region, we can use one of a variety of
motion planning algorithms to generate the desired motion.

We present a model, called the Distributed Correspon-
dence Graph (DCG), that can be used to efficiently infer
the most likely set of planning constraints given the natural
language instruction and environment. The main advantages
of this model in the context of planning constraint inference
are improvements in efficiency and generality. The DCG
model assumes conditional independence of the primitives
that compose a phrase grounding to reduce the computational
complexity of probabilistic inference. Since the space of
trajectories is no longer required at inference time, we do not
need to ground linguistic constituents in the infinitely large,
continuous space of robot actions. Generality is improved
because the shape of the admissible regions is a function of
the constraints, the robot, and the environment model.

Navigation + Manipulation Instructions

A Natural Language Planner Interface for Mobile Manipulators. Howard, Tellex, and Roy. ICRA 2014.

II. NATURAL LANGUAGE UNDERSTANDING OF
ROBOT INSTRUCTIONS

The overall goal of natural language interfaces for robot
control is to find the trajectory (x(t) =

⇥
x(ti) . . . x

�
t f
�⇤

) that
best performs the activities described by an instruction (L)
in the context of the world model (°):

argmax
x(t)2¬K

p(x(t) |L,°) (1)

In practice, Equation 1 is difficult to compute because
of the diversity of language, environments, and trajectories.
The Generalized Grounding Graph (G3) model [1] is a
contemporary technique for generating robot actions from
natural language instructions. This model is a factor graph
that is trained from a corpus of labeled examples to ground
language with objects, locations, and paths. Grounding is the
process of assigning physical meanings to natural language.
For example, it is common to associate nouns with objects,
prepositions with locations, and verbs with actions. The
structure of the factor graph follows the parse tree of the
instruction by connecting phrases (L = [l1 . . .ln]) to ground-
ings (G = [g1 . . .gn]) and correspondence variables (F =
[f1 . . .fn]). In this model the random variables that represent
phrases and correspondence variables are known and the
groundings are unknown. To find the values of the grounding
variables that most closely resemble the command, we search
for the assignments of G that maximize Equation 2.

argmax
g1...gn

p(F |g1 . . .gn,L,°) (2)

The G3 model assumes that the groundings for linguistic
constituents are conditionally independent. This permits the
probability of the groundings and the language to be factored
across individual phrases. This is shown in Equation 3, where
Gci is the array of the groundings from phrases that are
children of the current phrase (li).

argmax
g1...gn

’
i

p(fi |gi,li,Gci ,°) (3)

An example parse tree and grounding graph for the com-
mand “move near the red box and the blue crate” is shown
in Figures 2 and 3. In Figure 2 the instruction is broken
down into phrases, parts of speech, and words. The sentence
has three noun phrases (“and”, “the red box”, and “the blue
crate”), one verb phrase (“move”), and one prepositional
phrase (“near”). While it is straightforward to associates
individual object with “the red box” and “the blue crate”,
the grounding for “and” requires an association with both
of these objects. This means that the space of groundings
must be the power set of objects in the world model to
correctly ground noun phrases, leading to an exponential
number of locations and paths that must be evaluated by
both prepositional and verb phrases.

We observe two shortcomings with the solution proposed
by the G3 model. First, it is difficult to efficiently approx-
imate the space of possible motions for non-trivial robot
systems. Second, for environments where we must infer

VP

VB

PP

IN

NP

DT JJ NN

NP

CC

NP

DT JJ NN

move near the red box and the blue crate

Fig. 2. A parse tree for the sentence “move near the red box and the blue
crate”. Part-of-speech tags in the parse tree are from the Penn Treebank [2].

true true true true true

move near and the red box the blue crate

l1 l2 l3 l4 l5

f1 f2 f3 f4 f5

g1 g2 g3 g4 g5

f1 f2 f3 f4 f5

Fig. 3. The factor graph resulting from the parse tree in Figure 2, used
by the G3 algorithm to infer the groundings of the instructions. Each
linguistic is grounded to a object, location, or action through a factor that
incorporates the grounding of its children. Black boxes, white spheres, and
gray sphere are factors, known random variables, and unknown random
variables respectively.

sets of objects, the number of groundings that we must
evaluate grows exponentially. This means that the algorithm
can quickly become intractable in environments with even a
relatively small number of objects. These observations pro-
voke the question of whether paths and locations are the best
candidates for grounding verbs and prepositions. In many
scenarios there are numerous samples from the continuum
of paths and locations that may equally correspond to phrase
and child groundings. A far more efficient method would
search across sets of equally probable paths or locations
instead of individual samples. If we instead search for the
boundaries and preferences of robot motion we could use
natural language instructions to formulate robot planning
problems, rather than try to infer solutions directly from the
continuum of robot trajectories.

III. PLANNING CONSTRAINT INFERENCE
We begin the description of a natural language planner

interface with a formal description of the problem that
we will solve. We formulate the robot planning problem
generally as constrained optimization:

minimize : �

�
x

�
t f
��

+
Z t f

ti
L(x(t) ,u(t) , t) dt (4)

subjectto : ˙x(t) = f

PMM

(x(t) ,u(t) , t) (5)
x(ti) = x

I

(6)
c(x(t) ,u(t) , t) = 0 (7)

Navigation + Manipulation Instructions

A Natural Language Planner Interface for Mobile Manipulators. Howard, Tellex, and Roy. ICRA 2014.

correct expression of only six planning constraints takes ap-
proximately 88% less time than computing the most probable
trajectory from a space of sixty-four trajectories, not taking
into account the time that it takes to generate the state-action
space. As more objects and relationships between objects
are considered, the computational burden of evaluating the
equivalent state-action space quickly becomes intractable.

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

Constraints

R
u

n
tim

e
 (

m
ill

is
e

co
n

d
s)

Comparison of Inference Runtimes for the State−Action and Planning Constraint Spaces

planning constraint space
state−action space

Fig. 6. Planning constraint inference and state-action inference runtime as a
function of the number of constraints. In this comparison each n constraints
required 2n trajectories to form an equivalent state-action space.

The second factor that influences runtime is the time that
it takes to represent the space of groundings. Effectively
sampling the space of actions from the continuum of robot
motion requires a forward model of the system dynamics.
If deliberative or randomized sampling is used to generate
the space of actions, this space could grow rapidly without
control over their expressiveness or function. If instead
constraints are used to form a variety of well-separated
solutions, we incur the cost of numerous trajectory planning
queries before inference time. The trajectory planner used
to construct the examples in the corpora in Section VI-B
required an average of 2.1 seconds to generate each motion.
We also observed in the experiments described in Section VI-
B that the Hybrid G3-DCG model required only an average
of 34.7 milliseconds to compute the most likely constraint
set in the context of the language and the environment.
Since the amount of time required to infer the most likely
constraint set is relatively small and the minimum number
of trajectories required to form a state-action space that is
equivalent to a constraint set grows exponentially with the
number of constraints, in practice it is far more efficient to
infer the formulation of a planning problem and solve it
once to find the trajectory that most likely corresponds to
the natural language expression.

B. Accuracy

In the second experiment we assess the ability of plan-
ning constraint inference to determine the correct planning
constraints from natural language instructions. We developed

two corpora for this purpose. The first corpus consisted of
8 constraint sets and 16 environment models. Each environ-
ment consisted of four objects and one ground plane modeled
as single rigid bodies and one robot that was modeled as a
tree of 45 rigid bodies linked through prismatic and revolute
joints for a total of 50 distinct objects. We generated a
trajectory for each constraint set and environment for a
total of 128 pairs of constraint sets and trajectories. We
examined images of each trajectory and assigned 3 natural
language instructions that describe the robot behavior. This
initial dataset hand designed with purposefully varying verbs,
adjectives, and nouns to create a diverse set of commands.
The instructions in the first corpus contained 68 unique parts
of speech, including 13 adjectives, 13 nouns, and 29 verbs.
The first corpus was randomly divided into a training set of
96 examples and a test set of 288 examples. Three examples
illustrating the environment model, robot trajectory, and
assigned instructions are shown in Figure 7.

(a) “go to the blue
box”

(b) “move towards the
green object”

(c) “travel to the or-
ange object”

Fig. 7. Images of labeled trajectories generated by constraint and
environment sampling that form the training and test sets for constraint
inference evaluation.

Each noun phrase in the G3 and Hybrid G3-DCG models
uses a single factor to search the 50 objects for the one that is
best described by the linguistic constituents. The state-action
space for the G3 model consisted of trajectories that satisfied
each of the eight constraints sets in the current environment.
The constraint set for the Hybrid G3-DCG model consisted
of 570 constraints that could be either active, inverted, or
ignored. Performance of the two approaches on the training
and test sets are shown in Table II. Each approach was
given the command and environment model and asked to
produce either the most likely trajectory or the most probable
constraint set. A trial was deemed successful if it produced
the inferred trajectory or constraint set matching the example
associated with the command and environment model.

TABLE II
SUMMARY OF RESULTS FROM THE EVALUATION OF CORPUS 1

accuracy (%)

Hybrid G3-DCG (constraint) G3 (trajectory)

training 100.00 94.79
test 88.54 75.69

The second corpus consisted of examples labeled by

Configuration/Assembling Instructions

Error Type Count Example

Multi-Relation Actions 20 Place block 20 parallel with the 8 block and slightly to the right of the 6 block.
Place block 15 on the same vertical column as blocks 16 and 17, and two rows

above blocks 11 and 3.

Geometric Understanding 10 Continue the diagonal row of 20, 19 and 15 downward with 13.
Put block 12 in the column between the columns with blocks 4 and 13, and on

the same row as the lowest block on the board.

Grammatical Ambiguity 10 19 moved from behind the 8 to under the 18th block.
Burger King tile should be directly above the Coca Cola tile. Move Coca Cola.

Grounding Names 5 Put the block that looks like a taurus symbol just above the bird.

Understanding Distance 5 move the texaco block 5 block lengths above the BMW block

Table 5: We performed a subjective error analysis of the results of our Fixed Semantics model using the RNN encoder. Example
sentences and the frequency of each type of error are reported above from the worst 50 errors on the development data.

Scene Utterance

Move the block that is cur-
rently located closest to the
top left corner to the bottom
left of the table, slightly
higher than the block in the
bottom right corner.

Error: 7.29 Block lengths

Move the block closest to
the top left corner so it is
above half a block length to
the right of the blocks near
the lower left corner of the
table.

Error: 0.94 Block lengths

Table 6: Above are two commands and the worlds they apply
to. Below we see the prediction error of our best model.

erence, Direction) paradigm, but automatically ex-
tracting that semantics is now more difficult and the
purview for future work with scene understanding.

To remove the possibility that this performance
difference is due to sparsity, we down-sampled the
training data from the decorated blocks to match that
of the blank ones. We found the development errors
grew (Average 0.27 and 1.35 on source and target,
respectively) but were still substantially lower than
those observed with blank block data.

Because extracting the semantics for training is so
difficult, a particularly nice result is that while the
End-to-End model was slightly weaker than the oth-
ers on the MNIST based data, it actually performs
best in this domain, where we cannot provide an ex-

plicit training signal for the representation.
The nature of the language in the blank blocks dif-

fers quite dramatically due to this grounding diffi-
culty. Table 6 shows the two sentences we perform
best (and worst) on in the development data and that
make use of a reference and direction.

9 Conclusion

We showed how human-robot communication can
be attacked within an empirical framework that
supports alternative models to be evaluated and
compared using objective metrics. We intro-
duced a set of simple algorithms for human-robot,
in-context command/instruction understanding that
should serve as strong baselines for future research
in this field. The datasets present unique and impor-
tant challenges for NLU, in which the interpretation
of the language has varying amounts of dependence
on the world in which it is uttered. The datasets we
created in support of this work are made publicly
available and should support the development of in-
creasingly sophisticated models and algorithms for
solving the problem defined in this paper, as well as
additional problems that concern human-robot com-
munication.

Acknowledgments

This work was supported by Contract W911NF-15-
1-0543 with the US Defense Advanced Research
Projects Agency (DARPA) and the Army Research
Office (ARO).

Natural Language Communication with Robots. Bisk, Yuret, and Marcu. NAACL 2016.

Configuration/Assembling Instructions

Natural Language Communication with Robots. Bisk, Yuret, and Marcu. NAACL 2016.

Encoder

W1

H
id

de
n

W1

Wn

...

...

