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Announcements 

!   Chapter section summaries were due yesterday 

!   Make sure you regularly check your ConnectCarolina email id’s 

!   1st Coding assignment to be out soon 

!   Start thinking of projects early! 

!   TA: Yixin Nie (yixin1@cs.unc.edu) -- will announce office hours 

soon! 



Recap of Distributional Semantics 

!   Words occurring in similar context have similar linguistic 
behavior (meaning) [Harris, 1954; Firth, 1957] 

!   Traditional approach: context-counting vectors 
!   Count left and right context in window 
!   Reweight with PMI or LLR 
!   Reduce dimensionality with SVD or NNMF 
 

 [Pereira et al., 1993; Lund & Burgess, 1996; Lin, 1998; Lin and Pantel, 2001; 
 Sahlgren, 2006; Pado & Lapata, 2007; Turney and Pantel, 2010; Baroni and 
 Lenci, 2010] 

 
!   More word representations: hierarchical clustering based on 

bigram LM LL  
      [Brown et al., 1992] 

Ms. Haag plays Elianti .*
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Figure 1: An example of a labeled dependency tree. The
tree contains a special token “*” which is always the root
of the tree. Each arc is directed from head to modifier and
has a label describing the function of the attachment.

and clustering, Section 3 describes the cluster-based
features, Section 4 presents our experimental results,
Section 5 discusses related work, and Section 6 con-
cludes with ideas for future research.

2 Background

2.1 Dependency parsing

Recent work (Buchholz and Marsi, 2006; Nivre
et al., 2007) has focused on dependency parsing.
Dependency syntax represents syntactic informa-
tion as a network of head-modifier dependency arcs,
typically restricted to be a directed tree (see Fig-
ure 1 for an example). Dependency parsing depends
critically on predicting head-modifier relationships,
which can be difficult due to the statistical sparsity
of these word-to-word interactions. Bilexical depen-
dencies are thus ideal candidates for the application
of coarse word proxies such as word clusters.

In this paper, we take a part-factored structured
classification approach to dependency parsing. For a
given sentence x, let Y(x) denote the set of possible
dependency structures spanning x, where each y �
Y(x) decomposes into a set of “parts” r � y. In the
simplest case, these parts are the dependency arcs
themselves, yielding a first-order or “edge-factored”
dependency parsing model. In higher-order parsing
models, the parts can consist of interactions between
more than two words. For example, the parser of
McDonald and Pereira (2006) defines parts for sib-
ling interactions, such as the trio “plays”, “Elianti”,
and “.” in Figure 1. The Carreras (2007) parser
has parts for both sibling interactions and grandpar-
ent interactions, such as the trio “*”, “plays”, and
“Haag” in Figure 1. These kinds of higher-order
factorizations allow dependency parsers to obtain a
limited form of context-sensitivity.

Given a factorization of dependency structures
into parts, we restate dependency parsing as the fol-
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Figure 2: An example of a Brown word-cluster hierarchy.
Each node in the tree is labeled with a bit-string indicat-
ing the path from the root node to that node, where 0
indicates a left branch and 1 indicates a right branch.

lowing maximization:

PARSE(x;w) = argmax
y�Y(x)

X

r�y

w · f(x, r)

Above, we have assumed that each part is scored
by a linear model with parameters w and feature-
mapping f(·). For many different part factoriza-
tions and structure domains Y(·), it is possible to
solve the above maximization efficiently, and several
recent efforts have concentrated on designing new
maximization algorithms with increased context-
sensitivity (Eisner, 2000; McDonald et al., 2005b;
McDonald and Pereira, 2006; Carreras, 2007).

2.2 Brown clustering algorithm
In order to provide word clusters for our exper-
iments, we used the Brown clustering algorithm
(Brown et al., 1992). We chose to work with the
Brown algorithm due to its simplicity and prior suc-
cess in other NLP applications (Miller et al., 2004;
Liang, 2005). However, we expect that our approach
can function with other clustering algorithms (as in,
e.g., Li and McCallum (2005)). We briefly describe
the Brown algorithm below.

The input to the algorithm is a vocabulary of
words to be clustered and a corpus of text containing
these words. Initially, each word in the vocabulary
is considered to be in its own distinct cluster. The al-
gorithm then repeatedly merges the pair of clusters
which causes the smallest decrease in the likelihood
of the text corpus, according to a class-based bigram
language model defined on the word clusters. By
tracing the pairwise merge operations, one obtains
a hierarchical clustering of the words, which can be
represented as a binary tree as in Figure 2.

Within this tree, each word is uniquely identified
by its path from the root, and this path can be com-
pactly represented with a bit string, as in Figure 2.
In order to obtain a clustering of the words, we se-
lect all nodes at a certain depth from the root of the
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Unsupervised Embeddings 

!   Vector space representations learned on unlabeled linear context 
(i.e., left/right words): distributional semantics (Harris, 1954; Firth, 1957) 



Distributional Semantics -- NNs 

!   Newer approach: context-predicting vectors (NNs) 
!   SENNA [Collobert and Weston, 2008; Collobert et al., 2011]: Multi-layer 

DNN w/ ranking-loss objective; BoW and sentence-level feature 
layers, followed by std. NN layers. Similar to [Bengio et al., 2003]. 

BENGIO, DUCHARME, VINCENT AND JAUVIN
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Figure 1: Neural architecture: f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1)) where g is the
neural network andC(i) is the i-th word feature vector.

parameters of the mapping C are simply the feature vectors themselves, represented by a |V |⇥m
matrixC whose row i is the feature vectorC(i) for word i. The function g may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters ω. The
overall parameter set is θ= (C,ω).

Training is achieved by looking for θ that maximizes the training corpus penalized log-likelihood:

L=
1
T ∑t

log f (wt ,wt�1, · · · ,wt�n+1;θ)+R(θ),

where R(θ) is a regularization term. For example, in our experiments, R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parameters only scales linearly with V , the number of
words in the vocabulary. It also only scales linearly with the order n : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layer C, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with a softmax output layer, which guarantees
positive probabilities summing to 1:

P̂(wt |wt�1, · · ·wt�n+1) =
eywt
∑i eyi

.

3. The biases are the additive parameters of the neural network, such as b and d in equation 1 below.

1142



Distributional Semantics -- NNs 

!   CBOW, SKIP, word2vec [Mikolov et al., 2013]: Simple, super-fast NN w/ no 
hidden layer. Continuous BoW model predicts word given context, skip-
gram model predicts surrounding context words given current word 

 
 

!   Other: [Mnih and Hinton, 2007; Turian et al., 2010] 

!   Demos: h#ps://code.google.com/p/word2vec,	
h#p://metaop7mize.com/projects/wordreprs/, h#p://ml.nec-labs.com/senna/	
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Figure 1: New model architectures. The CBOW architecture predicts the current word based on the
context, and the Skip-gram predicts surrounding words given the current word.

R words from the future of the current word as correct labels. This will require us to do R ⇥ 2
word classifications, with the current word as input, and each of the R + R words as output. In the
following experiments, we use C = 10.

4 Results

To compare the quality of different versions of word vectors, previous papers typically use a table
showing example words and their most similar words, and understand them intuitively. Although
it is easy to show that word France is similar to Italy and perhaps some other countries, it is much
more challenging when subjecting those vectors in a more complex similarity task, as follows. We
follow previous observation that there can be many different types of similarities between words, for
example, word big is similar to bigger in the same sense that small is similar to smaller. Example
of another type of relationship can be word pairs big - biggest and small - smallest [20]. We further
denote two pairs of words with the same relationship as a question, as we can ask: ”What is the
word that is similar to small in the same sense as biggest is similar to big?”

Somewhat surprisingly, these questions can be answered by performing simple algebraic operations
with the vector representation of words. To find a word that is similar to small in the same sense as
biggest is similar to big, we can simply compute vector X = vector(”biggest”)�vector(”big”)+
vector(”small”). Then, we search in the vector space for the word closest to X measured by cosine
distance, and use it as the answer to the question (we discard the input question words during this
search). When the word vectors are well trained, it is possible to find the correct answer (word
smallest) using this method.

Finally, we found that when we train high dimensional word vectors on a large amount of data, the
resulting vectors can be used to answer very subtle semantic relationships between words, such as
a city and the country it belongs to, e.g. France is to Paris as Germany is to Berlin. Word vectors
with such semantic relationships could be used to improve many existing NLP applications, such
as machine translation, information retrieval and question answering systems, and may enable other
future applications yet to be invented.
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Skipgram word2vec 
[Mikolov et al., 2013] 

Few mins. vs. days/weeks/months!! 
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Skip-gram word2vec Objective Function 

!   Objective of Skip-gram model is to max. the avg. log probability: 
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Figure 1: The Skip-gram model architecture. The training objective is to learn word vector representations
that are good at predicting the nearby words.

In this paper we present several extensions of the original Skip-gram model. We show that sub-
sampling of frequent words during training results in a significant speedup (around 2x - 10x), and
improves accuracy of the representations of less frequent words. In addition, we present a simpli-
fied variant of Noise Contrastive Estimation (NCE) [4] for training the Skip-grammodel that results
in faster training and better vector representations for frequent words, compared to more complex
hierarchical softmax that was used in the prior work [8].

Word representations are limited by their inability to represent idiomatic phrases that are not com-
positions of the individual words. For example, “Boston Globe” is a newspaper, and so it is not a
natural combination of the meanings of “Boston” and “Globe”. Therefore, using vectors to repre-
sent the whole phrases makes the Skip-gram model considerably more expressive. Other techniques
that aim to represent meaning of sentences by composing the word vectors, such as the recursive
autoencoders [15], would also benefit from using phrase vectors instead of the word vectors.

The extension from word based to phrase based models is relatively simple. First we identify a large
number of phrases using a data-driven approach, and then we treat the phrases as individual tokens
during the training. To evaluate the quality of the phrase vectors, we developed a test set of analogi-
cal reasoning tasks that contains both words and phrases. A typical analogy pair from our test set is
“Montreal”:“Montreal Canadiens”::“Toronto”:“TorontoMaple Leafs”. It is considered to have been
answered correctly if the nearest representation to vec(“Montreal Canadiens”) - vec(“Montreal”) +
vec(“Toronto”) is vec(“Toronto Maple Leafs”).

Finally, we describe another interesting property of the Skip-gram model. We found that simple
vector addition can often produce meaningful results. For example, vec(“Russia”) + vec(“river”) is
close to vec(“Volga River”), and vec(“Germany”) + vec(“capital”) is close to vec(“Berlin”). This
compositionality suggests that a non-obvious degree of language understanding can be obtained by
using basic mathematical operations on the word vector representations.

2 The Skip-gram Model

The training objective of the Skip-gram model is to find word representations that are useful for
predicting the surrounding words in a sentence or a document. More formally, given a sequence of
training wordsw1, w2, w3, . . . , wT , the objective of the Skip-grammodel is to maximize the average
log probability

1

T

T
∑

t=1

∑

−c≤j≤c,j ̸=0

log p(wt+j |wt) (1)

where c is the size of the training context (which can be a function of the center word wt). Larger
c results in more training examples and thus can lead to a higher accuracy, at the expense of the

2

training time. The basic Skip-gram formulation defines p(wt+j |wt) using the softmax function:

p(wO|wI) =
exp

(

v′wO

⊤vwI

)

∑W
w=1 exp

(

v′w
⊤vwI

) (2)

where vw and v′w are the “input” and “output” vector representations of w, and W is the num-
ber of words in the vocabulary. This formulation is impractical because the cost of computing
∇ log p(wO|wI) is proportional toW , which is often large (105–107 terms).

2.1 Hierarchical Softmax

A computationally efficient approximation of the full softmax is the hierarchical softmax. In the
context of neural network language models, it was first introduced by Morin and Bengio [12]. The
main advantage is that instead of evaluating W output nodes in the neural network to obtain the
probability distribution, it is needed to evaluate only about log2(W ) nodes.

The hierarchical softmax uses a binary tree representation of the output layer with theW words as
its leaves and, for each node, explicitly represents the relative probabilities of its child nodes. These
define a random walk that assigns probabilities to words.

More precisely, each word w can be reached by an appropriate path from the root of the tree. Let
n(w, j) be the j-th node on the path from the root to w, and let L(w) be the length of this path, so
n(w, 1) = root and n(w,L(w)) = w. In addition, for any inner node n, let ch(n) be an arbitrary
fixed child of n and let [[x]] be 1 if x is true and -1 otherwise. Then the hierarchical softmax defines
p(wO|wI) as follows:

p(w|wI ) =

L(w)−1
∏

j=1

σ
(

[[n(w, j + 1) = ch(n(w, j))]] · v′n(w,j)
⊤
vwI

)

(3)

where σ(x) = 1/(1 + exp(−x)). It can be verified that
∑W

w=1 p(w|wI) = 1. This implies that the
cost of computing log p(wO|wI) and ∇ log p(wO|wI) is proportional to L(wO), which on average
is no greater than logW . Also, unlike the standard softmax formulation of the Skip-gram which
assigns two representations vw and v′w to each word w, the hierarchical softmax formulation has
one representation vw for each word w and one representation v′n for every inner node n of the
binary tree.

The structure of the tree used by the hierarchical softmax has a considerable effect on the perfor-
mance. Mnih and Hinton explored a number of methods for constructing the tree structure and the
effect on both the training time and the resulting model accuracy [10]. In our work we use a binary
Huffman tree, as it assigns short codes to the frequent words which results in fast training. It has
been observed before that grouping words together by their frequency works well as a very simple
speedup technique for the neural network based language models [5, 8].

2.2 Negative Sampling

An alternative to the hierarchical softmax is Noise Contrastive Estimation (NCE), which was in-
troduced by Gutmann and Hyvarinen [4] and applied to language modeling by Mnih and Teh [11].
NCE posits that a good model should be able to differentiate data from noise by means of logistic
regression. This is similar to hinge loss used by Collobert and Weston [2] who trained the models
by ranking the data above noise.

While NCE can be shown to approximately maximize the log probability of the softmax, the Skip-
gram model is only concerned with learning high-quality vector representations, so we are free to
simplify NCE as long as the vector representations retain their quality. We define Negative sampling
(NEG) by the objective

log σ(v′wO

⊤
vwI

) +
k
∑

i=1

Ewi∼Pn(w)

[

log σ(−v′wi

⊤
vwI

)
]

(4)

3

!   The above conditional probability is defined via the softmax function: 

 
	where v and v′ are the “input” and “output” vector representations 
 of w, and W is the number of words in the vocabulary 

[Mikolov et al., 2013] 



Efficient Skip-gram word2vec: 

!   Negative Sampling: 

!   I.e., to distinguish the target word wo from draws from the noise 
distribution Pn(w) using logistic regression, where there are k 
negative samples for each data sample. 

training time. The basic Skip-gram formulation defines p(wt+j |wt) using the softmax function:
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A computationally efficient approximation of the full softmax is the hierarchical softmax. In the
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probability distribution, it is needed to evaluate only about log2(W ) nodes.

The hierarchical softmax uses a binary tree representation of the output layer with theW words as
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define a random walk that assigns probabilities to words.
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is no greater than logW . Also, unlike the standard softmax formulation of the Skip-gram which
assigns two representations vw and v′w to each word w, the hierarchical softmax formulation has
one representation vw for each word w and one representation v′n for every inner node n of the
binary tree.
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effect on both the training time and the resulting model accuracy [10]. In our work we use a binary
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troduced by Gutmann and Hyvarinen [4] and applied to language modeling by Mnih and Teh [11].
NCE posits that a good model should be able to differentiate data from noise by means of logistic
regression. This is similar to hinge loss used by Collobert and Weston [2] who trained the models
by ranking the data above noise.

While NCE can be shown to approximately maximize the log probability of the softmax, the Skip-
gram model is only concerned with learning high-quality vector representations, so we are free to
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Efficient Skip-gram word2vec: 

!   Hierarchical Softmax: 

!   Instead of evaluating W output nodes in the neural network to obtain 
the probability distribution, it is needed to evaluate only about 
log2(W) nodes.  

!   Uses a binary tree representation of the output layer with the W 
words as its leaves and, for each node, explicitly represents the 
relative probabilities of its child nodes. These define a random walk 
that assigns probabilities to words. 
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is no greater than logW . Also, unlike the standard softmax formulation of the Skip-gram which
assigns two representations vw and v′w to each word w, the hierarchical softmax formulation has
one representation vw for each word w and one representation v′n for every inner node n of the
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The structure of the tree used by the hierarchical softmax has a considerable effect on the perfor-
mance. Mnih and Hinton explored a number of methods for constructing the tree structure and the
effect on both the training time and the resulting model accuracy [10]. In our work we use a binary
Huffman tree, as it assigns short codes to the frequent words which results in fast training. It has
been observed before that grouping words together by their frequency works well as a very simple
speedup technique for the neural network based language models [5, 8].
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NCE posits that a good model should be able to differentiate data from noise by means of logistic
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While NCE can be shown to approximately maximize the log probability of the softmax, the Skip-
gram model is only concerned with learning high-quality vector representations, so we are free to
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Analogy Properties Learned 
[Mikolov et al., 2013] 

Figure 2: Left panel shows vector offsets for three word
pairs illustrating the gender relation. Right panel shows
a different projection, and the singular/plural relation for
two words. In high-dimensional space, multiple relations
can be embedded for a single word.

provided. We have explored several related meth-
ods and found that the proposed method performs
well for both syntactic and semantic relations. We
note that this measure is qualitatively similar to rela-
tional similarity model of (Turney, 2012), which pre-
dicts similarity between members of the word pairs
(xb, xd), (xc, xd) and dis-similarity for (xa, xd).

6 Experimental Results

To evaluate the vector offset method, we used
vectors generated by the RNN toolkit of Mikolov
(2012). Vectors of dimensionality 80, 320, and 640
were generated, along with a composite of several
systems, with total dimensionality 1600. The sys-
tems were trained with 320M words of Broadcast
News data as described in (Mikolov et al., 2011a),
and had an 82k vocabulary. Table 2 shows results
for both RNNLM and LSA vectors on the syntactic
task. LSA was trained on the same data as the RNN.
We see that the RNN vectors capture significantly
more syntactic regularity than the LSA vectors, and
do remarkably well in an absolute sense, answering
more than one in three questions correctly. 2

In Table 3 we compare the RNN vectors with
those based on the methods of Collobert and We-
ston (2008) and Mnih and Hinton (2009), as imple-
mented by (Turian et al., 2010) and available online
3 Since different words are present in these datasets,
we computed the intersection of the vocabularies of
the RNN vectors and the new vectors, and restricted
the test set and word vectors to those. This resulted
in a 36k word vocabulary, and a test set with 6632

2Guessing gets a small fraction of a percent.
3http://metaoptimize.com/projects/wordreprs/

Method Adjectives Nouns Verbs All
LSA-80 9.2 11.1 17.4 12.8
LSA-320 11.3 18.1 20.7 16.5
LSA-640 9.6 10.1 13.8 11.3
RNN-80 9.3 5.2 30.4 16.2
RNN-320 18.2 19.0 45.0 28.5
RNN-640 21.0 25.2 54.8 34.7
RNN-1600 23.9 29.2 62.2 39.6

Table 2: Results for identifying syntactic regularities for
different word representations. Percent correct.

Method Adjectives Nouns Verbs All
RNN-80 10.1 8.1 30.4 19.0
CW-50 1.1 2.4 8.1 4.5
CW-100 1.3 4.1 8.6 5.0
HLBL-50 4.4 5.4 23.1 13.0
HLBL-100 7.6 13.2 30.2 18.7

Table 3: Comparison of RNN vectors with Turian’s Col-
lobert and Weston based vectors and the Hierarchical
Log-Bilinear model of Mnih and Hinton. Percent correct.

questions. Turian’s Collobert and Weston based vec-
tors do poorly on this task, whereas the Hierarchical
Log-Bilinear Model vectors of (Mnih and Hinton,
2009) do essentially as well as the RNN vectors.
These representations were trained on 37M words
of data and this may indicate a greater robustness of
the HLBL method.

We conducted similar experiments with the se-
mantic test set. For each target word pair in a rela-
tion category, the model measures its relational sim-
ilarity to each of the prototypical word pairs, and
then uses the average as the final score. The results
are evaluated using the two standard metrics defined
in the task, Spearman’s rank correlation coefficient
� and MaxDiff accuracy. In both cases, larger val-
ues are better. To compare to previous systems, we
report the average over all 69 relations in the test set.