+ (x,y,z)

W
or

ld
 (3

x2
0)

H
id

de
n

Se
m

an
tic

s
2

Se
m

an
tic

s
3

*
Se

m
an

tic
s

1

H
id

de
n

Representation Grounding Prediction

Figure 2: Our models all follow the above architecture. 1-Hot
word vectors (orange) are fed as input to a Feed-Forward or Re-
current Neural Network for encoding. A semantic representa-
tion is extracted (green), which in conjunction with knowledge
of the world (blue) is grounded to predict an action.

can be trained independently (Sections 5.2 and 5.3)
or jointly as a single End-to-End model (Section
5.4). This division of labor also allows for differing
amounts of human intervention both during training
and in the interpretation of actions and bears some
resemblance to (Andreas et al., 2016). Specifically,
we will first present results where the model predicts
a fixed semantic interpretation of actions which are
easily human interpretable (Encoder + Representa-
tion). In this setting, the experimenter/human then
must convert the semantics to actions in the world.
Second, we remove the human interpreter and train
a model for Grounding and Predicting from our se-
mantic representation. Finally, we maintain our ar-
chitecture but remove the human entirely, forcing
the model to both converge to and interpret its own
internal semantic representation.

The model architecture, regardless of how it is
trained, at least implicitly, encodes our beliefs about
the best way to solve the learning problem: per-
forming single actions requires identifying anchors
in the world that can be used as spacial referents
from which a target location can be offset.

5.2 Discrete Predictions of a Fixed Semantics
Our first model assumes a setup with very simple se-
mantics. Despite all blocks existing in a real-valued
world, we will assume that a final location is param-
eterized by knowledge of a reference block and the

direction from the reference to the target position.
Move the Adidas block to the right of the BMW.

For example, in the simple command above, we can
distill three pieces of relevant information:

Source: Adidas
Reference: BMW
Direction: right (east)

By assuming a grid world, BMW can be con-
verted to its location in the world (x, y, z)BMW,
which we shift east by changing the y component
to yield: (x, y + �, z). In practice we define a set of
nine relative positions:

NW
(x-ẟ, y+ẟ, z)

N
(x, y+ẟ, z)

NE
(x+ẟ, y+ẟ, z)

NW
(x-ẟ, y, z)

TOP
(x, y, z+ẟ)

E
(x+ẟ, y, z)

SW
(x-ẟ, y-ẟ, z)

S
(x, y-ẟ, z)

SE
(x+ẟ, y-ẟ, z)

First our model produces an encoding of the sen-
tence. We present two approaches:

Feed-Forward Neural Network (FFN): This
model produces a sentence encoding by concatenat-
ing one-hot word vectors as input to a hidden layer.
We pad sentences so all inputs are the same length.

Recurrent Neural Network (RNN): In contrast,
the RNN encoder consumes the full sentence, each
word passing through a hidden layer one at a time,
before returning a final representation.

Additionally, in both encoding approaches, words
which only occur a single time during training are
replaced with an UNK token.

We use a single hidden layer architecture with a
softmax for prediction and and train with cross en-
tropy loss. We train a separate model for each pre-
diction (The Encoder and Representation stages of
Figure 2). Once three versions of the model have
been used to predict the Source, Reference and Di-
rection, this triple is used to compute both the source
(x, y, z)S and target (x, y, z)T locations. The for-
mer is computed via a simple look-up table, while
the latter amends the reference look-up with the ap-
propriate offset from the aforementioned grid.

When the model predicts a reference block which
is not on the board (not all configurations use all 20
blocks) we set the reference location to the center of
the board and then apply the relative position trans-
formation to this hallucinated block location.

Configuration/Assembling Instructions

Natural Language Communication with Robots. Bisk, Yuret, and Marcu. NAACL 2016.

MNIST Patterns with labeled blocks Random Patterns with blank blocks
Source Target Source Target

Med Mean Med Mean S R D Med Mean Med Mean S R D

Human Performance 0.00 0.00 0.21 0.53 100 0.00 0.30 0.37 1.39 93

Oracle – – 0.00 0.45 100 100 100 – – 1.00 1.09 100 100 100

FF
N Discrete Predictions 0.00 0.49 1.09 2.17 93 69 63 5.28 5.09 5.51 5.46 9 15 32

Continuous Predictions 0.49 1.00 1.59 2.42 4.25 4.04 3.86 3.93
End-to-End 0.02 0.38 1.14 1.81 3.45 3.52 3.60 3.94

R
N

N Discrete Predictions 0.00 0.14 0.00 0.98 98 92 78 5.29 5.00 5.51 5.57 10 7 46

Continuous Predictions 0.47 0.64 1.23 1.60 4.16 4.05 3.71 3.87
End-to-End 0.03 0.19 0.53 1.05 3.29 3.47 3.60 3.70

Center Baseline – – 3.46 3.43 100 – – 4.09 4.06 100

Random Baseline 6.37 6.49 6.12 6.21 5 5 11 4.90 4.97 5.51 5.44 10 11 12

Table 4: Model error when trained on only the subset of the data with decorated blocks or blank blocks. Where appropriate S,
R, and D are the model’s predictive accuracy at identifying the Source, Reference and Direction. All models are evaluated on the
Median and Mean prediction error the source block and its final target location. Distances are presented in block-lengths.

not told about the high-level goal of drawing a num-
ber. Despite this, Table 4 shows human performance
is very similar to Oracle performance. Although hu-
mans did not place blocks in line “perfectly”, they
were comparable to or outperformed the oracle.

Baselines. Finally, Table 4 also shows the results
obtained by two baseline models. One (Center) has
perfect knowledge of the source block to move, but
always places it in the center of the table. The sec-
ond baseline (Random), chooses random values for
the source, reference, and direction. As expected,
the performance of these baselines is abysmal.

8 Results

The results in Table 4 show that there is a massive
difference in performance between block configura-
tions that use blocks marked with identifiers (logos
and digits) and those without. When the blocks are
marked with clearly identifiable logos, all models
outperform our baselines by a wide margin. How-
ever, when blocks are blank the situation is flipped.

The results in Table 4 also highlight a notice-
able gap in performance between the simplest Dis-
crete model and the two location predicting mod-
els. The comparable performance of the Con-
tinuous and End-to-End models on labeled blocks
seems to imply that the End-to-End model is captur-
ing/discovering similar anchoring information with-
out being explicitly told to do so. On the blank block

data, the End-to-End model performs best by learn-
ing its own more appropriate representation.

Parameters. Where appropriate, we used 256 unit
hidden-layers, 0.5 dropout, and the Adam optimizer
with a learning rate of 0.001. With the exception of
the FFN Discrete Predictions model, SGD parameter
grid-search did not yield an improvement.

8.1 Subjective Error Analysis

In Table 5, we collected 50 of our models worst er-
rors on the decorated blocks data and categorized
them into five classes of error. Eliminating most of
these errors require more knowledge or a richer rep-
resentation than currently afforded by our simple se-
mantic triples. This is often due to the use of multi-
ple reference blocks, but grammatical ambiguity and
a knowledge of some basic geometric primitives also
account for many of the mistakes.

8.2 Future Work on Blank Blocks

One of the most jarring results we present is the
the clear performance gap between easily grounded
blocks (MNIST data) and the Blank blocks (Ran-
dom) which require a much richer understanding of
the world. We do not believe this is due to additional
complexity in the types of relations present in the
data, but rather the difficulty in grounding the refer-
ences. When analyzing the data we see that much
of the data still follow a very simple (Source, Ref-

Configuration/Assembling Instructions

Source-Target Inference Models for Spatial Instruction Understanding. Tan and Bansal. AAAI 2018.

Source-Target Inference Models for Spatial Instruction Understanding

Hao Tan and Mohit Bansal
Department of Computer Science

University of North Carolina at Chapel Hill
{haotan, mbansal}@cs.unc.edu

Abstract

Models that can execute natural language instructions for sit-
uated robotic tasks such as assembly and navigation have sev-
eral useful applications in homes, offices, and remote sce-
narios. We study the semantics of spatially-referred config-
uration and arrangement instructions, based on the challeng-
ing Bisk-2016 blank-labeled block dataset. This task involves
finding a source block and moving it to the target posi-
tion (mentioned via a reference block and offset), where the
blocks have no names or colors and are just referred to via
spatial location features. We present novel models for the sub-
tasks of source block classification and target position regres-
sion, based on joint-loss language and spatial-world repre-
sentation learning, as well as CNN-based and dual attention
models to compute the alignment between the world blocks
and the instruction phrases. For target position prediction, we
compare two inference approaches: annealed sampling via
policy gradient versus expectation inference via supervised
regression. Our models achieve the new state-of-the-art on
this task, with an improvement of 47% on source block accu-
racy and 22% on target position distance.

1 Introduction
The task of robotic instruction execution involves devel-
oping models that can understand the semantics of free-
form natural language instructions and execute them as a
sequence of actions. Such models have several useful appli-
cations in the domain of navigation, manipulation, and as-
sembly, and in the scenarios of homes, offices, warehouses,
esp. in remote settings. In this paper, we address the task
of executing assembly-style configuration (arrangement) in-
structions, where the goal is to predict the spatially-referred
source block and then move it to the target position, which
in turn is referred to in terms of a reference block and an
offset to it (again only using spatial features; see Fig. 1).
Our task is an idealization of the general assembly prob-
lem, while still involving similar challenges and features,
as well as requiring solutions that can be extended to other
robotic instruction problems such as those for navigation and
manipulation (e.g., instruction-world alignment with spatial
references, sampling with rewards, and joint representation
learning across subtasks).

Copyright c� 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: An example of the configuration instruction under-
standing task (based on blank-labeled blocks). Our model is
able to correctly predict the source block and the target po-
sition in this case.

Models that can understand the semantics of block se-
lection and moving instructions (and the involved referring
expressions) have been a topic of study since the 1970s,
e.g., the SHRDLU system (Winograd 1972). We focus on
the recent block-arrangement instructions dataset (its ‘much
more challenging’ blank-labeled version) by Bisk, Yuret,
and Marcu (2016), which is important and challenging be-
cause of several reasons. First, their instructions are free-
form and substantially diverse in language vocabulary and
structure, making it hard for a formulaic or pattern-based
grammar model to capture the correct semantics. Secondly,
the reference to the source block and the target position
is solely based on complex spatial-relative information be-
cause all the blocks are identical except for their positions
(i.e., they have no names, labels, color, etc.). Hence, they in-
volve varying hops of inference and use diverse blocks as
their reference (contextual) anchors. Third, the supervision
for the target task is only provided directly for the final tar-
get position, and not for the intermediate reference block and
offset value. Lastly, the dataset size is limited compared to
its diversity and complexity.

We propose novel models for this configuration-based in-
struction understanding dataset and task using joint-subtask-
loss representation learning, dual and CNN based attention,
and expectation and sampling based inference approaches.
First, the source, reference, and offset subtask models all

ar
X

iv
:1

70
7.

03
80

4v
2

 [c
s.C

L]
 2

1
N

ov
 2

01
7

Configuration/Assembling Instructions

Source-Target Inference Models for Spatial Instruction Understanding. Tan and Bansal. AAAI 2018.

Figure 2: Our overall model for the assembly instruction understanding task, showing instruction and world representation
learning, language-to-block alignment modules, and source and target (expectation vs. sampling) loss functions.

beddings. Finally, the block which best aligns with the in-
struction is chosen as the source block.

We first use a standard LSTM-RNN to encode the
instruction I into its embedding representation H =

{h1, h2, . . . , hm

} by the recurrent function:

h
t

= r (h
t�1,WWw

t

) (1)

where WW is the word embedding matrix layer. The blocks
are encoded into their embeddings c

i

via a fully-connected
layer with a sigmoid activation unit:

c

i

= �(WBfbi + a) (2)

where f
bi is the input feature representation of the ith block

consisting of its coordinates and its relative distance and
stack based features discussed below; WB and a are the
block weights and bias parameters.

Block Features: If the block is represented by its abso-
lute coordinate features alone, it will not be aware of its sur-
rounding blocks and relative position on the board, which
is important information for understanding spatial instruc-
tions, esp. given that the blocks are ‘blank’ (i.e, not labeled
with any names or colors), and given the limited size of the
dataset. Hence, in addition to the original 3D coordinates,
we employ two other simple kinds of relative-position fea-
tures: (1) The Euclidean distance to each corner and each
edge of the board (eight features), (2) A single binary fea-
ture indicating whether the block is part of a stack.

Given these two encoded vectors for the instruction and
each block, we next use an attention module to predict the
probability of each block being the answer source block
(where the source block is represented by the discrete
random variable S). The output of the attention module
A(c

i

, H) measures the alignment or matching between the
ith block’s embedding c

i

and the instruction’s embedding
H . Thus, the probability of a block being the source block
(given the instruction) is the softmax of the attention value
between that block and the instruction sentence. The source
loss function is then the cross-entropy between the condi-
tional distribution P (S|I) and the ground truth distribution
G(B) (which is one-hot for the single ground truth block in

this task).

P (S = b
i

|I) / exp(A(c

i

, H)) (3)

LSRC = �
X

i

G(b
i

) logP (S = b
i

|I) (4)

This loss function is then summed over for all data instances
(instructions) and the total loss is minimized to learn all the
source-related weights described above.

Next, we describe the different attention modules that we
experimented with.