From Table 4, we see that as with the syntac-
tic regularity study, the RNN-based representations
perform best. In this case, however, Turian’s CW
vectors are comparable in performance to the HLBL
vectors. With the RNN vectors, the performance im-
proves as the number of dimensions increases. Sur-
prisingly, we found that even though the RNN vec-
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Analogy Properties Learned 
[Mikolov et al., 2013] 
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Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their
capital cities. The figure illustrates ability of the model to automatically organize concepts and learn implicitly
the relationships between them, as during the training we did not provide any supervised information about
what a capital city means.

which is used to replace every logP (wO|wI) term in the Skip-gram objective. Thus the task is to
distinguish the target word wO from draws from the noise distribution Pn(w) using logistic regres-
sion, where there are k negative samples for each data sample. Our experiments indicate that values
of k in the range 5–20 are useful for small training datasets, while for large datasets the k can be as
small as 2–5. The main difference between the Negative sampling and NCE is that NCE needs both
samples and the numerical probabilities of the noise distribution, while Negative sampling uses only
samples. And while NCE approximately maximizes the log probability of the softmax, this property
is not important for our application.

Both NCE and NEG have the noise distributionPn(w) as a free parameter. We investigated a number
of choices for Pn(w) and found that the unigram distribution U(w) raised to the 3/4rd power (i.e.,
U(w)3/4/Z) outperformed significantly the unigram and the uniform distributions, for both NCE
and NEG on every task we tried including language modeling (not reported here).

2.3 Subsampling of Frequent Words

In very large corpora, the most frequent words can easily occur hundreds of millions of times (e.g.,
“in”, “the”, and “a”). Such words usually provide less information value than the rare words. For
example, while the Skip-gram model benefits from observing the co-occurrences of “France” and
“Paris”, it benefits much less from observing the frequent co-occurrences of “France” and “the”, as
nearly every word co-occurs frequently within a sentence with “the”. This idea can also be applied
in the opposite direction; the vector representations of frequent words do not change significantly
after training on several million examples.

To counter the imbalance between the rare and frequent words, we used a simple subsampling ap-
proach: each word wi in the training set is discarded with probability computed by the formula

P (wi) = 1−

√

t

f(wi)
(5)

4



Analogy Properties Learned 
[Mikolov et al., 2013] 

Newspapers
New York New York Times Baltimore Baltimore Sun
San Jose San Jose Mercury News Cincinnati Cincinnati Enquirer

NHL Teams
Boston Boston Bruins Montreal Montreal Canadiens
Phoenix Phoenix Coyotes Nashville Nashville Predators

NBA Teams
Detroit Detroit Pistons Toronto Toronto Raptors
Oakland Golden State Warriors Memphis Memphis Grizzlies

Airlines
Austria Austrian Airlines Spain Spainair
Belgium Brussels Airlines Greece Aegean Airlines

Company executives
Steve Ballmer Microsoft Larry Page Google

Samuel J. Palmisano IBM Werner Vogels Amazon

Table 2: Examples of the analogical reasoning task for phrases (the full test set has 3218 examples).
The goal is to compute the fourth phrase using the first three. Our best model achieved an accuracy
of 72% on this dataset.

This way, we can form many reasonable phrases without greatly increasing the size of the vocabu-
lary; in theory, we can train the Skip-gram model using all n-grams, but that would be too memory
intensive. Many techniques have been previously developed to identify phrases in the text; however,
it is out of scope of our work to compare them. We decided to use a simple data-driven approach,
where phrases are formed based on the unigram and bigram counts, using

score(wi, wj) =
count(wiwj)− δ

count(wi)× count(wj)
. (6)

The δ is used as a discounting coefficient and prevents too many phrases consisting of very infre-
quent words to be formed. The bigrams with score above the chosen threshold are then used as
phrases. Typically, we run 2-4 passes over the training data with decreasing threshold value, allow-
ing longer phrases that consists of several words to be formed. We evaluate the quality of the phrase
representations using a new analogical reasoning task that involves phrases. Table 2 shows examples
of the five categories of analogies used in this task. This dataset is publicly available on the web2.

4.1 Phrase Skip-Gram Results

Starting with the same news data as in the previous experiments, we first constructed the phrase
based training corpus and then we trained several Skip-gram models using different hyper-
parameters. As before, we used vector dimensionality 300 and context size 5. This setting already
achieves good performance on the phrase dataset, and allowed us to quickly compare the Negative
Sampling and the Hierarchical Softmax, both with and without subsampling of the frequent tokens.
The results are summarized in Table 3.

The results show that while Negative Sampling achieves a respectable accuracy even with k = 5,
using k = 15 achieves considerably better performance. Surprisingly, while we found the Hierar-
chical Softmax to achieve lower performance when trained without subsampling, it became the best
performing method when we downsampled the frequent words. This shows that the subsampling
can result in faster training and can also improve accuracy, at least in some cases.

2code.google.com/p/word2vec/source/browse/trunk/questions-phrases.txt

Method Dimensionality No subsampling [%] 10
−5 subsampling [%]

NEG-5 300 24 27
NEG-15 300 27 42

HS-Huffman 300 19 47

Table 3: Accuracies of the Skip-gram models on the phrase analogy dataset. The models were
trained on approximately one billion words from the news dataset.

6



Analogy Properties Learned 
[Mikolov et al., 2013] 

NEG-15 with 10−5 subsampling HS with 10−5 subsampling
Vasco de Gama Lingsugur Italian explorer
Lake Baikal Great Rift Valley Aral Sea
Alan Bean Rebbeca Naomi moonwalker
Ionian Sea Ruegen Ionian Islands
chess master chess grandmaster Garry Kasparov

Table 4: Examples of the closest entities to the given short phrases, using two different models.

Czech + currency Vietnam + capital German + airlines Russian + river French + actress
koruna Hanoi airline Lufthansa Moscow Juliette Binoche

Check crown Ho Chi Minh City carrier Lufthansa Volga River Vanessa Paradis
Polish zolty Viet Nam flag carrier Lufthansa upriver Charlotte Gainsbourg
CTK Vietnamese Lufthansa Russia Cecile De

Table 5: Vector compositionality using element-wise addition. Four closest tokens to the sum of two
vectors are shown, using the best Skip-gram model.

To maximize the accuracy on the phrase analogy task, we increased the amount of the training data
by using a dataset with about 33 billion words. We used the hierarchical softmax, dimensionality
of 1000, and the entire sentence for the context. This resulted in a model that reached an accuracy
of 72%. We achieved lower accuracy 66% when we reduced the size of the training dataset to 6B
words, which suggests that the large amount of the training data is crucial.

To gain further insight into how different the representations learned by different models are, we did
inspect manually the nearest neighbours of infrequent phrases using various models. In Table 4, we
show a sample of such comparison. Consistently with the previous results, it seems that the best
representations of phrases are learned by a model with the hierarchical softmax and subsampling.

5 Additive Compositionality

We demonstrated that the word and phrase representations learned by the Skip-gram model exhibit
a linear structure that makes it possible to perform precise analogical reasoning using simple vector
arithmetics. Interestingly, we found that the Skip-gram representations exhibit another kind of linear
structure that makes it possible to meaningfully combine words by an element-wise addition of their
vector representations. This phenomenon is illustrated in Table 5.

The additive property of the vectors can be explained by inspecting the training objective. The word
vectors are in a linear relationship with the inputs to the softmax nonlinearity. As the word vectors
are trained to predict the surrounding words in the sentence, the vectors can be seen as representing
the distribution of the context in which a word appears. These values are related logarithmically
to the probabilities computed by the output layer, so the sum of two word vectors is related to the
product of the two context distributions. The product works here as the AND function: words that
are assigned high probabilities by both word vectors will have high probability, and the other words
will have low probability. Thus, if “Volga River” appears frequently in the same sentence together
with the words “Russian” and “river”, the sum of these two word vectors will result in such a feature
vector that is close to the vector of “Volga River”.

6 Comparison to Published Word Representations

Many authors who previously worked on the neural network based representations of words have
published their resulting models for further use and comparison: amongst the most well known au-
thors are Collobert and Weston [2], Turian et al. [17], and Mnih and Hinton [10]. We downloaded
their word vectors from the web3. Mikolov et al. [8] have already evaluated these word representa-
tions on the word analogy task, where the Skip-gram models achieved the best performance with a
huge margin.

3http://metaoptimize.com/projects/wordreprs/
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Distributional Semantics 

!   Other approaches: spectral methods, e.g., CCA 
!   Word-context correlation [Dhillon et al., 2011, 2012] 

!   Multilingual correlation [Faruqui and Dyer, 2014; Lu et al., 2015] 

 
!   Multi-sense embeddings [Reisinger and Mooney, 2010; Neelakantan et al., 2014] 

!   Some later ideas: Train task-tailored embeddings to 
capture specific types of similarity/semantics, e.g., 

!   Dependency context [Bansal et al., 2014, Levy and Goldberg, 2014] 

!   Predicate-argument structures [Hashimoto et al., 2014; Madhyastha et al., 2014] 

!   Lexicon evidence (PPDB, WordNet, FrameNet) [Xu et al., 2014; Yu and Dredze, 

2014; Faruqui et al., 2014; Wieting et al., 2015] 
!   Combining advantages of global matrix factorization and local context window 

methods [GloVe; Pennington et al., 2014] 



Multi-sense Embeddings 

!   Different vectors for each sense of a word 

Figure 1: Architecture of the Skip-gram model
with window size R
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ding, and induce the senses by clustering the em-
beddings of the context words around each token.
The vector representation of the context is the av-
erage of its context words’ vectors. For every word
type, we maintain clusters of its contexts and the
sense of a word token is predicted as the cluster
that is closest to its context representation. After
predicting the sense of a word token, we perform
a gradient update on the embedding of that sense.
The crucial difference from previous approaches
is that word sense discrimination and learning em-
beddings are performed jointly by predicting the
sense of the word using the current parameter es-
timates.