Bilinear Attention Modules We use three methods to
choose what information from the instruction representa-
tion is used to compute the matching with each block rep-
resentation, each of them employing the bilinear attention
form (Luong, Pham, and Manning 2015).

(1) Last Hidden State: The first basic approach simply
uses the last hidden vector of the LSTM-RNN h

m

and com-
putes the alignment score (with each block vector) using the
bilinear form:

A(c

i

, H) = c

>
i

WA h
m

(5)

where WA is the attention parameter matrix.
(2) CNN Filters: Instead of only using the last LSTM-

RNN hidden vector, we represent the instruction embed-
ding as the concatenation of CNN filters with different ker-
nel sizes, following the idea of sentiment analysis in (Kim
2014). We run these different convolutions over the hidden
vectors of the LSTM-RNN to compute the outputs of CNN.
A max pooling layer is followed to reduce the output se-
quence of vectors to a single vector hCNN, which is then used
in the bilinear attention form above. These CNN filters help
capture the key local patterns and hence allow the LSTM to
focus on the structure of the sentence.

(3) Dual Attention: In our third approach, we develop
a novel two-step attention process: word-to-block attention
and block-to-instruction attention. First, for each block b

i

,
the word-to-block attention part computes the alignment
score between each instruction word w

t

(represented by its
LSTM-RNN hidden state h

t

) and the block (again using the
bilinear form):

score(c
i

, h
t

) = c

>
i

WWORDht

(6)

Configuration/Assembling Instructions

Source-Target Inference Models for Spatial Instruction Understanding. Tan and Bansal. AAAI 2018.

Model SOURCE TARGET
Accuracy Median Mean Median Mean

End-to-End FFN (Bisk, Yuret, and Marcu 2016) 9.0% 3.45 3.52 3.60 3.94
End-to-End RNN (Bisk, Yuret, and Marcu 2016) 10.0% 3.29 3.47 3.60 3.70
Our Expectation Model 56.1% 0.00 2.21 2.78 3.07
Our Sampling Model 56.3% 0.00 2.18 3.12 3.18
Our Expectation Model w/ Ensemble 56.6% 0.00 2.12 2.65 2.91
Our Sampling Model w/ Ensemble 56.8% 0.00 2.11 2.71 2.90

Table 2: Final test results of our final sampling and expectation models (w/o and w/ ensemble), compared to the previous
state-of-the-art on this dataset.

Positive Examples Negative Examples

Figure 3: Analysis: positive and negative output examples showing interesting instruction scenarios. The first and second image
in each pair depict the ground truth movement of the source block to the target position. We report predicted source accuracy
and target distance in bottom-right of each second image. We also use a red cross to represent our predicted target position
(ground truth target position can be inferred directly from the image difference between the first and second image). Also, for
the cases where our model predicted an incorrect source, we represent that wrongly-predicted source block by a red circle.

tasks, via joint loss function optimization.
Finally, the last row of Table 1 shows the added effects of

an 8-sized standard ensemble approach.

5.2 Final Test Results
Next, in Table 2, we present the test-set results for our two
inference approaches (expectation and sampling), using the
final model choices based on the ablation studies (i.e., all
features, CNN attention, joint training), without and with
ensemble. Both inference models achieve strong improve-
ments over the previous best work on this dataset from Bisk,
Yuret, and Marcu (2016), who employ three neural models
for this task. We compare to their final best model, the RNN-
based ‘end-to-end’ neural model (as well as their second-
best feed-forward network FFN model). Our model achieves
47% improvement in source task accuracy, and 22% (0.8
block length) reduction in target distance mean. Moreover,
the results are quite stable for both inference models: the
standard deviation based on 8 runs is around 1% on source
accuracy and 0.05 block length on target mean.

Complementarity of Attention Models: We found that
our two attention models (CNN and dual) are complemen-
tary in nature, achieving a source accuracy of 57.70% when
combining the ensemble models of CNN and dual attention
(for the expectation case), i.e., an improvement of 1.1% over
the CNN model’s 56.6% in Table 2. Further experiments in

this direction (as well as the complementarity of the sam-
pling and expectation inference approaches) is future work.

5.3 Analysis

Figure 3 shows several positive and negative examples of the
output of our full model. We can correctly understand the
semantics in complex source and target descriptions such as
‘bottom right, slightly right of center’ and ‘place it on top of
the stack of two blocks furthest to the back’. In the negative
examples, we show complex cases that our model cannot
handle correctly, mostly due to special scenarios and phrases
that it hasn’t seen before in the diverse but small dataset. Ex-
amples of this include instructions mentioning shape-based
block patterns such as ‘backwards L’, ‘Tetris structure’, and
complex count-based patterns such as ‘3-piece-long line’.

6 Conclusion
We presented sampling and expectation based models for
source and target prediction in configurational robotic in-
structions (on a challenging blank-labeled blocks dataset).
Our models also use spatial-relative features, CNN and
dual attention models, and joint-subtask-loss training of
world and language representations, achieving substantial
improvements over previous work on all metrics.

Configuration/Assembling Instructions

Source-Target Inference Models for Spatial Instruction Understanding. Tan and Bansal. AAAI 2018.

Model SOURCE TARGET
Accuracy Median Mean Median Mean

End-to-End FFN (Bisk, Yuret, and Marcu 2016) 9.0% 3.45 3.52 3.60 3.94
End-to-End RNN (Bisk, Yuret, and Marcu 2016) 10.0% 3.29 3.47 3.60 3.70
Our Expectation Model 56.1% 0.00 2.21 2.78 3.07
Our Sampling Model 56.3% 0.00 2.18 3.12 3.18
Our Expectation Model w/ Ensemble 56.6% 0.00 2.12 2.65 2.91
Our Sampling Model w/ Ensemble 56.8% 0.00 2.11 2.71 2.90

Table 2: Final test results of our final sampling and expectation models (w/o and w/ ensemble), compared to the previous
state-of-the-art on this dataset.

Positive Examples Negative Examples

Figure 3: Analysis: positive and negative output examples showing interesting instruction scenarios. The first and second image
in each pair depict the ground truth movement of the source block to the target position. We report predicted source accuracy
and target distance in bottom-right of each second image. We also use a red cross to represent our predicted target position
(ground truth target position can be inferred directly from the image difference between the first and second image). Also, for
the cases where our model predicted an incorrect source, we represent that wrongly-predicted source block by a red circle.

tasks, via joint loss function optimization.
Finally, the last row of Table 1 shows the added effects of

an 8-sized standard ensemble approach.

5.2 Final Test Results
Next, in Table 2, we present the test-set results for our two
inference approaches (expectation and sampling), using the
final model choices based on the ablation studies (i.e., all
features, CNN attention, joint training), without and with
ensemble. Both inference models achieve strong improve-
ments over the previous best work on this dataset from Bisk,
Yuret, and Marcu (2016), who employ three neural models
for this task. We compare to their final best model, the RNN-
based ‘end-to-end’ neural model (as well as their second-
best feed-forward network FFN model). Our model achieves
47% improvement in source task accuracy, and 22% (0.8
block length) reduction in target distance mean. Moreover,
the results are quite stable for both inference models: the
standard deviation based on 8 runs is around 1% on source
accuracy and 0.05 block length on target mean.

Complementarity of Attention Models: We found that
our two attention models (CNN and dual) are complemen-
tary in nature, achieving a source accuracy of 57.70% when
combining the ensemble models of CNN and dual attention
(for the expectation case), i.e., an improvement of 1.1% over
the CNN model’s 56.6% in Table 2. Further experiments in

this direction (as well as the complementarity of the sam-
pling and expectation inference approaches) is future work.

5.3 Analysis

Figure 3 shows several positive and negative examples of the
output of our full model. We can correctly understand the
semantics in complex source and target descriptions such as
‘bottom right, slightly right of center’ and ‘place it on top of
the stack of two blocks furthest to the back’. In the negative
examples, we show complex cases that our model cannot
handle correctly, mostly due to special scenarios and phrases
that it hasn’t seen before in the diverse but small dataset. Ex-
amples of this include instructions mentioning shape-based
block patterns such as ‘backwards L’, ‘Tetris structure’, and
complex count-based patterns such as ‘3-piece-long line’.

6 Conclusion
We presented sampling and expectation based models for
source and target prediction in configurational robotic in-
structions (on a challenging blank-labeled blocks dataset).
Our models also use spatial-relative features, CNN and
dual attention models, and joint-subtask-loss training of
world and language representations, achieving substantial
improvements over previous work on all metrics.

Configuration/Assembling Instructions

Source-Target Inference Models for Spatial Instruction Understanding. Tan and Bansal. AAAI 2018.

Model SOURCE TARGET
Accuracy Median Mean Median Mean

End-to-End FFN (Bisk, Yuret, and Marcu 2016) 9.0% 3.45 3.52 3.60 3.94
End-to-End RNN (Bisk, Yuret, and Marcu 2016) 10.0% 3.29 3.47 3.60 3.70
Our Expectation Model 56.1% 0.00 2.21 2.78 3.07
Our Sampling Model 56.3% 0.00 2.18 3.12 3.18
Our Expectation Model w/ Ensemble 56.6% 0.00 2.12 2.65 2.91
Our Sampling Model w/ Ensemble 56.8% 0.00 2.11 2.71 2.90

Table 2: Final test results of our final sampling and expectation models (w/o and w/ ensemble), compared to the previous
state-of-the-art on this dataset.

Positive Examples Negative Examples

Figure 3: Analysis: positive and negative output examples showing interesting instruction scenarios. The first and second image
in each pair depict the ground truth movement of the source block to the target position. We report predicted source accuracy
and target distance in bottom-right of each second image. We also use a red cross to represent our predicted target position
(ground truth target position can be inferred directly from the image difference between the first and second image). Also, for
the cases where our model predicted an incorrect source, we represent that wrongly-predicted source block by a red circle.

tasks, via joint loss function optimization.
Finally, the last row of Table 1 shows the added effects of

an 8-sized standard ensemble approach.

5.2 Final Test Results
Next, in Table 2, we present the test-set results for our two
inference approaches (expectation and sampling), using the
final model choices based on the ablation studies (i.e., all
features, CNN attention, joint training), without and with
ensemble. Both inference models achieve strong improve-
ments over the previous best work on this dataset from Bisk,
Yuret, and Marcu (2016), who employ three neural models
for this task. We compare to their final best model, the RNN-
based ‘end-to-end’ neural model (as well as their second-
best feed-forward network FFN model). Our model achieves
47% improvement in source task accuracy, and 22% (0.8
block length) reduction in target distance mean. Moreover,
the results are quite stable for both inference models: the
standard deviation based on 8 runs is around 1% on source
accuracy and 0.05 block length on target mean.

Complementarity of Attention Models: We found that
our two attention models (CNN and dual) are complemen-
tary in nature, achieving a source accuracy of 57.70% when
combining the ensemble models of CNN and dual attention
(for the expectation case), i.e., an improvement of 1.1% over
the CNN model’s 56.6% in Table 2. Further experiments in

this direction (as well as the complementarity of the sam-
pling and expectation inference approaches) is future work.

5.3 Analysis

Figure 3 shows several positive and negative examples of the
output of our full model. We can correctly understand the
semantics in complex source and target descriptions such as
‘bottom right, slightly right of center’ and ‘place it on top of
the stack of two blocks furthest to the back’. In the negative
examples, we show complex cases that our model cannot
handle correctly, mostly due to special scenarios and phrases
that it hasn’t seen before in the diverse but small dataset. Ex-
amples of this include instructions mentioning shape-based
block patterns such as ‘backwards L’, ‘Tetris structure’, and
complex count-based patterns such as ‘3-piece-long line’.

6 Conclusion
We presented sampling and expectation based models for
source and target prediction in configurational robotic in-
structions (on a challenging blank-labeled blocks dataset).
Our models also use spatial-relative features, CNN and
dual attention models, and joint-subtask-loss training of
world and language representations, achieving substantial
improvements over previous work on all metrics.

Recipe Instruction Following

Interpreting and Executing Recipes with a Cooking Robot. Bollini, Tellex, Thompson, Roy, Rus. ISER 2012.

Interpreting and Executing Recipes with a Cooking Robot 3

Fig. 2 The human interaction with the BakeBot system for recipe execution. First the person pro-
vides the plain-text recipe and the measured ingredients. Then BakeBot infers a sequence of baking
primitives to execute that correspond to following the recipe. If BakeBot encounters an unsup-
ported baking primitive, it asks its human partner for help executing the instruction. The end result
is baked cookies.

Recipe Instruction Following

4 Mario Bollini, Stefanie Tellex, Tyler Thompson, Nicholas Roy, and Daniela Rus

to these approaches because of the richer space of actions inherent to the cooking
domain. BakeBot uses the low-level manipulation and perception system described
in Rusu et al. [11]. Beetz et al. [2] have demonstrated dispensing pancake batter
from a premixed container and flipping the pancakes on a skillet. In this paper we
demonstrate an end-to-end robot cooking system capable of implementing any bak-
ing recipe that requires pouring, mixing, and oven operations on premeasured in-
gredients provided to the system. Our system is able to follow recipes downloaded
from the internet; we demonstrate it by following two different recipes in the real
world and by further evaluating its performance on a larger test set in simulation.