In the MSSG model, each word w 2 W is
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Figure 2: Architecture of Multi-Sense Skip-gram
(MSSG) model with window size R
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The hard cluster assignment is similar to the k-
means algorithm. The cluster center is the aver-
age of the vector representations of all the contexts
which belong to that cluster. For sim we use co-
sine similarity in our experiments.
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Given a training set containing the sequence of
word types w1, w2, ..., wT

, the word embeddings
are learned by maximizing the following objective

mantic similarity of both isolated words and words
in context. The approach is completely modular, and
can integrate any clustering method with any tradi-
tional vector-space model.

We present experimental comparisons to human
judgements of semantic similarity for both isolated
words and words in sentential context. The results
demonstrate the superiority of a clustered approach
over both traditional prototype and exemplar-based
vector-space models. For example, given the iso-
lated target word singer our method produces the
most similar word vocalist, while using a single pro-
totype gives musician. Given the word cell in the
context: “The book was published while Piasecki
was still in prison, and a copy was delivered to his
cell.” the standard approach produces protein while
our method yields incarcerated.

The remainder of the paper is organized as fol-
lows: Section 2 gives relevant background on pro-
totype and exemplar methods for lexical semantics,
Section 3 presents our multi-prototype method, Sec-
tion 4 presents our experimental evaluations, Section
5 discusses future work, and Section 6 concludes.

2 Background

Psychological concept models can be roughly di-
vided into two classes:

1. Prototype models represented concepts by an
abstract prototypical instance, similar to a clus-
ter centroid in parametric density estimation.

2. Exemplar models represent concepts by a con-
crete set of observed instances, similar to non-
parametric approaches to density estimation in
statistics (Ashby and Alfonso-Reese, 1995).

Tversky and Gati (1982) famously showed that con-
ceptual similarity violates the triangle inequality,
lending evidence for exemplar-based models in psy-
chology. Exemplar models have been previously
used for lexical semantics problems such as selec-
tional preference (Erk, 2007) and thematic fit (Van-
dekerckhove et al., 2009). Individual exemplars can
be quite noisy and the model can incur high com-
putational overhead at prediction time since naively
computing the similarity between two words using
each occurrence in a textual corpus as an exemplar
requires O(n2

) comparisons. Instead, the standard

... chose Zbigniew Brzezinski 
for the position of ...
... thus the symbol s position 
on his clothing was ...
... writes call options against 
the stock position ...
... offered a position with ...
... a position he would hold 
until his retirement in ...
... endanger their position as 
a cultural group...
... on the chart of the vessel s 
current position ...
... not in a position to help...

(cluster#2) 
post
appointme
nt, role, job

(cluster#4) 
lineman, 
tackle, role, 
scorer

(cluster#1) 
location
importance 
bombing

(collect contexts) (cluster)

(cluster#3) 
intensity, 
winds, 
hour, gust

(similarity)

single
prototype

Figure 1: Overview of the multi-prototype approach
to near-synonym discovery for a single target word
independent of context. Occurrences are clustered
and cluster centroids are used as prototype vectors.
Note the “hurricane” sense of position (cluster 3) is
not typically considered appropriate in WSD.

approach is to compute a single prototype vector for
each word from its occurrences.

This paper presents a multi-prototype vector space
model for lexical semantics with a single parame-
ter K (the number of clusters) that generalizes both
prototype (K = 1) and exemplar (K = N , the total
number of instances) methods. Such models have
been widely studied in the Psychology literature
(Griffiths et al., 2007; Love et al., 2004; Rosseel,
2002). By employing multiple prototypes per word,
vector space models can account for homonymy,
polysemy and thematic variation in word usage.
Furthermore, such approaches require only O(K2

)

comparisons for computing similarity, yielding po-
tential computational savings over the exemplar ap-
proach when K ⌧ N , while reaping many of the
same benefits.

Previous work on lexical semantic relatedness has
focused on two approaches: (1) mining monolin-
gual or bilingual dictionaries or other pre-existing
resources to construct networks of related words
(Agirre and Edmond, 2006; Ramage et al., 2009),
and (2) using the distributional hypothesis to au-
tomatically infer a vector-space prototype of word
meaning from large corpora (Agirre et al., 2009;
Curran, 2004; Harris, 1954). The former approach
tends to have greater precision, but depends on hand-

[Reisinger and Mooney, 2010]                                                    [Neelakantan et al., 2014] 



Syntactically Tailored Embeddings 

!   Context window size (SKIP) 

!   Smaller window  !   syntactic/functional similarity 
 
!   Larger window   !   topical similarity 

!   Similar effect in distributional representations 

The   morning   flight   at   the   JFK   airport   was delayed 

context window 

(Lin and Wu, 2009) 

[Bansal et al., 2014] 



Cluster Examples 

!   SKIP, w = 10: 

[attendant, takeoff, airport, carry-on, airplane, flown, landings, flew, fly, cabins, …] 

[maternity, childbirth, clinic, physician, doctor, medical, health-care, day-care, …] 

[transactions, equity, investors, capital, financing, stock, fund, purchases, …] 

[Bansal et al., 2014] 



Cluster Examples 

!   SKIP, w = 1 

[Mr., Mrs., Ms., Prof., III, Jr., Dr.] 

[Jeffrey, William, Dan, Robert, Stephen, Peter, John, Richard, ...] 

[Portugal, Iran, Cuba, Ecuador, Greece, Thailand, Indonesia, …] 

[truly, wildly, politically, financially, completely, potentially, ...] 

[his, your, her, its, their, my, our] 

[Your, Our, Its, My, His, Their, Her] 

[Bansal et al., 2014] 



Syntactically Tailored Embeddings 

!   Syntactic context (SKIPDEP) 

!   Condition on dependency context instead of linear 

!   First parse a large corpus with baseline parser: 

…   said     that    the   regulation     of       safety    is    … 

NMOD	 PMOD	

(child)	(parent)	(grandparent)	

(dep label)	

[Bansal et al., 2014] 



Syntactically Tailored Embeddings 

dep label	 dep label	grandparent	 parent	 child	

[PMOD<L>       regulation<G>     of       safety   PMOD<L>] 

context windows 

!   Syntactic context (SKIPDEP) 

!   Condition on dependency context instead of linear 

!   Then convert each dependency to a tuple: 

!   Syntactic information in clustering, topic, semantic space models 
    (Sagae and Gordon, 2009; Haffari et al., 2011; Grave et al., 2013; Boyd-Graber and Blei, 2008;      
       Pado and Lapata, 2007) 

[Bansal et al., 2014] 



Intrinsic Evaluation 

Topical	 Syntactic/ 
Functional	

(Finkelstein et al., 2002) 

Representation SIM TAG

BROWN – 89.3
SENNA 49.8 85.2
HUANG 62.6 78.1
SKIP, w = 10 44.6 71.5
SKIP, w = 5 44.4 81.1
SKIP, w = 1 37.8 86.6
SKIPDEP 34.6 88.3

System Test
Baseline 92.0
SENNA (Buckets) 92.0
SENNA (Hier. Clustering) 92.3
HUANG (Buckets) 91.9
HUANG (Hier. Clustering) 92.4

System Test
Baseline 91.9
BROWN 92.7
SENNA 92.3
TURIAN 92.3
HUANG 92.4
SKIP 92.3
SKIPDEP 92.7

Ensemble Results
ALL – BROWN 92.9
ALL 93.0

System Test Avg (5 domains)
Baseline 83.5
BROWN 84.2
SENNA 84.3
TURIAN 83.9
HUANG 84.1
SKIP 83.7
SKIPDEP 84.1

Ensemble Results
ALL–BROWN 84.7
ALL 84.9

1

[Bansal et al., 2014] 



Parsing Experiments 

!   Main WSJ results: 

System Test
Baseline 92.0
SENNA (Buckets) 92.0
SENNA (Hier. Clustering) 92.3
HUANG (Buckets) 91.9
HUANG (Hier. Clustering) 92.4

System Test
Baseline 91.9
BROWN 92.7
SENNA 92.3
TURIAN 92.3
HUANG 92.4
SKIP 92.3
SKIPDEP 92.7

Ensemble Results
ALL – BROWN 92.9
ALL 93.0

System Test Avg (5 domains)
Baseline 83.5
BROWN 84.2
SENNA 84.3
TURIAN 83.9
HUANG 84.1
SKIP 83.7
SKIPDEP 84.1

Ensemble Results
ALL–BROWN 84.7
ALL 84.9

1

(faster) 

(complementary) 

[Bansal et al., 2014] 



Task-Trained Embeddings 

!   Can also directly train word embeddings on the task, via back-prop 
from the task supervision (XE errors), e.g., dependency parsing: 

[Chen and Manning, 2014; CS224n] 
Christopher	Manning

Model	Architecture

Input layer x
lookup	+	concat

Hidden layer h
h = ReLU(Wx + b1)

Output layer y
y = softmax(Uh + b2)

Softmax probabilities

cross-entropy error will be
back-propagated to the 
embeddings.



Multilingual Embeddings via CCA 

!   Translational context (say, English "! German) can 
help learn stronger embeddings, e.g., separate 
antonyms vs. synonyms 

 
 
!   CCA on translation pairs to map them to shared space 

[Faruqui and Dyer, 2014] 
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hässliche

ziemlich

bezaubernder

clever
blondenwunderbaren

großartige
elegante

hervorragende

abscheulichen

gebot
grotesk

aufzuklären

Figure 1: Illustration of deep CCA.

transformations of each view via deep networks.

2.1 Canonical Correlation Analysis

A popular method for multi-view representation

learning is canonical correlation analysis (CCA;

Hotelling, 1936). Its objective is to find two vec-

tors u ∈ RDx and v ∈ RDy such that projections

of the two views onto these vectors are maximally

(linearly) correlated:

max
u∈RDx ,v∈RDy

E
[

(u⊤x)(v⊤y)
]

√

E [(u⊤x)2]
√

E [(v⊤y)2]

=
u⊤Σxyv

√

u⊤Σxxu
√

v⊤Σyyv
(1)

where Σxy and Σxx are the cross-view and within-

view covariance matrices. (1) is extended to learn-

ing multi-dimensional projections by optimizing the

sum of correlations in all dimensions, subject to

different projected dimensions being uncorrelated.