Fig. 3 Architecture of the BakeBot system. The NL system processes the plain text recipe, pro-
ducing a high-level plan which is sent to the robot. For each instruction in the high-level plan, the
motion planner assembles a motion plan and executes it on the PR2 robot.

4 Technical Approach

The robot’s goal is to read the text of a natural language recipe, and use it to infer
an action sequence in the environment that corresponds to preparing the dish de-
scribed in the recipe. The robot first segments the recipe into sentences based on
punctuation. Then for each sentence, it infers an action sequence in the environment

Interpreting and Executing Recipes with a Cooking Robot. Bollini, Tellex, Thompson, Roy, Rus. ISER 2012.

http://projects.csail.mit.edu/video/research/robo/bakebot_final.mp4	

Recipe Instruction Following

Interpreting and Executing Recipes with a Cooking Robot. Bollini, Tellex, Thompson, Roy, Rus. ISER 2012.

Interpreting and Executing Recipes with a Cooking Robot 9

Recipe Text

Afghan Biscuits
200g (7 oz) butter
75g (3 oz) sugar
175g (6 oz) flour
25g (1 oz) cocoa powder
50g cornflakes (or crushed weetbix)

Soften butter.
Add sugar and beat to a cream.
Add flour and cocoa.
Add cornflakes last.
Put spoonfuls on a greased oven tray.
Bake about 15 minutes at 180�C (350�F).

Inferred Action Sequence

pour(butter,bowl);mix(bowl)
pour(sugar,bowl);mix(bowl)
pour(f lour,bowl); pour(cocoa,bowl)
pour(corn f lakes,bowl);mix(bowl)
scrape()
preheat(350);bake(pan,20)

Fig. 4 Text from a recipe in our dataset, paired with the inferred action sequence for the robot.

formally specified the specific ingredients and implements necessary to follow the
recipe. This initialization is given to the robot. Next, for each instruction in the
recipe text, we annotated the sequence of primitive actions the robot should take
in order to follow that instruction. We used 45 recipes from this corpus to train the
model, and 15 recipes to test it. A sample recipe from the test set appears in Figure 4,
together with the automatically inferred action sequence.

5.1 Real-world Demonstration

The robot system operates in a kitchen environment consisting of two work surfaces,
one for preparation and another to support a standard toaster oven (preheated to the
temperature specified in the instruction set).

We assume that the kitchen is mise en place; ingredients are pre-measured and
distributed on bowls on the table. Equipment includes four plastic ingredient bowls
of various sizes and colors containing premeasured ingredients, a large plastic mix-
ing bowl, and a metallic pie pan. The items are arranged in a grid on the table, with
the relative position of every item noted in our ingredient-resolution program.

First, we assessed the robustness of the physical capabilities of the robot by per-
forming extensive tests on a single recipe: “Afghan Biscuits” (which appears in
Figure 4). Minor failures, such as the fingers slipping off of the oven door halfway
through the opening procedures or the inverse kinematic planner requiring a restart,
were corrected during runtime and the tests were allowed to continue. More serious
failures, such as spilling an ingredient or scraping the contents of the mixing bowl
onto the floor or table, that required the system to be fully restarted or a new piece
of code to be written caused the termination of the test. We tested the full end-to-
end system, from robot instructions through finished dish, 27 times on this recipe,

Recipe Instruction Following

Interpreting and Executing Recipes with a Cooking Robot. Bollini, Tellex, Thompson, Roy, Rus. ISER 2012.

Interpreting and Executing Recipes with a Cooking Robot 11

Fig. 5 A pictorial timeline of the baking process.

Recipe Instruction Following

!   Recipes: Tell Me Dave (http://tellmedave.cs.cornell.edu/)

Fig. 1. Natural Language Instructions to sequence of instructions for a given new environment. Our approach takes description in natural language and
sequences together robotic instructions that are appropriate for a given environment and task. Note that the NL instructions are often ambiguous, and are
incomplete, and need to be grounded into the environment.

form natural language data and robotic instruction logs, col-
lected from several users. The tasks comprise performing
several steps in sequence, and there are often different ways
of performing the task in different environments. We compare
our method against our implementation of [18] and [7], and
show significant improvements. More importantly, we find
that our method handles generalization to new environments
and variations in language well, and is also able to handle
incomplete NL instructions in many cases. Finally, we use our
predicted sequences on a PR2 robot to create a dish following
NL instructions given by a user.

In summary, the key contributions of this paper are:
• We encode the environment and task context into an

energy function over a CRF which allows grounding of
the NL instructions into environment for tasks.

• Our model is able to handle missing NL instructions and
free-form variations in the language.

• Our method can handle mobile manipulation tasks with
long sequences of instructions. Our setting has a large
state space of the objects, and a large robotic action space.

• We contribute an online data collecting method, and
the resulting VEIL dataset comprising free-form natural
language instructions and corresponding robot instruction
logs. Our experiments show good results on the dataset
and our model outperforms the related work.

II. RELATED WORK

Mobile Manipulation Tasks. In the past decade, there has
been significant work on different manipulation and naviga-
tional skills such as grasping [32, 28], mixing [7], pushing
[43], placing [3, 20], constructing semantic maps [48], and
high degree of freedom arm planners (e.g., [40, 1]). These
works form the building blocks for executing the output
instructions for our model.

Traditionally, sequencing complicated controller instruc-
tions have been accomplished using symbolic planners

[41]. Since real environments have uncertainty and non-
determinism, Kaelbling and Lozano-Pérez [22] start with an
abstract plan and recursively generate plans as needed. Or, the
tasks are defined through expert designed state machines [35],
which does not generalize well when the environment or the
task changes. Rather than relying on symbolic representation
of the environment, Sung et al. [44] rely on a set of visual
attributes to represent each object in the environment and
dynamically choose the controller sequence from a list of
possible sequences that minimizes the score function based
on the current environment and the potential candidate for
the next instruction. Others use demonstrations for learning
different behaviors (e.g. [36]). These approaches solve only
parts of the problems that we address in this work—of creating
valid plans and using a score function for data-driven retrieval
of sequences of instructions. Our work addresses not only the
validity of sequences and data-driven retrieval of low-level
instructions, but it also models the ambiguity and grounding
of natural language instructions in the environment context.
Furthermore, the tasks considered by our work are complex
manipulation tasks requiring several sequences of steps.
Grounding Natural Language. The use of language has
gained recent attention in robotics. Other than the works
discussed in the introduction [33, 7, 4, 18], the problem of
navigation has been addressed by using learned models for
verbs like follow, meet, go as well as the conditions such
as walk close to the wall [24, 16]. In detail, Kollar et al.
[24] use maximum-likelihood approach to infer the path taken
by the robot. Translation of such weakly specified actions
into robotic behaviors is very important; these ideas form our
robotic instruction set in Table I. We go beyond navigational
instructions and present a model which can ground natural
language to a sequence of pre-defined set of manipulation and
navigation instructions that can be executed by robots.

Several works [16, 18] have looked at the problem of
grounding intricate noun-phrases in the language to the ob-

Tell Me Dave: Context-Sensitive Grounding of Natural Language to Mobile Manipulation Instructions, Misra, Sung, Lee, and Saxena. RSS 2014.

Recipe Instruction Following

!   Recipes: Tell Me Dave (http://tellmedave.cs.cornell.edu/)

Fig. 4. Robot Experiment. Given the language instruction for making the dessert ‘Affogato’: ‘Take some coffee in a cup. Add icecream of your choice.
Finally, add raspberry syrup to the mixture.’, our algorithm outputs a sequence that the PR2 executes to make the dessert. (Please see the video.)

Predefined Templates [18] focused on disambiguating spatial
relations but was extremely brittle to ambiguity in grounding,
therefore giving low performance.

Method Instruction-Tree [7] was able to give reasonable re-
sults on some sequences. However this approach has problem
working with large search tree. Furthermore, the bag-of-word
feature do not take into account the environment context, the
language might say that keep the cup in microwave but the cup
might already be inside the microwave (unless such constraints
are hard-coded). This approach thus fails when the language
is vague, for example, for the following sentence, heat the
water and add ramen., However, our approach takes this vague
sentence and grounds it in the environment using our model.
Our energy function incorporates several features and thus is
able to often give reasonable output sequences for such natural
language instructions. Also on an additional created data-set
for different tasks in a living room, we received similar results
with our full model outperforming the others.

We analyze the results in light of the following questions:
Is Language important? If we enforce all the constraints of
the task and provide the end-state of the environment, one may
argue that just using a symbolic planner may give reasonable
programs. However, the success of a task depends on the way
things are done. Natural language gives an approximate guide
that our model tries to follow. We see that Our Model - No
NLP gives 18.8% on average as compared to 63.0% for our full
model. In fact, we see evidence of such behavior in our results
also. While our model can handle ambiguous and incomplete
NL instructions, e.g., ‘heat up the water and then cook the
ramen’ that resulted in success, in some of the test cases the
NL instructions were quite ambiguous, e.g., ‘Microwave for
12 minutes and place it on the table’ on which our model
failed.
How important is the latent node? Overall, Table II shows
the results improve by about 2% on EED metric. We found that
it was especially helpful in scenarios where instructions were
partially missing. For example, for the instruction in Fig. 1 -

‘place the pot on the tap and turn the tap on...Turn the tap
off and heat the pot.’

there is no template that can fit in for the first clause
(place, [pot, tap], on : pot ! tap). One such template after
initialization has the form -

moveTo(sink); keep(pot , sink , on)

However this will make the sequence unexecutable as robot
cannot execute this sequence since it is not already grasping
the pot. In such cases, interpolation models these constraints
and we get the output using latent nodes as -
moveTo(pot); grasp(pot); moveTo(sink); keep(pot, sink, on)

How well does our model generalize to new environments
and tasks? In this test, we wanted to examine how well our
model can make use of examples from different environment
and tasks. Its not obvious whether the templates learned for
one task, such as making affogato will be useful for another
task such as making ramen. For studying the effect of a differ-
ent task, we performed another experiment in which we trained
and tested the model on making ramen task only (instead of
training together for {making ramen,making affogato}). We
found that because the VEIL library from the making affogato
task was not available for training, the performance dropped
to 64.9 on the IED metric as compared to 67.3 in Table II.
This indicates data examples from other tasks are helpful.
What if the robot does not know the result of its action?
The algorithm implicitly assumes that the robot knows the
result of its interaction with the environment. (It is being used
to compute certain features, doing the interpolation and in
inference) In order to test how crucial it is, we ran the Our
Model - No Domain Knowledge and as the results in Table II,
show the accuracy falls only by only 2-3 %.
Robot Experiment. We show that our grounded manip-
ulation instructions can be executed on PR2 robot given
the natural language instruction, ‘Take some coffee in a
cup. Add ice cream of your choice. Finally, add rasp-
berry syrup to the mixture.’ Figure 4 shows few snapshots
of PR2 making Affogato and the video is available at:
http://tellmedave.cs.cornell.edu

VIII. CONCLUSION

In this work, we presented a model that grounds the free-
form natural language instructions into a given environment
for a given task, in order to output a sequence of instructions
that the robot can execute to perform the task. We presented
a learning model that encodes certain desired properties into
an energy function—expressed as a model isomorphic to
conditional random field with edges representing the relations
between verb clauses, environment state and instructions. We
showed that our model handles missing or incomplete lan-
guage instructions, variations in language, as well as ambiguity
in grounding well. We also show that we outperform related
work in this area.

ACKNOWLEDGEMENT

We thank Claire Cardie for useful discussions and Kejia Tao
for her help with the simulator. This work was supported in
part by ONR Grant N00014-14-1-0156, and Microsoft Faculty
Fellowship and NSF Career award to Saxena.

Tell Me Dave: Context-Sensitive Grounding of Natural Language to Mobile Manipulation Instructions, Misra, Sung, Lee, and Saxena. RSS 2014.

Recipe Instruction Following

!   Recipes: RoboBarista (http://robobarista.cs.cornell.edu/)

Fig. 5. Screen-shot of Robobarista, the crowd-sourcing platform running on Chrome browser. We have built Robobarista platform for collecting a large
number of crowd demonstrations for teaching the robot.

to the cumulative sum, |D(m

A

,m

B

)|
path

⇤ (i.e. the length of
the optimal warping path), giving the final form:

distance(⌧

A

, ⌧

B

) =

D(m

A

,m

B

)

|D(m

A

,m

B

)|
path

⇤

This distance function is used for noise-handling in our
model and as the final evaluation metric.

VII. ROBOBARISTA: CROWD-SOURCING PLATFORM

In order to collect a large number of manipulation demon-
strations from the crowd, we built a crowd-sourcing web
platform that we call Robobarista (see Fig. 5). It provides a
virtual environment where non-expert users can teach robots
via a web browser, without expert guidance or physical
presence with a robot and a target object.

The system simulates a situation where the user encounters
a previously unseen target object and a natural language
instruction manual for its manipulation. Within the web
browser, users are shown a point-cloud in the 3-D viewer on
the left and a manual on the right. A manual may involve
several instructions, such as “Push down and pull the handle
to open the door”. The user’s goal is to demonstrate how to
manipulate the object in the scene for each instruction.

The user starts by selecting one of the instructions on the
right to demonstrate (Fig. 5). Once selected, the target object
part is highlighted and the trajectory edit bar appears below
the 3-D viewer. Using the edit bar, which works like a video
editor, the user can playback and edit the demonstration. The
trajectory representation, as a set of waypoints (Sec. III-A),
is directly shown on the edit bar. The bar shows not only
the set of waypoints (red/green) but also the interpolated
waypoints (gray). The user can click the ‘play’ button or
hover the cursor over the edit bar to examine the current
demonstration. The blurred trail of the current trajectory
(ghosted) demonstration is also shown in the 3-D viewer
to show its full expected path.

Generating a full trajectory from scratch can be difficult
for non-experts. Thus, similar to Forbes et al. [17], we
provide a trajectory that the system has already seen for
another object as the initial starting trajectory to edit.3

In order to simulate a realistic experience of manipulation,
instead of simply showing a static point-cloud, we have
overlaid CAD models for parts such as ‘handle’ so that
functional parts actually move as the user tries to manipulate
the object.

A demonstration can be edited by: 1) modifying the po-
sition/orientation of a waypoint, 2) adding/removing a way-
point, and 3) opening/closing the gripper. Once a waypoint
is selected, the PR2 gripper is shown with six directional
arrows and three rings, used to modify the gripper’s position
and orientation, respectively. To add extra waypoints, the user
can hover the cursor over an interpolated (gray) waypoint
on the edit bar and click the plus(+) button. To remove an
existing waypoint, the user can hover over it on the edit bar
and click minus(-) to remove. As modification occurs, the
edit bar and ghosted demonstration are updated with a new
interpolation. Finally, for editing the status (open/close) of
the gripper, the user can simply click on the gripper.

For broader accessibility, all functionality of Robobarista,
including 3-D viewer, is built using Javascript and WebGL.
We have made the platform available online (http://
robobarista.cs.cornell.edu)

VIII. EXPERIMENTS

A. Robobarista Dataset
In order to test our model, we have collected a dataset of

116 point-clouds of objects with 249 object parts (examples
shown in Figure 6). Objects range from kitchen appliances
such as stoves and rice cookers to bathroom hardware such
as sinks and toilets. Figure 14 shows a sample of 70 such

3We have made sure that it does not initialize with trajectories from other
folds to keep 5-fold cross-validation in experiment section valid.

Robobarista: Object Part based Transfer of Manipulation Trajectories from Crowd-sourcing in 3D Pointclouds. Sung, Jin, and Saxena. ISRR 2015.

Recipe Instruction Following

! RoboBarista: http://robobarista.cs.cornell.edu/

Fig. 10. Examples of transferred trajectories being executed on PR2. On the left, PR2 is able to rotate the ‘knob’ to turn the lamp on. In the third
snapshot, using two transferred trajectories, PR2 is able to hold the cup below the ‘nozzle’ and press the ‘lever’ of ‘coffee dispenser’. In the last example,
PR2 is frothing milk by pulling down on the lever, and is able to prepare a cup of latte with many transferred trajectories.

Fig. 9. Comparisons of transfers between our model and the base-
line (deep multimodal network without embedding [61]). In these three
examples, our model successfully finds correct manipulation trajectory from
these objects while the other one does not. Given the lever of the toaster,
our algorithm finds similarly slanted part from the rice cooker while the
other model finds completely irrelevant trajectory. For the opening action
of waffle maker, trajectory for paper cutter is correctly identified while the
other model transfers from a handle that has incompatible motion.

cloud is by itself a challenging problem [35]. Thus, we
rely on human experts to pre-label parts of the object to be
manipulated. The point-cloud of the scene is over-segmented
into thousands of supervoxels, from which the expert chooses
the part of the object to be manipulated. Even with expert
input, such segmented point-clouds are still extremely noisy
because of sensor failures, e.g. on glossy surfaces.
Is intermediate object part labeling necessary? A multi-
class SVM trained on object part labels was able to obtain

over 70% recognition accuracy in classifying five major
classes of object parts (‘button’, ‘knob’, ‘handle’, ‘nozzle’,
‘lever’.) However, the Object Part Classifier baseline, based
on this classification, performed at only 23.3% accuracy for
actual trajectory transfer, outperforming chance by merely
12.1%, and significantly underperforming our model’s result
of 65.1%. This shows that object part labels alone are not
sufficient to enable manipulation motion transfer, while our
model, which makes use of richer information, does a much
better job.
Can features be hand-coded? What does learned deep
embedding space represent? Even though we carefully
designed state-of-the-art task-specific features for the SSVM
and LSSVM models, these models only gave at most 40.8%
accuracy. The task similarity method gave a better result
of 53.7%, but it requires access to all of the raw training
data (point-clouds, language, and trajectories) at test time,
which leads to heavy computation at test time and requires a
large amount of storage as the size of training data increases.
Our approach, by contrast, requires only the trajectory data,
and a low-dimensional representation of the point-cloud and
language data, which is much less expensive to store than
the raw data.

This shows that it is extremely difficult to find a good set
of features which properly combines these three modalities.
Our multimodal embedding model does not require hand-
designing such features, instead learning a joint embedding
space as shown by our visualization of the top layer h

3

in Figure 12. This visualization is created by projecting all
training data (point-cloud/language pairs and trajectories) of
one of the cross-validation folds to h

3, then embedding them
to 2-dimensional space using t-SNE [69]. Although previous
work [61] was able to visualize several nodes in the top
layer, most were difficult to interpret. With our model, we can
embed all our data and visualize all the layers (see Figs. 12
and 13).

One interesting result is that our system was able to
naturally learn that “nozzle” and “spout” are effectively
synonyms for purposes of manipulation. It clustered these
together in the lower-right of Fig. 12 based solely on the fact
that both are associated with similar point-cloud shapes and
manipulation trajectories. At the same time, it also identified
one exception, a small cluster of “nozzles” in the center of
Fig. 12 which require different manipulation motions.

Robobarista: Object Part based Transfer of Manipulation Trajectories from Crowd-sourcing in 3D Pointclouds. Sung, Jin, and Saxena. ISRR 2015.

Navigation Instruction Generation

our framework through experiments with human instruction
followers.

1) Data Augmentation: The SAIL dataset is significantly
smaller than those typically used to train neural sequence-
to-sequence models. In order to overcome this scarcity, we
augmented the original dataset using a set of rules. In
particular, for each command-instruction (c

(i)
,⇤

(i)
) pair in

the original dataset we generate a number of new demon-
strations iterating over the set of possible values for each
attribute in the command and updating the relative in-
struction accordingly. For example, given the original pair
(Turn(direction=Left), “turn left”), we augment the dataset
with 2 new pairs, namely (Turn(direction=Right), “turn
right”) and (Turn(direction=Back), “turn back”). Our aug-
mented dataset consists of about 750k and 190k demonstra-
tions for training and validation, respectively.

B. Implementation Details

We implemented and tested the proposed model using
the following values for the system parameters: kc = 100,
Pt = 0.99, ke = 128, and Lt = 95.0. The encoder-aligner-
decoder consisted of 2 layers for the encoder and decoder
with 128 LSTM units per layer. The language model similarly
included a 2-layer recurrent neural network with 128 LSTM
units per layer. The size of the CAS and natural (English)
language vocabularies was 88 and 435, respectively, based
upon the SAIL dataset. All parameters were chosen based on
the performance on the validation set. We train our model
using Adam [30] for optimization. At test time, we perform
approximate inference using a beam width of two. Our method
requires an average of 33 s (16 s without beam search) to
generate instructions for a path consisting of 9 movements
when run on a laptop with a 2.0GHz CPU and 8GB of RAM.
As with other neural models, performance would improve
significantly using a GPU.

C. Automatic Evaluation

To the best of our knowledge, we are the first to use the
SAIL dataset for the purposes of generating route instructions.
Consequently, we evaluate our method by comparing our
generated instructions with a reference set of human-generated
commands from the SAIL dataset using the BLEU score (a
4-gram matching-based precision) [45]. For this purpose, for
each command-instruction pair (c(i),⇤(i)) in the validation
set, we first feed the command c

(i)
, into our model to obtain

the generated instruction ⇤

⇤, and secondly use ⇤

(i)
, and ⇤

⇤

respectively as the reference and hypothesis for computing
the 4-gram BLEU score. We consider both the average of the
BLEU scores at the individual sentence level (macro-average
precision) as well as at the full-corpus level (micro-average
precision).

D. Human Evaluation

The use of BLEU score indicates the similarity between
instructions generated via our method and those produced
by humans, but it does not provide a complete measure

Fig. 4. Participants’ field of view in the virtual world used for the human
navigation experiments.

of the quality of the instructions (e.g., instructions that are
correct but different in prose will receive a low BLEU score).
In an effort to further evaluate the accuracy and usability
of our method, we conducted a set of human evaluation
experiments in which we asked 42 novice participants on
Amazon Mechanical Turk (21 females and 21 males, ages
18–64, all native English speakers) to follow natural language
route instructions, randomly chosen from two equal-sized sets
of instructions generated by our method and by humans for 50
distinct paths of various lengths. The paths and corresponding
human-generated instructions were randomly sampled from
the SAIL test set. Given a route instruction, human participants
were asked to navigate to the best of their ability using their
keyboard within a first-person, three-dimensional virtual world
representative of the three environments from the SAIL corpus.
Fig. 4 provides an example of the participants’ field of view
while following route instructions. After attempting to follow
each instruction, each participant was given a survey composed
of eight questions, three requesting demographic information
and five requesting feedback on their experience and the
quality of the instructions that they followed. We collected data
for a total of 441 experiments (227 using human annotated
instructions and 214 using machine generated instructions).
The system randomly assigned the experiments to discourage
the participants from learning the environments or becoming
familiar with the style of a particular instructor. No participants
experienced the same scenario with both human annotated and
machine generated instructions. Appendix B provides further
details regarding the experimental procedure.

VI. RESULTS

We evaluate the performance of our architecture by scoring
the generated instructions using the 4-gram BLEU score com-
monly used as an automatic evaluation mechanism for machine
translation. Comparing to the human-generated instructions,
our method achieves sentence- and corpus-level BLEU scores
of 74.67% and 60.10%, respectively, on the validation set.
On the test set, the method achieves sentence- and corpus
level BLEU scores of 72.18% and 45.39%, respectively. Fig. 1

Navigational Instruction Generation as Inverse Reinforcement Learning with Neural Machine Translation. Daniele, Bansal, and Walter. HRI 2017.

Navigational Instruction Generation
as Inverse Reinforcement Learning
with Neural Machine Translation

Andrea F. Daniele
TTI-Chicago, USA

afdaniele@ttic.edu

Mohit Bansal
UNC Chapel Hill, USA
mbansal@cs.unc.edu

Matthew R. Walter
TTI-Chicago, USA

mwalter@ttic.edu

Abstract—Modern robotics applications that involve human-
robot interaction require robots to be able to communicate with
humans seamlessly and effectively. Natural language provides a
flexible and efficient medium through which robots can exchange
information with their human partners. Significant advancements
have been made in developing robots capable of interpreting
free-form instructions, but less attention has been devoted to
endowing robots with the ability to generate natural language.
We propose a navigational guide model that enables robots to
generate natural language instructions that allow humans to
navigate a priori unknown environments. We first decide which
information to share with the user according to their preferences,
using a policy trained from human demonstrations via inverse
reinforcement learning. We then “translate” this information
into a natural language instruction using a neural sequence-to-
sequence model that learns to generate free-form instructions
from natural language corpora. We evaluate our method on
a benchmark route instruction dataset and achieve a BLEU
score of 72.18% when compared to human-generated reference
instructions. We additionally conduct navigation experiments
with human participants that demonstrate that our method
generates instructions that people follow as accurately and easily
as those produced by humans.