Given sample pairs {(xi,yi)}Ni=1
, the empirical es-

timates of the covariance matrices are Σ̂xx =
1

N

∑N
i=1

xix
⊤
i + rxI, Σ̂yy = 1

N

∑N
i=1

yiy
⊤
i + ryI

and Σ̂xy = 1

N

∑N
i=1

xiy
⊤
i where (rx, ry) > 0 are

regularization parameters (Hardoon et al., 2004;

De Bie and De Moor, 2003). Then the optimal k-

dimensional projection mappings are given in closed

form via the rank-k singular value decomposition

(SVD) of the Dx×Dy matrix Σ̂
−1/2
xx Σ̂xyΣ̂

−1/2
yy . In a

latent variable model interpretation of CCA, the pro-

jections reconstruct the latent variables that generate

both views (Bach and Jordan, 2005).

2.2 Deep Canonical Correlation Analysis

A linear feature mapping is often not sufficiently

powerful to faithfully capture the hidden, non-linear

relationships within the data. Recently, Andrew et

al. (2013) proposed a nonlinear extension of CCA

using deep neural networks, dubbed deep canonical

correlation analysis (DCCA) and illustrated in Fig-

ure 1. In this model, two (possibly deep) neural

networks f and g are used to extract features from

each view, and trained to maximize the correlations

between outputs in the two views, measured by a

linear CCA step with projection mappings (u,v).
The neural network weights and the linear projec-

tions are optimized together using the objective

max
Wf ,Wg,u,v

u⊤Σfgv
√

u⊤Σffu
√

v⊤Σggv
, (2)

where Wf and Wg denote the weight parameters of

the two networks, and where Σfg , Σff and Σgg are

covariance matrices computed for {f(xi),g(yi)}Ni=1

in the same way as CCA. The final feature transfor-

mation is the composition of the neural network and

CCA projection, e.g., u⊤f(x) for the first view. Al-

though DCCA does not have a closed-form solution

like linear CCA, the parameters can be learned via

gradient-based optimization, whether with batch al-

gorithms like L-BFGS as in Andrew et al. (2013)

or with a stochastic gradient descent-like approach

as we do here. In each step of our SGD-like ap-

proach, we randomly select a large subset of input

samples (mini-batch), feed them forward through

the networks, and estimate the covariance matrices

and (u,v) based on these samples, so as to obtain

a stochastic version of the gradient. We then use

these stochastic gradients to update the neural net-

work weights via backpropagation.

An alternative nonlinear extension of CCA is ker-

nel CCA (KCCA) (Lai and Fyfe, 2000; Vinokourov

et al., 2003), which introduces nonlinearity through

kernels rather than neural networks. DCCA scales

better with data size, as KCCA requires computing

the SVD of a N × N matrix, and Andrew et al.

(2013) showed that DCCA achieves better total cor-

relation on held-out data than CCA or KCCA.

3 Experiments

We use English and German as the two languages.

The monolingual input word vectors are the same

as those of (Faruqui and Dyer, 2014).1 These in-

1Thanks to Faruqui and Dyer for sharing their data.
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[Faruqui and Dyer, 2014] 

Lang Dim WS-353 WS-SIM WS-REL RG-65 MC-30 MTurk-287 SEM-REL SYN-REL
En 640 46.7 56.2 36.5 50.7 42.3 51.2 14.5 36.8

De-En 512 68.0 74.4 64.6 75.5 81.9 53.6 43.9 45.5

Fr-En 512 68.4 73.3 65.7 73.5 81.3 55.5 43.9 44.3
Es-En 512 67.2 71.6 64.5 70.5 78.2 53.6 44.2 44.5

Average – 56.6 64.5 51.0 62.0 65.5 60.8 44 44.7

Table 1: Spearman’s correlation (left) and accuracy (right) on different tasks.

Figure 2: Monolingual (top) and multilingual (bottom; marked with apostrophe) word projections of the
antonyms (shown in red) and synonyms of “beautiful”.

5.4 Qualitative Example

To understand how multilingual evidence leads to
better results in semantic evaluation tasks, we plot
the word representations obtained in §3 of sev-
eral synonyms and antonyms of the word “beau-
tiful” by projecting both the transformed and un-
transformed vectors onto R2 using the t-SNE
tool (van der Maaten and Hinton, 2008). The
untransformed LSA vectors are in the upper part
of Fig. 2, and the CCA-projected vectors are in
the lower part. By comparing the two regions,
we see that in the untransformed representations,
the antonyms are in two clusters separated by the
synonyms, whereas in the transformed representa-
tion, both the antonyms and synonyms are in their
own cluster. Furthermore, the average intra-class
distance between synonyms and antonyms is re-
duced.

Figure 3: Performance of monolingual and mul-
tilingual vectors on WS-353 for different vector
lengths.

5.5 Variation in Vector Length

In order to demonstrate that the gains in perfor-
mance by using multilingual correlation sustains

Before CCA	

After CCA	



Linear vs Deep CCA 

Embeddings WS-353 WS-SIM WS-REL SL-999 AN NN VN Avg

Original 46.7 56.3 36.6 26.5 26.5 38.1 34.1 32.9

CCA-1 67.2 73.0 63.4 40.7 42.4 48.1 37.4 42.6

CCA-Ens 67.5 73.1 63.7 40.4 42.0 48.2 37.8 42.7

DCCA-1 (BestAvg) 69.6 73.9 65.6 38.9 35.0 40.9 41.3 39.1

DCCA-Ens (BestAvg) 70.8 75.2 67.3 41.7 42.4 45.7 40.1 42.7

DCCA-1 (MostBeat) 68.6 73.5 65.7 42.3 44.4 44.7 36.7 41.9

DCCA-Ens (MostBeat) 69.9 74.4 66.7 42.3 43.7 47.4 38.8 43.3

Table 1: Main results on word and bigram similarity tasks, tuned on the 7 dev tasks. Shading indicates a result that
matches or improves the best linear CCA result; boldface indicates the best result in a given column.

put embeddings are 640-dimensional and are trained

via latent semantic analysis (LSA) on the WMT

2011 monolingual news corpora.2 We use German-

English translation pairs as the input to CCA and

DCCA, using the same pairs as used by Faruqui and

Dyer. These were obtained using the word aligner

in cdec (Dyer et al., 2010) run on the WMT06-

10 news commentary corpora and Europarl. After

training, we apply the learned CCA/DCCA projec-

tion mappings to the original English word embed-

dings (180K words) and use these transformed em-

beddings for our evaluation tasks.

3.1 Evaluation Tasks

We use WordSim-353 (Finkelstein et al., 2001),

which contains 353 English word pairs with human

similarity ratings. This dataset is further divided

into two datasets WS-SIM and WS-REL by Agirre

et al. (2009) to measure similarity and relatedness.

We also use SimLex-999 (Hill et al., 2014), a new

similarity-focused dataset consisting of 666 noun-

noun pairs, 222 verb-verb pairs, and 111 adjective-

adjective pairs. Finally, we use the bigram similarity

dataset from Mitchell and Lapata (2010) which has 3

subsets, adjective-noun (AN), noun-noun (NN), and

verb-object (VN), and dev and test sets for each (of

size 649/1297 pairs). For the bigram similarity task,

we simply add the word vectors output by CCA or

DCCA to get bigram vectors.3

All of our task datasets contain pairs with human

similarity ratings. To evaluate embeddings, we com-

pute cosine similarity between the two vectors in

2http://www.statmt.org/wmt11/translation-task.html
3We also tried multiplication but it performed worse. In fu-

ture work, we will directly train on bigram translation pairs.

each pair, order the pairs by similarity, and com-

pute Spearman’s correlation (ρ) between the model’s

ranking and human ranking.

Embeddings AN NN VN Avg

CCA 42.4 48.1 37.4 42.6

Deep CCA 45.5 47.1 45.1 45.9

Table 2: Bigram results, tuned on bigram dev sets.

3.2 Training and Tuning

We compare our DCCA-based embeddings to

the original word vectors and to CCA-based

embeddings. For both CCA and DCCA, we

tune the output dimensionality among factors in

{0.2, 0.4, 0.6, 0.8, 1.0} of the original embedding

dimension (640), and regularization (rx, ry) from

{10−6, 10−5, 10−4, 10−3}, based on the 7 tuning

tasks discussed below.

For training DCCA, we use stochastic gradient

descent (SGD) optimization as described in Sec-

tion 2.2. We tune SGD hyperparameters on a small

grid for fast convergence, choosing a mini-batch

size of 3000, learning rate of 0.0001, and momen-

tum of 0.99. We use rectified linear units for each

hidden layer, tuning the hidden layer width among

{128, 256, 512, 1024, 2048, 4096} and the number

of hidden layers from 1 to 4.

Our main results are based on tuning the hyperpa-

rameters (of CCA and DCCA) on 7 standard word

similarity tasks: RG-65 (Rubenstein and Goode-

nough, 1965), MC-30 (Miller and Charles, 1991),

MTurk-287 (Radinsky et al., 2011), MTurk-7714,

MEN (Bruni et al., 2014), Rare Word (Luong et al.,

4http://www2.mta.ac.il/ gideon/mturk771.html

!   Linear feature mapping not sufficiently powerful to 
capture hidden, non-linear relationships within data 

!   Use deep NNs to learn non-linear transformations of orig. 
embeddings to space where linear correlation maximized 

!   Linear CCA results: 
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Figure 1: Illustration of deep CCA.

transformations of each view via deep networks.

2.1 Canonical Correlation Analysis

A popular method for multi-view representation

learning is canonical correlation analysis (CCA;

Hotelling, 1936). Its objective is to find two vec-

tors u ∈ RDx and v ∈ RDy such that projections

of the two views onto these vectors are maximally

(linearly) correlated:

max
u∈RDx ,v∈RDy

E
[

(u⊤x)(v⊤y)
]

√

E [(u⊤x)2]
√

E [(v⊤y)2]

=
u⊤Σxyv

√

u⊤Σxxu
√

v⊤Σyyv
(1)

where Σxy and Σxx are the cross-view and within-

view covariance matrices. (1) is extended to learn-

ing multi-dimensional projections by optimizing the

sum of correlations in all dimensions, subject to

different projected dimensions being uncorrelated.