I. INTRODUCTION

Robots are increasingly being used as our partners, working
with and alongside people, whether it is serving as assistants
in our homes [59], transporting cargo in warehouses [11],
helping students with language learning in the classroom [28],
and acting as guides in public spaces [23]. In order for
humans and robots to work together effectively, robots must
be able to communicate with their human partners in order to
establish a shared understanding of the collaborative task and
to coordinate their efforts [21, 17, 49, 48]. Natural language
provides an efficient, flexible medium through which humans
and robots can exchange information. Consider, for example,
a search-and-rescue operation carried out by a human-robot
team. The human may first issue spoken commands (e.g.,
“Search the rooms at the end of the hallway”) that direct one
or more robots to navigate throughout the building searching
for occupants [40, 53, 41]. In this process, the robot may
engage the user in dialogue to resolve any ambiguity in the
task (e.g., to clarify which hallway the user was referring
to) [54, 15, 46, 55, 24]. The user’s ability to trust their robotic
partners is also integral to effective collaboration [20], and
a robot’s ability to generate natural language explanations

Input: map and path

C

B

H

E

L

S

B
C
E
H
L
S

Blue
Brick
Concrete
Flower
Grass
Black
Wood
Yellow

Floor patterns:

Tower
Butterfly
Fish

Wall paintings:

Barstool
Chair
Easel
Hatrack
Lamp
Sofa

Objects:

Output: route instruction
“turn to face the grass hallway. walk forward twice. face
the easel. move until you see black floor to your right. face
the stool. move to the stool”

Fig. 1. An example route instruction that our framework generates for the
shown map and path.

of its progress (e.g., “I have inspected two rooms”) and
decision-making processes have been shown to help establish
trust [16, 2, 60].

In this paper, we specifically consider the surrogate prob-
lem of synthesizing natural language route instructions and
describe a method that generates free-form directions that
people can accurately and efficiently follow in environments
unknown to them a priori (Fig. 1). This specific problem has
previously been considered by the robotics community [18, 44]
and is important for human-robot collaborative tasks, such
as search-and-rescue, exploration, and surveillance [33], and
for robotic assistants, such as those that serve as guides in
museums, offices, and other public spaces. More generally,
the problem is relevant beyond human-robot interaction to
the broader domain of indoor navigation, for which GPS
is unavailable and the few existing solutions that rely upon

ar
X

iv
:1

61
0.

03
16

4v
1

 [c
s.R

O
]

11
 O

ct
 2

01
6

Navigation Instruction Generation

Navigational Instruction Generation as Inverse Reinforcement Learning with Neural Machine Translation. Daniele, Bansal, and Walter. HRI 2017.

MDP

Content Selection

Sentence
Planning

Surface Realization

Language
Model

Seq2Seq
RNN

Fig. 2. Our method generates natural language instructions for a given map
and path.

A. Compound Action Specifications

In order to bridge the gap between the low-level nature of
the input paths and the natural language output, we encode
paths using an intermediate logic-based formal language.
Specifically, we use the Compound Action Specification
(CAS) representation [39], which provides a formal abstraction
of navigation commands for hybrid metric-topologic-semantic
maps such as ours. The CAS language consists of five actions
(i.e., Travel, Turn, Face, Verify, and Find), each of which is
associated with a number of attributes that together define spe-
cific commands (e.g., Travel.distance, Turn.direction). We dis-
tinguish between CAS structures, which are instructions with
the attributes left empty (e.g., Turn(direction=None)) thereby
defining a class of instructions, and CAS commands, which
correspond to instantiated instructions with the attributes set to
particular values (e.g., Turn(direction=Left)). For each English
instruction ⇤

(i)
) in the dataset, we generate the corresponding

CAS command c

(i) using the MARCO architecture [39].For
a complete description of the CAS language, see MacMahon
et al. [39].

B. Content Selection

There are many ways in which one can compose a CAS
specification of the desired path, both in terms of the type
of information that is conveyed (e.g., referencing distances
vs. physical landmarks), as well as the specific references
to use (e.g., different objects provide candidate landmarks).
Humans exhibit common preferences in terms of the type of
information that is shared (e.g., favoring visible landmarks
over distances) [58], yet the specific nature of this information
depends upon the environment and the followers’ demograph-
ics [61, 27]. Our goal is to learn these preferences from a
dataset of instructions generated by humans.

1) MDP with Inverse Reinforcement Learning: In similar
fashion to Oswald et al. [44], we formulate the content
selection problem as a Markov decision process (MDP) with
a goal of then identifying an information selection policy
that maximizes long-term cumulative reward consistent with
human preferences (Fig. 2). However, this reward function is
unknown a priori and generally difficult to define. We assume
that humans optimize a common reward function when com-
posing instructions and employ inverse reinforcement learning
to learn a policy that mimics the preferences that humans
exhibit based upon a set of human demonstrations.

An MDP is defined by the tuple (S,A,R, P, �), where S

is a set of states, A is a set of actions, R(s, a, s

0
) 2 R is the

reward received when executing action a 2 A in state s 2 S

and transitioning to state s

0 2 S, P (s

0|a, s) is the probability

of transitioning from state s to state s

0 when executing action
a, and � 2 (0, 1] is the discount factor. The policy ⇡(a|s)
corresponds to a distribution over actions given the current
state. In the case of the route instruction domain, the state s

defines the user’s pose and path in the context of the map
of the environment. We represent the state in terms of 14

context features that express characteristics such as changes
in orientation and position, the relative location of objects,
and nearby environment features (e.g., floor color). We encode
the state s as a 14-dimensional binary vector that indicates
which context features are active for that state. In this way, the
state space S is that spanned by all possible instantiations of
context features. Meanwhile, the action space corresponds to
the space of different CAS structures (i.e., without instantiated
attributes) that can be used to define the path.

We seek a policy ⇡(a|s) that maximizes expected cumu-
lative reward. However, the reward function that defines the
value of particular characteristics of the instruction is unknown
and difficult to define. For that reason, we frame the task as
an inverse reinforcement learning (IRL) problem using human-
provided route instructions as demonstrations of the optimal
policy. Specifically, we learn a policy using the maximum
entropy formulation of IRL [63], which models user actions as
a distribution over paths parameterized as a log-linear model
P (a; ✓) / e

�✓>⇠(a), where ⇠(a) is a feature vector defined
over actions. We consider 9 instruction features (properties)
that include features expressing the number of landmarks
included in the instruction, the frame of reference that is
used, and the complexity of the command. The feature vector
⇠(a) then takes the form of a 9-dimensional binary vector.
Appendix A presents the full set of context and property
features used to parameterize the state and action, respectively.
Maximum entropy IRL then solves for the distribution via the
following optimization

P (a; ✓

⇤
) = arg max

✓
P (a; ✓) logP (a; ✓)

s.t. ⇠g = E[⇠(a)],
(1)

where ⇠g denotes the features from the demonstrations and the
expectation is taken over the action distribution. For further
details regarding maximum entropy IRL, we refer the reader
to Ziebart et al. [63].

The policy defines a distribution over CAS structure com-
positions (i.e., using the Verify action vs. the Turn action) in
terms of their feature encoding. We perform inference over
this policy to identify the maximum a posteriori property
vector ⇠(a

⇤
) = arg max⇠ ⇡. As there is no way to invert

the feature mapping, we then match this vector ⇠(a

⇤
) to a

database of CAS structures formed from our training set.
Rather than choosing the nearest match, which may result
in an inconsistent CAS structure, we retrieve the kc nearest
neighbors from the database using a weighted distance in terms
of mutual information [44] that expresses the importance of
different CAS features based upon the context. As several of
these may be valid, we employ spectral clustering using the
similarity of the CAS strings to identify a set of candidate

"go forward 3
segments passing

the bench"

Aligner LSTM-RNN

LSTM-RNN

LSTM-RNN

Travel
distance
count.3

past
type.Object
value.Sofa

CAS Command Encoder Aligner Decoder Instruction

Fig. 3. Our encoder-aligner-decoder model for surface realization.

CAS structures Cs.
2) Sentence Planning: Given the set of candidate CAS

structures Cs, our method next chooses the attributes values
such that the final CAS commands are both valid and not
ambiguous. We can compute the likelihood of a command c

to be a valid instruction for a path p defined on a map m as:

P (c|p,m) =

�(c|p,m)

PK
j=1 �(c|p̂j ,m)

. (2)

The index j iterates over all the possible paths that have the
same starting pose of p and �(c | p,m) is defined as:

�(c|p,m) =

⇢
1 if ⌘(c) = �(c, p,m)

0 otherwise

where ⌘(c) is the number of attributes defined in c, and
�(c, p,m) is the number of attributes defined in c that are
also valid with respect to the inputs p,m.

For each candidate CAS structure c 2 Cs, we generate mul-
tiple CAS commands by iterating over the possible attributes
values. We evaluate the correctness and ambiguity of each
configuration according to Equation 2. A command is deemed
valid if its likelihood is greater than a threshold Pt. Since the
number of possible configurations for a structure increases
exponentially with respect to the number of attributes, we
assign attributes using greedy search. The iteration algorithm
is constrained to use only objects and properties of the
environment visible to the follower. The result is a set C of
valid CAS commands.

C. Surface Realization

Having identified a set of CAS commands suitable to the
given path, our method then proceeds to generate the corre-
sponding natural language route instruction. We formulate this
problem as one of “translating” the instruction specification in
the formal CAS language into its natural language equivalent.1
We perform this translation using an encoder-aligner-decoder
model (Fig. 3) that enables our framework to generate natural
language instructions by learning from examples of human-
generated instructions, without the need for specialized fea-
tures, resources, or templates.

1Related work [40, 4, 41] similarly models the inverse task of language
understanding as a machine translation problem.

1) Sequence-to-Sequence Model: We formulate the prob-
lem of generating natural language route instructions as infer-
ence over a probabilistic model P (�1:T |x1:N), where �1:T =

(�1,�2, . . . ,�T) is the sequence of words in the instruction
and x1:N = (x1, x2, . . . xN) is the sequence of tokens in
the CAS command. The CAS sequence includes a token for
each action (e.g., Turn, Travel) and a set of tokens with
the form attribute.value for each couple (attribute,value); for
example, Turn(direction=Right) is represented by the sequence
(Turn, direction.Right). Generating an instruction sequence
then corresponds to inference over this model

�

⇤
1:T = arg max

�1:T

P (�1:T |x1:N) (3a)

= arg max
�1:T

TY

t=1

P (�t|�1:t�1, x1:N) (3b)

We model this task as a sequence-to-sequence learning
problem, whereby we use a recurrent neural network (RNN)
to first encode the input CAS command

hj = f(xj , hj�1) (4a)
zt = b(h1, h2, . . . hN), (4b)

where hj is the encoder hidden state for CAS token j, and f

and b are nonlinear functions, which we define later. An aligner
computes the context vector zt that encodes the language
instruction at time t 2 {1, . . . , T}. An RNN decodes the
context vector zt to arrive at the desired likelihood (Eqn. 3)

P (�t|�1:t�1, x1:N) = g(dt�1, zt), (5)

where dt�1 is the decoder hidden state at time t� 1, and g is
a nonlinear function.

Encoder Our encoder (Fig. 3) takes as input the sequence
of tokens in the CAS command x1:N . We transform each
token xi into a ke�dimensional binary vector using a word
embedding representation [43]. We feed this sequence into an
RNN encoder that employs LSTMs as the recurrent unit as a
result of their ability to learn long-term dependencies among
the instruction sequences, without being prone to vanishing
or exploding gradients. The LSTM-RNN encoder summarizes
the relationship between elements of the CAS command and
yields a sequence of hidden states h1:N = (h1, h2, . . . , hN),
where hj encodes CAS words up to and including xj . In
practice, we reverse the input sequence before feeding it into

Navigation Instruction Generation

(a) Q1: “How do you define the amount of information provided?”

(b) Q2: “How would you evaluate the task in terms of difficulty?”

(c) Q3: “How confident are you that you followed the desired path?”

(d) Q4: “How many times did you have to backtrack?”

(e) Q5: “Who do you think generated the instructions?”

Fig. 7. Participants’ survey response statistics.

and were rated as providing too little information 15% less
frequently than the human-generated baseline (Fig. 7(a)).
Meanwhile, participants felt that our instructions were easier
to follow (Fig. 7(b)) than the human-generated baselines (72%
vs. 52% rated as “easy” or “very easy” for our method vs. the
baseline). Participants were more confident in their ability to
follow our method’s instructions (Fig. 7(c)) and felt that they
had to backtrack less often (Fig. 7(d)). Meanwhile, both types
of instructions were confused equally often as being machine-
generated (Fig. 7(e)), however participants were less sure of
who generated our instructions relative to the human baseline.