Given sample pairs {(xi,yi)}Ni=1
, the empirical es-

timates of the covariance matrices are Σ̂xx =
1

N

∑N
i=1

xix
⊤
i + rxI, Σ̂yy = 1

N

∑N
i=1

yiy
⊤
i + ryI

and Σ̂xy = 1

N

∑N
i=1

xiy
⊤
i where (rx, ry) > 0 are

regularization parameters (Hardoon et al., 2004;

De Bie and De Moor, 2003). Then the optimal k-

dimensional projection mappings are given in closed

form via the rank-k singular value decomposition

(SVD) of the Dx×Dy matrix Σ̂
−1/2
xx Σ̂xyΣ̂

−1/2
yy . In a

latent variable model interpretation of CCA, the pro-

jections reconstruct the latent variables that generate

both views (Bach and Jordan, 2005).

2.2 Deep Canonical Correlation Analysis

A linear feature mapping is often not sufficiently

powerful to faithfully capture the hidden, non-linear

relationships within the data. Recently, Andrew et

al. (2013) proposed a nonlinear extension of CCA

using deep neural networks, dubbed deep canonical

correlation analysis (DCCA) and illustrated in Fig-

ure 1. In this model, two (possibly deep) neural

networks f and g are used to extract features from

each view, and trained to maximize the correlations

between outputs in the two views, measured by a

linear CCA step with projection mappings (u,v).
The neural network weights and the linear projec-

tions are optimized together using the objective

max
Wf ,Wg,u,v

u⊤Σfgv
√

u⊤Σffu
√

v⊤Σggv
, (2)

where Wf and Wg denote the weight parameters of

the two networks, and where Σfg , Σff and Σgg are

covariance matrices computed for {f(xi),g(yi)}Ni=1

in the same way as CCA. The final feature transfor-

mation is the composition of the neural network and

CCA projection, e.g., u⊤f(x) for the first view. Al-

though DCCA does not have a closed-form solution

like linear CCA, the parameters can be learned via

gradient-based optimization, whether with batch al-

gorithms like L-BFGS as in Andrew et al. (2013)

or with a stochastic gradient descent-like approach

as we do here. In each step of our SGD-like ap-

proach, we randomly select a large subset of input

samples (mini-batch), feed them forward through

the networks, and estimate the covariance matrices

and (u,v) based on these samples, so as to obtain

a stochastic version of the gradient. We then use

these stochastic gradients to update the neural net-

work weights via backpropagation.

An alternative nonlinear extension of CCA is ker-

nel CCA (KCCA) (Lai and Fyfe, 2000; Vinokourov

et al., 2003), which introduces nonlinearity through

kernels rather than neural networks. DCCA scales

better with data size, as KCCA requires computing

the SVD of a N × N matrix, and Andrew et al.

(2013) showed that DCCA achieves better total cor-

relation on held-out data than CCA or KCCA.

3 Experiments

We use English and German as the two languages.

The monolingual input word vectors are the same

as those of (Faruqui and Dyer, 2014).1 These in-

1Thanks to Faruqui and Dyer for sharing their data.

[Lu, Wang, Bansal, Gimpel, Livescu, 2015] 



Deep-CCA 

!   2 DNNs f, g extract features from the 2 input views x and y 

!   DNNs are trained to maximize output linear correlation of 2 views 
 
!   DNN weights and linear projections optimized together: 

 

!   Covariance matrices computed for                              , as in CCA 
 
!   Mini-batch SGD: Feed-forward a sample to estimate (u, v) and 

gradient and then update NN weights via back-propagation 
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Figure 1: Illustration of deep CCA.

transformations of each view via deep networks.

2.1 Canonical Correlation Analysis

A popular method for multi-view representation

learning is canonical correlation analysis (CCA;

Hotelling, 1936). Its objective is to find two vec-

tors u ∈ RDx and v ∈ RDy such that projections

of the two views onto these vectors are maximally

(linearly) correlated:

max
u∈RDx ,v∈RDy

E
[

(u⊤x)(v⊤y)
]

√

E [(u⊤x)2]
√

E [(v⊤y)2]

=
u⊤Σxyv

√

u⊤Σxxu
√

v⊤Σyyv
(1)

where Σxy and Σxx are the cross-view and within-

view covariance matrices. (1) is extended to learn-

ing multi-dimensional projections by optimizing the

sum of correlations in all dimensions, subject to

different projected dimensions being uncorrelated.

Given sample pairs {(xi,yi)}Ni=1
, the empirical es-

timates of the covariance matrices are Σ̂xx =
1

N

∑N
i=1

xix
⊤
i + rxI, Σ̂yy = 1

N

∑N
i=1

yiy
⊤
i + ryI

and Σ̂xy = 1

N

∑N
i=1

xiy
⊤
i where (rx, ry) > 0 are

regularization parameters (Hardoon et al., 2004;

De Bie and De Moor, 2003). Then the optimal k-

dimensional projection mappings are given in closed

form via the rank-k singular value decomposition

(SVD) of the Dx×Dy matrix Σ̂
−1/2
xx Σ̂xyΣ̂

−1/2
yy . In a

latent variable model interpretation of CCA, the pro-

jections reconstruct the latent variables that generate

both views (Bach and Jordan, 2005).

2.2 Deep Canonical Correlation Analysis

A linear feature mapping is often not sufficiently

powerful to faithfully capture the hidden, non-linear

relationships within the data. Recently, Andrew et

al. (2013) proposed a nonlinear extension of CCA

using deep neural networks, dubbed deep canonical

correlation analysis (DCCA) and illustrated in Fig-

ure 1. In this model, two (possibly deep) neural

networks f and g are used to extract features from

each view, and trained to maximize the correlations

between outputs in the two views, measured by a

linear CCA step with projection mappings (u,v).
The neural network weights and the linear projec-

tions are optimized together using the objective

max
Wf ,Wg,u,v

u⊤Σfgv
√

u⊤Σffu
√

v⊤Σggv
, (2)

where Wf and Wg denote the weight parameters of

the two networks, and where Σfg , Σff and Σgg are

covariance matrices computed for {f(xi),g(yi)}Ni=1

in the same way as CCA. The final feature transfor-

mation is the composition of the neural network and

CCA projection, e.g., u⊤f(x) for the first view. Al-

though DCCA does not have a closed-form solution

like linear CCA, the parameters can be learned via

gradient-based optimization, whether with batch al-

gorithms like L-BFGS as in Andrew et al. (2013)

or with a stochastic gradient descent-like approach

as we do here. In each step of our SGD-like ap-

proach, we randomly select a large subset of input

samples (mini-batch), feed them forward through

the networks, and estimate the covariance matrices

and (u,v) based on these samples, so as to obtain

a stochastic version of the gradient. We then use

these stochastic gradients to update the neural net-

work weights via backpropagation.

An alternative nonlinear extension of CCA is ker-

nel CCA (KCCA) (Lai and Fyfe, 2000; Vinokourov

et al., 2003), which introduces nonlinearity through

kernels rather than neural networks. DCCA scales

better with data size, as KCCA requires computing

the SVD of a N × N matrix, and Andrew et al.

(2013) showed that DCCA achieves better total cor-

relation on held-out data than CCA or KCCA.

3 Experiments

We use English and German as the two languages.

The monolingual input word vectors are the same

as those of (Faruqui and Dyer, 2014).1 These in-

1Thanks to Faruqui and Dyer for sharing their data.

[Andrew et al., 2013] 
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Figure 1: Illustration of deep CCA.

transformations of each view via deep networks.

2.1 Canonical Correlation Analysis

A popular method for multi-view representation

learning is canonical correlation analysis (CCA;

Hotelling, 1936). Its objective is to find two vec-

tors u ∈ RDx and v ∈ RDy such that projections

of the two views onto these vectors are maximally

(linearly) correlated:

max
u∈RDx ,v∈RDy

E
[

(u⊤x)(v⊤y)
]

√

E [(u⊤x)2]
√

E [(v⊤y)2]

=
u⊤Σxyv

√

u⊤Σxxu
√

v⊤Σyyv
(1)

where Σxy and Σxx are the cross-view and within-

view covariance matrices. (1) is extended to learn-

ing multi-dimensional projections by optimizing the

sum of correlations in all dimensions, subject to

different projected dimensions being uncorrelated.

Given sample pairs {(xi,yi)}Ni=1
, the empirical es-

timates of the covariance matrices are Σ̂xx =
1

N

∑N
i=1

xix
⊤
i + rxI, Σ̂yy = 1

N

∑N
i=1

yiy
⊤
i + ryI

and Σ̂xy = 1

N

∑N
i=1

xiy
⊤
i where (rx, ry) > 0 are

regularization parameters (Hardoon et al., 2004;

De Bie and De Moor, 2003). Then the optimal k-

dimensional projection mappings are given in closed

form via the rank-k singular value decomposition

(SVD) of the Dx×Dy matrix Σ̂
−1/2
xx Σ̂xyΣ̂

−1/2
yy . In a

latent variable model interpretation of CCA, the pro-

jections reconstruct the latent variables that generate

both views (Bach and Jordan, 2005).

2.2 Deep Canonical Correlation Analysis

A linear feature mapping is often not sufficiently

powerful to faithfully capture the hidden, non-linear

relationships within the data. Recently, Andrew et

al. (2013) proposed a nonlinear extension of CCA

using deep neural networks, dubbed deep canonical

correlation analysis (DCCA) and illustrated in Fig-

ure 1. In this model, two (possibly deep) neural

networks f and g are used to extract features from

each view, and trained to maximize the correlations

between outputs in the two views, measured by a

linear CCA step with projection mappings (u,v).
The neural network weights and the linear projec-

tions are optimized together using the objective

max
Wf ,Wg,u,v

u⊤Σfgv
√

u⊤Σffu
√

v⊤Σggv
, (2)

where Wf and Wg denote the weight parameters of

the two networks, and where Σfg , Σff and Σgg are

covariance matrices computed for {f(xi),g(yi)}Ni=1

in the same way as CCA. The final feature transfor-

mation is the composition of the neural network and

CCA projection, e.g., u⊤f(x) for the first view. Al-

though DCCA does not have a closed-form solution

like linear CCA, the parameters can be learned via

gradient-based optimization, whether with batch al-

gorithms like L-BFGS as in Andrew et al. (2013)

or with a stochastic gradient descent-like approach

as we do here. In each step of our SGD-like ap-

proach, we randomly select a large subset of input

samples (mini-batch), feed them forward through

the networks, and estimate the covariance matrices

and (u,v) based on these samples, so as to obtain

a stochastic version of the gradient. We then use

these stochastic gradients to update the neural net-

work weights via backpropagation.