Figure 8 compares the paths that participants took when
following our instructions with those that they took given
the reference human-generated directions. In the case of the
map on the left (Fig. 8(a)), none of the five participants
reached the correct destination (indicated by a “G”) when

Map and Paths

C H

B

L

2

1

S H

L

H

G

S

Legend:
H
B
C
S
L

- Hatrack
- Barstool
- Chair
- Sofa
- Lamp

Fish
Eiffel
Butterfly

1
S - Initial position

- Goal position
- Final position

G
#

2 3

S

G

(a)

(b)

Instructions

(a)

Human

“with your back to the wall turn left. walk
along the flowers to the hatrack. turn left.
walk along the brick two alleys past the lamp.
turn left. move along the wooden floor to the
chair. in the next block is a hatrack”

Ours
“you should have the olive hallway on your
right now. walk forward twice. turn left. move
until you see wooden floor to your left. face
the bench. move to the bench”

(b)

Human

“head toward the blue floored hallway. make
a right on it. go down till you see the fish
walled areas. make a left in the fish walled
hallway and go to the very end”

Ours
“turn to face the white hallway. walk forward
once. turn right. walk forward twice. turn left.
move to the wall”

Fig. 8. Examples of paths from the SAIL corpus that ten participants (five
for each map) followed according to instructions generated by humans and
by our method. Paths in red are those traversed according to human-generated
instructions, while paths in green were executed according to our instructions.
Circles with an “S” and “G” denote the start and goal locations, respectively.

following the human-generated instruction. One participant
reached location 2, three participants stopped at location 3

(one of whom backtracked after reaching the end of the
hallway above the goal), and one participant went in the
wrong direction at the outset. In contrast, all five participants
reached the goal directly (i.e., without backtracking) when
following our instruction. For the scenario depicted on the
right (Fig. 8(b)), five participants failed to reach the destination
when provided with the human-generated instruction. Two of
the participants went directly to location 1, two participants
navigated to location 2, and one participant went to location
2 before backtracking and taking a right to location 1. We
attribute the failures to the ambiguity in the human-generated
instruction that references “fish walled areas,” which could
correspond to most of the hallways in this portion of the map

Navigational Instruction Generation as Inverse Reinforcement Learning with Neural Machine Translation. Daniele, Bansal, and Walter. HRI 2017.

Verify

value.Path

side.Right

appear.Honeycomb

you should have the olive hallway on your right now

Turn

face

value.Sofa

side.Right

turn so that the bench is on your right

Fig. 5. Alignment visualization for two pairs of CAS (left) and natural
language instructions (top). Darker colors denote greater attention weights.

shows an example of a route instruction generated by our
system for a given map and path.

A. Aligner Ablation
Our model employs an aligner in order to learn to focus

on particular CAS tokens that are salient to words in the
output instruction. We evaluate the contribution of the aligner
by implementing and training an alternative model in which
the last encoder hidden state is fed to the decoder. Table I
compares the performance of the two models on the original
validation set. The inclusion of an aligner results in a slight
increase in the BLEU score of the generated instructions
relative to the human-provided references, and is also useful
as a means of visualizing the inner workings of our model
(as shown below). Additionally, we empirically find that the
aligner improves our model’s ability to learn the association
between CAS elements and words in the output, thereby
yielding better instructions.

Full Model No Aligner

sentence-level BLEU 74.67 74.40
corpus-level BLEU 60.10 57.40

TABLE I
ALIGNER ABLATION RESULTS.

B. Language Model Ablation
Our method employs a language model to rank instructions

generated for the different candidate CAS commands and
across different settings of the beam width. In practice, the
language model, trained on large amounts of English data,
helps to remove grammatically incorrect sentences produced
by the sequence-to-sequence model, which is only trained
on the smaller pairwise dataset. Table II presents two in-
struction candidates generated by our encoder-aligner-decoder
model for two different CAS commands. Our language model
successfully assigns high perplexity scores to the incorrect
instructions, with the chosen instruction being grammatically
correct.

C. Aligner Visualization
Figure 5 presents heat maps that visualize the alignment

between a CAS command input into surface realization (left)

LM-score Candidate

105.00 “so so a straight chair to your left”
27.65 “turn so that the chair is on your left side”

101.00 “keep going till the blue flor id on your left”
11.00 “move until you see blue floor to your right”

TABLE II
LANGUAGE MODEL ABLATION OUTPUTS

Fig. 6. Comparison between the performances achieved by the participants
while following human annotated and machine generated instructions.

and the generated route instruction (top) for two different sce-
narios drawn from the SAIL validation set. The visualizations
demonstrate that our method learns to align elements of the
formal CAS command with their corresponding words in the
generated instruction. For example, the network learns the
association between the honeycomb textured floor and its color
(top); that “bench” refers to sofa objects (bottom); and that the
phrase “you should have” indicates a verification action (top).

D. Human Evaluation
We evaluate the accuracy with which human participants

followed the natural language instructions in terms of the
Manhattan distance d between the desired destination (i.e., the
last pose of the target path) and the participant’s location when
s/he finished the scenario. Figure 6 compares the accuracy
of the participants’ paths when following human-generated
instructions (i.e., those from the SAIL test dataset) with those
corresponding to instructions that our method produced. We
report the fraction of times that participants finished within
different distances from the goal.3 The results demonstrate that
participants reached the desired position 4% more often when
following instructions generated using our method compared
against the human instruction baseline. When they didn’t reach
the destination, participants reached a location within one
vertex away 8% more often given our instructions. Meanwhile
our method yields a failure rate (d > 2) that is 6% lower.
Note that of scenarios in which participants reached the
destination, the total time required to interpret and follow our
method’s instructions is 9.52 s less than that of the human-
generated instructions, though the difference is not statistically
significant.

Figure 7 presents the participants’ responses to the survey
questions that query their experience following the instruc-
tions. By using IRL to learn a content selection policy for
constructing CAS structures, our method generates instruc-
tions that convey enough information to follow the command

3We note that the d = 0 accuracy for the human-generated instructions is
consistent with that reported elsewhere [9].

Language Generation/Dialogue by Robots

!   Navigation Dialogue

Information-Theoretic Dialog to
Improve Spatial-Semantic Representations

Sachithra Hemachandra Matthew R. Walter

Abstract— We propose an algorithm that enables robots to
improve their spatial-semantic representation of an environ-
ment by engaging users in dialog during a guided tour. The
algorithm selects the best information gathering actions in the
form of targeted questions that reduce the ambiguity over the
grounding of user-provided natural language descriptions (e.g.,
“The kitchen is down the hallway”). These questions include
those that query the robot’s local surround (e.g., “Are we in
front of the kitchen?”) as well as areas distant from the robot
(e.g., “Is the lounge near the conference room?”). Our algorithm
treats dialog as an optimization problem that seeks to balance
the information-theoretic value of candidate questions with a
measure of cost associated with dialog. In this manner, the
algorithm determines the best questions to ask based upon the
expected entropy reduction, while accounting for the burden on
the user. We evaluate entropy reduction for a joint distribution
over a hybrid metric, topological, and semantic representation
of the environment learned from user-provided descriptions and
the robot’s sensor data during the guided tour. We demonstrate
that, by asking deliberate questions of the user, the method
significantly improves the accuracy of the learned map.

I. INTRODUCTION

Robots are increasingly being deployed in human-
occupied environments. In order to be effective partners,
robots need to reason over representations of these envi-
ronments that model the spatial, topological, and semantic
properties (e.g., room types and names) that people associate
with their environment. An efficient means of learning these
representations is through a guided tour in which a human
provides natural language descriptions of the environment [1,
2, 3, 4, 5]. With these approaches, the robot takes a passive
role, whereby it infers information from the descriptions that
it fuses with its onboard sensor stream.

The challenge to learning is largely one of resolving
the high-level knowledge that language conveys with the
low-level observations from the robot’s sensors. Human
descriptions tend to be ambiguous, with several possible
interpretations (groundings) for a particular environment. For
example, the user may describe the location of the kitchen
as being “down the hallway,” yet there may be several
hallways nearby, each leading to a number of different
rooms. Furthermore, grounding language typically requires a
complete map, however, the robot may not yet have visited
the regions that the user is referring to. The user may be
describing a location known to the robot or a new location
outside the field-of-view of its sensors.

S. Hemachandra is with the Computer Science and Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, Cambridge, MA USA
sachih@csail.mit.edu

M.R. Walter is with the Toyota Technological Institute at Chicago,
Chicago, IL USA mwalter@ttic.edu

The kitchen is
down the
hallway

Is the kitchen
in front of me?

Yes

Fig. 1. A user gives a tour to a robotic wheelchair designed to assist resi-
dents in a long-term care facility. (Left) The guide provides an ambiguous
description of the kitchen’s location. (Right) When the robot is near one of
the likely locations, it asks the guide a question to resolve the ambiguity.

In this paper, we propose an active approach whereby
the robot asks targeted questions of the user as a means of
gathering information (Fig. 1). Engaging the user in dialog
requires choosing which question to ask and when to ask
it, while balancing the benefits of asking questions with the
cost that comes from interrupting the tour and burdening the
guide. There are three primary challenges to using dialog
as an information gathering action. First, the robot needs to
ask questions that provide enough context to the guide to be
understood. Second, the questions should be structured such
that the answers are as informative as possible. Third, the
decision of if and when to ask questions should account for
the social cost incurred by engaging the user in dialog.

We address these challenges by modeling human-robot
dialog during the tour as a decision process. During the
tour, the robot maintains a distribution over a semantic
graph [3, 4], a metric, topological, and semantic representa-
tion of the environment, using a Rao-Blackwellized particle
filter. Taking an information-theoretic approach, the algo-
rithm decides whether to follow the guide or ask questions
at each timestep in order to update the distribution. The
algorithm reasons over the natural language descriptions and
the current learned map to identify potential questions that
best reduce ambiguity in the map. The algorithm considers
egocentric (situated) and allocentric (non-situated) binary
(yes/no) questions that express spatial relations between pairs
of regions. These regions may be local to the robot in the
case of egocentric dialog (e.g., “Is the lab on my right?”)

Information-Theoretic Dialog to Improve Spatial-Semantic Representations. Hemachandra and Walter. IROS 2015.

Language Generation/Dialogue by Robots

!   Manipulation Dialogue

Clarifying Commands with Information-Theoretic Human-Robot Dialog. Deits et al. JHRI 2013.

Deits et al., Clarifying Commands with Information-Theoretic Human-Robot Dialog

λ1

“Pick up”

Command

γ1

φ1

λ2

“the pallet.”

φ2

γ2

λ3

“Which one?”

Question

γ3

φ3

Answer

λ5

“The one”

φ5

γ5

λ6

“near”

φ6

λ7

“the truck.”

γ6

φ7

(a) Unmerged grounding graphs for three dialog acts. The noun phrases “the pallet,” “one” and “the one near the truck”
refer to the same grounding in the external world but initially have separate variables in the grounding graphs.

λ1

“Pick up”

γ1

φ1

λ2

“the pallet.”

φ2

λ3

“Which one?”

γ3

φ3

λ5

“The one”

φ5

λ6

“near”

φ6

λ7

“the truck.”

γ6

φ7

(b) The grounding graph after merging γ2, γ3 and γ5 based on linguistic coreference.

Figure 2. Grounding graphs for a three-turn dialog, before and after merging based on coreference. The robot

merges the three shaded variables.

Features correspond to the degree to which the γ1 . . . γN correctly ground λi. These features
define a perceptual representation in terms of mapping between the grounding and words in the
language. For example, for a prepositional relation such as “on,” a natural feature is whether the
grounding corresponding to the head noun phrase is supported by the grounding corresponding to
the argument noun phrases. However, the feature ‘supports(γi, γj)’ alone is not enough to enable
the model to learn that “on” corresponds to ‘supports(γi, γj)’. Instead, we need a feature that also
takes into account the word “on” so that,

supports(γi, γj) ∧ (“on” ∈ λi) (10)

Thus features consist of the Cartesian product of perceptual features such as supports crossed with
the presence of words in the linguistic constituent associated with the corresponding factor in the
grounding graph.

This system follows natural language commands by optimizing the objective in Equation 7.
It carries out approximate inference by performing beam search over γ1 . . . γN . It searches over
possible bindings for these variables in the space of values defined in the environment model
M . It then computes the probability of each assignment using Equation 7; the result is the
maximum probability assignment of values to all the variables γ1 . . . γN . Although we are using
p(Φ|Λ, γ1 . . . γN) as the objective function, Φ is fixed, and the γ1 . . . γN are unknown. Given our
independence assumptions, this approach is valid because p(Φ|Λ, γ1 . . . γN) corresponds to the joint
distribution over all the variables given in Equation 5. We discretize the space of possible groundings

63

Language Generation/Dialogue by Robots

!   Manipulation Dialogue

Clarifying Commands with Information-Theoretic Human-Robot Dialog. Deits et al. JHRI 2013.

Deits et al., Clarifying Commands with Information-Theoretic Human-Robot Dialog

to make this search problem tractable. If no correct grounding exists in the space of possible values,
then the system will not be able to find the correct value; in this case it will return the best value that
it found.

3. Technical Approach

When faced with a command, the system parses the language into the corresponding grounding
graphs and performs inference to find the most likely set of values for the grounding variables
γ1 . . . γN . The results described in this paper use ground-truth syntax parses, but automatic
parsing strategies are also possible.3 Next, the system identifies the best question to ask using
an entropy-based metric and asks it, as described in Section 3.1. We describe and analyze three
such metrics for selecting questions in Sections 3.1.1 and 3.1.2. After asking the chosen question
and receiving an answer from a human partner, the robot merges grounding graphs that correspond
to the original command, question, and answer into a single graphical model. Finally, the system
performs inference in the merged graph to find a new set of groundings that incorporates information
from the answer as well as information from the original command. Figure 3 shows the dataflow in
the system.

Figure 3. System diagram. Grayed-out blocks show components developed in previous work and are therefore

not discussed in detail in this paper; black blocks show the question-asking feedback system new to this paper.

3.1 Generating Questions

In this paper we consider three general categories of questions: yes-or-no, targeted, and reset.
A yes-or-no question asks the user for confirmation of the correspondence between a particular

3In our previous work, we showed that the Stanford Parser (Marneffe et al., 2006) could be used to parse commands at
the cost of a roughly 10% penalty in command understanding accuracy. However answers to questions are often incomplete
sentences that do not match well with the training set used by the automatic parser. We used ground-truth parses to focus the
evaluation on the semantics and question-asking parts of the system rather than parsing accuracy which is not a focus of our
research.

64

Language Generation/Dialogue by Robots

!   Manipulation Dialogue

Clarifying Commands with Information-Theoretic Human-Robot Dialog. Deits et al. JHRI 2013.

Deits et al., Clarifying Commands with Information-Theoretic Human-Robot Dialog

Command: Move your pallet further right.
Question: What do the words ‘your pallet’ refer to?

Answer: Your pallet refers to the pallet you are currently carrying.

Command: Move closer to it.
Question: What does the word ‘it’ refer to?

Answer: It refers to the empty truck trailer.

Command: Take the pallet and place it on the one to the left.
Question: What do the words ‘the one’ refer to?

Answer: The one refers to the empty trailer.

Command: Place the pallet just to the right of the other pallet.
Question: What do the words ‘the pallet’ refer to?

Answer: The wooden crate that the merchandise sits on
top of.

Figure 4. Sample commands, questions, and answers from the corpus.

Resolving linguistic coreferences involves identifying linguistic constituents that refer to the
same entity in the external world. For example, in the command, “Pick up the tire pallet and
put it on the truck,” the noun phrases “the tire pallet” and “it” refer to the same physical object
in the external world, or we can also say they corefer. Coreference resolution is a well-studied
problem in computational linguistics (Jurafsky & Martin, 2008). Although there are several existing
software packages to address this problem, most were developed for large corpora of newspaper
articles and generalized poorly to language in our corpus. Instead, we created a coreference
system that was trained on language from our corpus. Following typical approaches to coreference
resolution (Stoyanov et al., 2010), our system consists of a classifier to predict coreference between
all pairs of noun phrases in the language combined with a clustering algorithm that enforces
transitivity and finds antecedents for all pronouns. For the pair-wise classifier we used a log-linear
model that uses bag-of-words features. The model was trained using an annotated corpus of positive
and negative pairs of coreferences. We set the classification threshold of the model to 0.5 so that it
chooses the result with the most probability mass. Once coreferring variables have been identified,
a merging algorithm creates a single unified grounding graph. The coreference resolution algorithm
identifies pairs of variables γ in the grounding graph that corefer, and the merging algorithm
combines all pairs of coreferring variables. Figure 2 shows a merged graph created from a command,
a question, and an answer.

The coreference algorithm is used to merge the information from the open-ended answer to a
reset or “What do you mean by ‘X’?” question, since answers to both types of questions introduce
new noun phrases that must be understood. However, in the case of yes-or-no questions the system
has already identified the word or words about which to ask, and the answer provides no new
language to be merged so language-based coreference is not needed.

For yes-or-no questions, we incorporate a special factor with local probability of 0 or 1. This

69

Language Generation/Dialogue by Robots

Figure 1: An example setup and dialogue. Objects
are marked with labels only for the illustration pur-
pose.

based on the step-by-step instructions (i.e., one
step at a time and wait for the robot’s response
at each step before going to the next step) with
the one-shot instructions (i.e., give the instruction
with all steps at once). Our empirical results have
shown that the three-tier knowledge representation
can capture the learned new action and apply it
to novel situations. Although the step-by-step in-
structions resulted in a lengthier teaching process
compared to the one-shot instructions, they led to
better learning performance for the robot.

2 Related Work

Over forty years ago, Terry Winograd developed
SHRDLU (Winograd, 1972) to demonstrate nat-
ural language understanding using a simulated
block-moving arm. One aspect he did not address,
but mentioned in his thesis (Winograd, 1972) as
an important aspect, was learning new actions
through natural language. Motivated by Wino-
grad’s early work, we start our initial investigation
on action learning in a physical blocks world and
with a physical robotic arm. The blocks world is
the most famous domain used for planning in ar-
tificial intelligence. Thus it allows us to focus on
mechanisms that, on one hand, connect symbolic
representations of language with lower-level con-
tinuous sensorimotor representations of the robot;
and on the other hand, support the use of the plan-
ning algorithms to address novel situations.

Most previous work on following human in-
structions are based on supervised learning (Kol-
lar et al., 2010; Tellex et al., 2011; Chen et al.,
2010) or reinforcement learning (Branavan et al.,
2012; Branavan et al., 2010). These types of learn-

ing may not be adequate in time-critical situations
where only resources available to the robot is its
human partners. Thus it is desirable that humans
can engage in a natural language dialogue to teach
robots new skills. Using natural language dialogue
to learn new skills have been explored previously
by (Allen et al., 2007) where an artificial agent was
developed to acquire skills through natural lan-
guage instructions (i.e., find restaurant). But this
work only grounds language to symbolic interface
widgets on web pages.

In the robotics community, previous work has
applied learning by demonstration to teach robots
new skills (Cakmak et al., 2010). To potentially
allow natural language instructions, previous work
has also explored connecting language with lower-
level control systems (Kress-Gazit et al., 2008;
Siskind, 1999; Matuszek et al., 2012). Different
from these previous works, here we investigate the
use of natural language dialogue for learning ac-
tions. Previous work described in (Cantrell et al.,
2012; Mohan et al., 2013) is most similar to our
work. Here we focus on both grounded learning
and the use of planning for action learning.

3 Dialogue System

Figure 2: System Architecture

We developed a dialogue system to support
learning new actions. An example setup is shown
in Figure 1, in which a SCHUNK arm is used to
manipulate blocks placed on a surface. In H1,
the human starts to ask the robot to stack the blue
block (i.e., B1) on top of the red block (i.e., R1).
The robot does not understand the action “stack”,
so it asks the human for instructions. Then the hu-

90

Back to the Blocks World: Learning New Actions through Situated Human-Robot Dialogue. She, Yang, Cheng, Jia, Chai, Xi. SigDial 2014.

!   Learning New Actions via Dialogue

Language Generation/Dialogue by Robots

Figure 3: The Mechanical Turk interface for the delivery task. This abridged conversation is from a Turker in training batch
0, when the system had access to only the seed lexicon. Because of this conversation, the agent learned that “calender” and
“planner” mean “calendar” during retraining.

Figure 4: Left: Average Mechanical Turk survey responses across the four test batches. Right: Mean user turns in Mechanical
Turk dialogs where the correct goal was reached. Means in underlined bold differ significantly (p < 0.05) from the batch 0
mean.

dition to learning misspelling corrections and new referring
expressions, the agent learned to parse things like “item in
slot n” by matching n to the corresponding item and collaps-
ing the whole phrase to this meaning.

6 Segbot Experiments
The agent was integrated into a Segway-based robot platform
(Segbot) as shown in Figure 5 (Left) using the Robot Operat-
ing System (ROS) [Quigley et al., 2009].

6.1 Implementation
The robot architecture is shown in Figure 5 (Right). Users in-
teracted with the agent through a graphical user interface by
typing in natural language. The agent generated queries to a
symbolic planner formalized using action language BC [Lee
et al., 2013] from user goals. Action languages are used for
representing and reasoning with the preconditions, effects,
and executability of actions, and BC is good at reasoning with

domain knowledge. The sensor readings were converted to
logical facts provided to the symbolic planner. For instance,
we used laser sensors to detect whether office doors were
open. The Segbot learned action costs from experience us-
ing an existing approach [Khandelwal et al., 2014], and the
symbolic planner generated lowest-cost plans. The action
executor used a manually-created semantic map to translate
symbolic actions into path-planner executions. We used ex-
isting ROS packages for path planning (e.g. A* search for
global path planning and Elastic Band for local path plan-
ning). The sensor readings from the RGB-D camera (Kinect),
laser, and sonar array were projected onto a 2D costmap so
that the robot could safely avoid obstacles such as high tables
and glass windows.

6.2 Methodology
For testing, users were given one goal from the navigation and
delivery tasks, then filled out the survey. The task prompts

Figure 5: Left: Robot platform (Segbot) used in experi-
ments. Right: Segbot architecture, implemented using Robot
Operating System (ROS).

included the directory panels used in the Mechanical Turk
experiments pairing names and office numbers and showing
items available to the robot for delivery (Figure 3).

We evaluated our agent’s initial performance by giving 10
users one of each of these goals (so each delivery test goal was
seen once and each navigation test goal was seen 5 times).
Users were allowed to skip goals they felt they could not con-
vey. We refer to this group as Init Test.

We then allowed the agent to perform incremental learning
for four days in our office space. Students working here were
encouraged to chat with it, but were not instructed on how to
do so beyond a panel displaying the directory information and
a brief prompt saying the robot could only perform “naviga-
tion and delivery tasks”. Users in test conditions did not in-
teract with the robot during training. After understanding and
carrying out a goal, the robot prompted the user for whether
the actions taken were correct. If they answered “yes” and the
goal was not in the test set, the agent retrained its semantic
parser with new training examples aligned from the conver-
sation. View a video demonstrating the learning process on
the Segbot at: https://youtu.be/FL9IhJQOzb8.

We evaluated the retrained agent as before. The same test-
ing goal pairs were used with 10 new users. We refer to this
latter set as Trained Test.

6.3 Results
During training, the robot understood and carried out 35
goals, learning incrementally from these conversations. Ta-
ble 2 compares the survey responses of users and the num-
ber of goals users completed of each task type in the Init
Test and Trained Test groups. Because only two users
completed delivery goals in Init Test, we use the pro-
portion of users having completed goals in each task, rather
than conversation length, as a metric for dialog efficiency. For
navigation goals, Init Test had an average dialog length
of 3.89, slightly longer than the 3.33 for Train Test.

We note that there is significant improvement in user per-
ception of the robot’s understanding, and trends towards less
user frustration and higher delivery-goal correctness. Though
users did not significantly favor using the robot for tasks af-
ter training, several users in both groups commented that they
would not use guidance only because the Segbot moved too

Table 2: Average Segbot survey responses from the two test
groups and the proportion of task goals completed. Means in
bold differ significantly (p < 0.05). Means in italics trend
different (p < 0.1).

Init Test Trained Test

Survey Question Likert [0-4]
Tasks Easy 3.8 3.7
Robot Understood 1.6 2.9
Robot Frustrated 2.5 1.5
Use Navigation 2.8 2.5
Use Delivery 1.6 2.5
Goals Completed Percent
Navigation 90 90
Delivery 20 60

slowly.

7 Conclusions and Future Work
We implemented an agent that expands its natural language
understanding incrementally from conversations with users
by combining semantic parsing and dialog management. We
demonstrated that this learning yields significant improve-
ments in user experience and dialog efficiency through Me-
chanical Turk experiments with hundreds of users. A proof-
of-concept experiment on a Segbot platform showed similar
improvements when learning was restricted to natural conver-
sations the agent had over a few days’ time.

This work provides initial steps towards expanding natural-
language understanding for robot commands using natural
conversations with users as training data. Our agent improves
its language understanding without requiring a large corpus
of annotated data.

We intend to replace our static dialog policy with a
POMDP-based policy [Young et al., 2013] that considers the
continuous belief state about the user goal. Incremental learn-
ing will then involve updating the dialog policy through rein-
forcement learning based on parser confidence and conver-
sation success. We will also explore whether our approach
can automatically learn to correct consistent speech recogni-
tion errors. As the robot platform gains access to more tasks,
such as manipulation of items, doors, and light-switches via
an arm attachment, we will scale the agent to learn the lan-
guage users employ in that larger goal space. We also plan to
add agent perception, so that some predicates can be associ-
ated with perceptual classifiers [Matuszek et al., 2012], and
new predicates can be discovered for new words.

8 Acknowledgments
We thank the anonymous reviewers for their feedback. A por-
tion of this work has taken place in the Learning Agents Re-
search Group (LARG) at UT Austin. LARG research is sup-
ported in part by NSF (CNS-1330072, CNS-1305287), ONR
(21C184-01), and AFOSR (FA8750-14-1-0070, FA9550-14-
1-0087).

Learning to Interpret Natural Language Commands through Human-Robot Dialog. Thomason, Zhang, Mooney and Stone. IJCAI 2015.