An alternative nonlinear extension of CCA is ker-

nel CCA (KCCA) (Lai and Fyfe, 2000; Vinokourov

et al., 2003), which introduces nonlinearity through

kernels rather than neural networks. DCCA scales

better with data size, as KCCA requires computing

the SVD of a N × N matrix, and Andrew et al.

(2013) showed that DCCA achieves better total cor-

relation on held-out data than CCA or KCCA.

3 Experiments

We use English and German as the two languages.

The monolingual input word vectors are the same

as those of (Faruqui and Dyer, 2014).1 These in-

1Thanks to Faruqui and Dyer for sharing their data.



Results 

Embeddings WS-353 WS-SIM WS-REL SL-999 AN NN VN Avg

Original 46.7 56.3 36.6 26.5 26.5 38.1 34.1 32.9

CCA-1 67.2 73.0 63.4 40.7 42.4 48.1 37.4 42.6

CCA-Ens 67.5 73.1 63.7 40.4 42.0 48.2 37.8 42.7

DCCA-1 (BestAvg) 69.6 73.9 65.6 38.9 35.0 40.9 41.3 39.1

DCCA-Ens (BestAvg) 70.8 75.2 67.3 41.7 42.4 45.7 40.1 42.7

DCCA-1 (MostBeat) 68.6 73.5 65.7 42.3 44.4 44.7 36.7 41.9

DCCA-Ens (MostBeat) 69.9 74.4 66.7 42.3 43.7 47.4 38.8 43.3

Table 1: Main results on word and bigram similarity tasks, tuned on the 7 dev tasks. Shading indicates a result that
matches or improves the best linear CCA result; boldface indicates the best result in a given column.

put embeddings are 640-dimensional and are trained

via latent semantic analysis (LSA) on the WMT

2011 monolingual news corpora.2 We use German-

English translation pairs as the input to CCA and

DCCA, using the same pairs as used by Faruqui and

Dyer. These were obtained using the word aligner

in cdec (Dyer et al., 2010) run on the WMT06-

10 news commentary corpora and Europarl. After

training, we apply the learned CCA/DCCA projec-

tion mappings to the original English word embed-

dings (180K words) and use these transformed em-

beddings for our evaluation tasks.

3.1 Evaluation Tasks

We use WordSim-353 (Finkelstein et al., 2001),

which contains 353 English word pairs with human

similarity ratings. This dataset is further divided

into two datasets WS-SIM and WS-REL by Agirre

et al. (2009) to measure similarity and relatedness.

We also use SimLex-999 (Hill et al., 2014), a new

similarity-focused dataset consisting of 666 noun-

noun pairs, 222 verb-verb pairs, and 111 adjective-

adjective pairs. Finally, we use the bigram similarity

dataset from Mitchell and Lapata (2010) which has 3

subsets, adjective-noun (AN), noun-noun (NN), and

verb-object (VN), and dev and test sets for each (of

size 649/1297 pairs). For the bigram similarity task,

we simply add the word vectors output by CCA or

DCCA to get bigram vectors.3

All of our task datasets contain pairs with human

similarity ratings. To evaluate embeddings, we com-

pute cosine similarity between the two vectors in

2http://www.statmt.org/wmt11/translation-task.html
3We also tried multiplication but it performed worse. In fu-

ture work, we will directly train on bigram translation pairs.

each pair, order the pairs by similarity, and com-

pute Spearman’s correlation (ρ) between the model’s

ranking and human ranking.

Embeddings AN NN VN Avg

CCA 42.4 48.1 37.4 42.6

Deep CCA 45.5 47.1 45.1 45.9

Table 2: Bigram results, tuned on bigram dev sets.

3.2 Training and Tuning

We compare our DCCA-based embeddings to

the original word vectors and to CCA-based

embeddings. For both CCA and DCCA, we

tune the output dimensionality among factors in

{0.2, 0.4, 0.6, 0.8, 1.0} of the original embedding

dimension (640), and regularization (rx, ry) from

{10−6, 10−5, 10−4, 10−3}, based on the 7 tuning

tasks discussed below.

For training DCCA, we use stochastic gradient

descent (SGD) optimization as described in Sec-

tion 2.2. We tune SGD hyperparameters on a small

grid for fast convergence, choosing a mini-batch

size of 3000, learning rate of 0.0001, and momen-

tum of 0.99. We use rectified linear units for each

hidden layer, tuning the hidden layer width among

{128, 256, 512, 1024, 2048, 4096} and the number

of hidden layers from 1 to 4.

Our main results are based on tuning the hyperpa-

rameters (of CCA and DCCA) on 7 standard word

similarity tasks: RG-65 (Rubenstein and Goode-

nough, 1965), MC-30 (Miller and Charles, 1991),

MTurk-287 (Radinsky et al., 2011), MTurk-7714,

MEN (Bruni et al., 2014), Rare Word (Luong et al.,

4http://www2.mta.ac.il/ gideon/mturk771.html

!   Word-similarity improvements 

!   Also gets improvements on bigram similarity datasets 

[Lu, Wang, Bansal, Gimpel, Livescu, 2015] 



Analysis 

Embeddings WS-353 WS-SIM WS-REL SL-999 AN NN VN Avg Dim

Original 46.7 56.3 36.6 26.5 26.5 38.1 34.1 32.9 640

CCA-1 67.2 73.0 63.4 40.7 42.4 48.1 37.4 42.6 384

CCA-Ens 67.5 73.1 63.7 40.4 42.0 48.2 37.8 42.7 384

DCCA-1 (BestAvg) 69.6 73.9 65.6 38.9 35.0 40.9 41.3 39.1 128

DCCA-Ens (BestAvg) 70.8 75.2 67.3 41.7 42.4 45.7 40.1 42.7 128

DCCA-1 (MostBeat) 68.6 73.5 65.7 42.3 44.4 44.7 36.7 41.9 384

DCCA-Ens (MostBeat) 69.9 74.4 66.7 42.3 43.7 47.4 38.8 43.3 384

Table 1: Main results on word and bigram similarity tasks, tuned on 7 development tasks (see text for

details). Shading indicates a result that matches or improves the best linear CCA result; boldface indicates

the best result in a given column. See Section 3.4 for discussion on NN results.

Embeddings AN NN VN Avg

CCA 42.4 48.1 37.4 42.6

Deep CCA 45.5 47.1 45.1 45.9

Table 2: Bigram results, tuned on bigram dev sets.

gram tasks themselves (as provided by Mitchell and

Lapata), since the 7 tuning tasks are not particularly

related to the bigram test sets. We see that DCCA

can achieve even stronger improvements over CCA

and overall using these related dev sets.

We note that the performance on the NN task

does not improve. The typical variance of annota-

tor scores for each bigram pair was larger for the

NN dataset than for the other bigram datasets, sug-

gesting noisier annotations. Also, we found that the

NN annotations often reflected topical relatedness

rather than functional similarity, e.g., television set

and television programme are among the most simi-

lar noun-noun bigrams. We expect that multilingual

information would help embeddings to more closely

reflect functional similarity.

For DCCA, we found that the best-performing

networks were typically asymmetric, with 1 to 2 lay-

ers on the English side and 2 to 4 on the German

side. The best network structure on the bigram VN

development set is 640-128-128 for the English view

and 640-128-512-128 for the German view, with a

final CCA projection layer with dimensionality 128

for each language.

4 Discussion

Normalization and Evaluation We note that the

cosine similarity (and thus Spearman’s ρ) between a

pair of words is not invariant to the series of simple

(affine) transformations done by the normalizations

in our procedure. For their baseline, Faruqui and

Dyer (2014) did not remove the standard deviation

better with DCCA worse with DCCA

arrive come author creator
locate find leader manager

way manner buddy companion
recent new crowd bunch

take obtain achieve succeed
boundary border attention interest

win accomplish join add
contemplate think mood emotion

Table 3: Highly-similar pairs in SimLex-999 that

improved/degraded the most under DCCA. Pairs are

sorted in decreasing order according to the amount

of improvement/degradation.

of the 36K training set for the 180K English vocabu-

lary during testing. We have accidentally found that

this normalization step alone greatly improves the

performance of the original vectors.

For example, the WS-353 correlation improves

from 46.7 to 67.1, essentially matching the linear

CCA correlations, though DCCA still outperforms

them both. This indicates that the cosine similarity

is not stable, and it is likely better to learn a dis-

tance/similarity function (using labeled tuning data)

atop the learned features such that similarities be-

tween selected pairs will match the human similari-

ties, or such that the rankings will match.

Error Analysis We analyze high-similarity word

pairs that change the most with DCCA, as compared

to both linear CCA and the original vectors.

For a word pair w, we use r(w) to refer to its

similarity rank, subscripting it whether it is com-

puted according to human ratings (rh) or if based

on cosine similarity via the original vectors (ro),

CCA-1 (rc), or DCCA-1 MostBeat (rd). We define

δa(w) = |ra(w) − rh(w)| and compute ∆(w) =

!   DCCA discards hypernymy, separates senses 

!   High-similarity word pairs that change most with DCCA 

[Lu, Wang, Bansal, Gimpel, Livescu, 2015] 



Analysis 

!   DCCA more cleanly separates synonym-antonym lists 

Original CCA-1 DCCA-1 (MostBeat)

Figure 2: t-SNE visualization of synonyms (green) and antonyms (red, capitalized) of dangerous.

δd(w) − (δc(w) + δo(w)). If ∆(w) < 0, then

word pair w was closer to the human ranking using

DCCA. Table 3 shows word pairs from SimLex-999

with high human similarity ratings (≥ 7 out of 10);

column 1 shows pairs with smallest ∆ values, and

column 2 shows pairs with largest ∆ values.

Among pairs in column 1, many contain words

with several senses. Using bilingual information is

likely to focus on the most frequent sense in the bi-

text, due to our use of the most frequently-aligned

German word in each training pair. By contrast,

using only monolingual context is expected to find

an embedding that blends the contextual information

across all word senses.

Several pairs from column 2 show hypernym

rather than paraphrase relationships, e.g., author-

creator and leader-manager. Though these pairs are

rated as highly similar by annotators, linear CCA

made them less similar than the original vectors, and

DCCA made them less similar still. This matches

our intuition that bilingual information should en-

courage paraphrase-like similarity and thereby dis-

courage the similarity of hypernym-hyponym pairs.

Visualizations We visualized several synonym-

antonym word lists and often found that DCCA

more cleanly separated synonyms from antonyms

than CCA or the original vectors. An example of

the clearest improvement is shown in Fig. 2.

5 Related work

Previous work has successfully used translational

context for word representations (Diab and Resnik,

2002; Zhao et al., 2005; Täckström et al., 2012;

Bansal et al., 2012; Faruqui and Dyer, 2014), includ-

ing via hand-designed vector space models (Peirs-

man and Padó, 2010; Sumita, 2000) or via unsuper-

vised LDA and LSA (Boyd-Graber and Blei, 2009;

Zhao and Xing, 2006).

There have been other recent deep learning ap-

proaches to bilingual representations, e.g., based on

a joint monolingual and bilingual objective (Zou

et al., 2013). There has also been recent interest

in learning bilingual representations without using

word alignments (Chandar et al., 2014; Gouws et al.,

2014; Kočiskỳ et al., 2014; Vulic and Moens, 2013).

This research is also related to early examples of

learning bilingual lexicons using monolingual cor-

pora (Koehn and Knight, 2002; Haghighi et al.,

2008); the latter used CCA to find matched word

pairs. Irvine and Callison-Burch (2013) used a su-

pervised learning method with multiple monolingual

signals. Finally, other work on CCA and spectral

methods has been used in the context of other types

of views (Collobert and Weston, 2008; Dhillon et al.,

2011; Klementiev et al., 2012; Chang et al., 2013).

6 Conclusion

We have demonstrated how bilingual information

can be incorporated into word embeddings via deep

canonical correlation analysis (DCCA). The DCCA

embeddings consistently outperform linear CCA

embeddings on word and bigram similarity tasks.

Future work could compare DCCA to other non-

linear approaches discussed in §5, compare differ-

ent languages as multiview context, and extend to

aligned phrase pairs, and to unaligned data.
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Retrofitting Word Embeddings to Lexicons 

!   We want the inferred word vector to be close to the observed 
value qˆ and close to its neighbors qj, ∀j such that (i, j) ∈ E, 
where E is the set of relations in a dictionary/lexicon (e.g., 
WordNet, PPDB, etc.) 

[Faruqui et al., 2015] 

Figure 1: Word graph with edges between related words
showing the observed (grey) and the inferred (white)
word vector representations.

Experimentally, we show that our method works
well with different state-of-the-art word vector mod-
els, using different kinds of semantic lexicons and
gives substantial improvements on a variety of
benchmarks, while beating the current state-of-the-
art approaches for incorporating semantic informa-
tion in vector training and trivially extends to mul-
tiple languages. We show that retrofitting gives
consistent improvement in performance on evalua-
tion benchmarks with different word vector lengths
and show a qualitative visualization of the effect of
retrofitting on word vector quality. The retrofitting
tool is available at: https://github.com/

mfaruqui/retrofitting.

2 Retrofitting with Semantic Lexicons

Let V = {w1, . . . , wn} be a vocabulary, i.e, the set
of word types, and⌦ be an ontology that encodes se-
mantic relations between words in V . We represent
⌦ as an undirected graph (V,E) with one vertex for
each word type and edges (wi, wj) 2 E ✓ V ⇥ V
indicating a semantic relationship of interest. These
relations differ for different semantic lexicons and
are described later (§4).

The matrix ˆQ will be the collection of vector rep-
resentations q̂i 2 Rd, for each wi 2 V , learned
using a standard data-driven technique, where d is
the length of the word vectors. Our objective is
to learn the matrix Q = (q1, . . . , qn) such that the
columns are both close (under a distance metric) to
their counterparts in ˆQ and to adjacent vertices in ⌦.
Figure 1 shows a small word graph with such edge
connections; white nodes are labeled with the Q vec-

tors to be retrofitted (and correspond to V⌦); shaded
nodes are labeled with the corresponding vectors in
ˆQ, which are observed. The graph can be interpreted
as a Markov random field (Kindermann and Snell,
1980).

The distance between a pair of vectors is defined
to be the Euclidean distance. Since we want the
inferred word vector to be close to the observed
value q̂i and close to its neighbors qj , 8j such that
(i, j) 2 E, the objective to be minimized becomes:

 (Q) =

nX

i=1

2

4↵ikqi � q̂ik
2
+

X

(i,j)2E

�ijkqi � qjk
2

3

5

where ↵ and � values control the relative strengths
of associations (more details in §6.1).

In this case, we first train the word vectors inde-
pendent of the information in the semantic lexicons
and then retrofit them.  is convex in Q and its so-
lution can be found by solving a system of linear
equations. To do so, we use an efficient iterative
updating method (Bengio et al., 2006; Subramanya
et al., 2010; Das and Petrov, 2011; Das and Smith,
2011). The vectors in Q are initialized to be equal
to the vectors in ˆQ. We take the first derivative of  
with respect to one qi vector, and by equating it to
zero arrive at the following online update:

qi =

P
j:(i,j)2E �ijqj + ↵iq̂iP

j:(i,j)2E �ij + ↵i
(1)

In practice, running this procedure for 10 iterations
converges to changes in Euclidean distance of ad-
jacent vertices of less than 10

�2. The retrofitting
approach described above is modular; it can be ap-
plied to word vector representations obtained from
any model as the updates in Eq. 1 are agnostic to the
original vector training model objective.

Semantic Lexicons during Learning. Our pro-
posed approach is reminiscent of recent work on
improving word vectors using lexical resources (Yu
and Dredze, 2014; Bian et al., 2014; Xu et al., 2014)
which alters the learning objective of the original
vector training model with a prior (or a regularizer)
that encourages semantically related vectors (in ⌦)
to be close together, except that our technique is ap-
plied as a second stage of learning. We describe the

Figure 1: Word graph with edges between related words
showing the observed (grey) and the inferred (white)
word vector representations.
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retrofitting on word vector quality. The retrofitting
tool is available at: https://github.com/
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Let V = {w1, . . . , wn} be a vocabulary, i.e, the set
of word types, and⌦ be an ontology that encodes se-
mantic relations between words in V . We represent
⌦ as an undirected graph (V,E) with one vertex for
each word type and edges (wi, wj) 2 E ✓ V ⇥ V
indicating a semantic relationship of interest. These
relations differ for different semantic lexicons and
are described later (§4).

The matrix ˆQ will be the collection of vector rep-
resentations q̂i 2 Rd, for each wi 2 V , learned
using a standard data-driven technique, where d is
the length of the word vectors. Our objective is
to learn the matrix Q = (q1, . . . , qn) such that the
columns are both close (under a distance metric) to
their counterparts in ˆQ and to adjacent vertices in ⌦.
Figure 1 shows a small word graph with such edge
connections; white nodes are labeled with the Q vec-

tors to be retrofitted (and correspond to V⌦); shaded
nodes are labeled with the corresponding vectors in
ˆQ, which are observed. The graph can be interpreted
as a Markov random field (Kindermann and Snell,
1980).

The distance between a pair of vectors is defined
to be the Euclidean distance. Since we want the
inferred word vector to be close to the observed
value q̂i and close to its neighbors qj , 8j such that
(i, j) 2 E, the objective to be minimized becomes:
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where ↵ and � values control the relative strengths
of associations (more details in §6.1).

In this case, we first train the word vectors inde-
pendent of the information in the semantic lexicons
and then retrofit them.  is convex in Q and its so-
lution can be found by solving a system of linear
equations. To do so, we use an efficient iterative
updating method (Bengio et al., 2006; Subramanya
et al., 2010; Das and Petrov, 2011; Das and Smith,
2011). The vectors in Q are initialized to be equal
to the vectors in ˆQ. We take the first derivative of  
with respect to one qi vector, and by equating it to
zero arrive at the following online update:

qi =

P
j:(i,j)2E �ijqj + ↵iq̂iP

j:(i,j)2E �ij + ↵i
(1)

In practice, running this procedure for 10 iterations
converges to changes in Euclidean distance of ad-
jacent vertices of less than 10

�2. The retrofitting
approach described above is modular; it can be ap-
plied to word vector representations obtained from
any model as the updates in Eq. 1 are agnostic to the
original vector training model objective.

Semantic Lexicons during Learning. Our pro-
posed approach is reminiscent of recent work on
improving word vectors using lexical resources (Yu
and Dredze, 2014; Bian et al., 2014; Xu et al., 2014)
which alters the learning objective of the original
vector training model with a prior (or a regularizer)
that encourages semantically related vectors (in ⌦)
to be close together, except that our technique is ap-
plied as a second stage of learning. We describe the



Bias in Word Embeddings 

[Bolukbasi et al., 2016] 

Extreme she

1. homemaker
2. nurse
3. receptionist
4. librarian
5. socialite
6. hairdresser
7. nanny
8. bookkeeper
9. stylist
10. housekeeper

Extreme he

1. maestro
2. skipper
3. protege
4. philosopher
5. captain
6. architect
7. financier
8. warrior
9. broadcaster
10. magician

Gender stereotype she-he analogies
sewing-carpentry registered nurse-physician housewife-shopkeeper
nurse-surgeon interior designer-architect softball-baseball
blond-burly feminism-conservatism cosmetics-pharmaceuticals
giggle-chuckle vocalist-guitarist petite-lanky
sassy-snappy diva-superstar charming-affable
volleyball-football cupcakes-pizzas lovely-brilliant

Gender appropriate she-he analogies
queen-king sister-brother mother-father
waitress-waiter ovarian cancer-prostate cancer convent-monastery

Figure 1: Left The most extreme occupations as projected on to the she�he gender direction on
w2vNEWS. Occupations such as businesswoman, where gender is suggested by the orthography,
were excluded. Right Automatically generated analogies for the pair she-he using the procedure
described in text. Each automatically generated analogy is evaluated by 10 crowd-workers to whether
or not it reflects gender stereotype.

father is to a doctor as a mother is to a nurse. The primary embedding studied in this paper is the
popular publicly-available word2vec [19, 20] 300 dimensional embedding trained on a corpus of
Google News texts consisting of 3 million English words, which we refer to here as the w2vNEWS.
One might have hoped that the Google News embedding would exhibit little gender bias because
many of its authors are professional journalists. We also analyze other publicly available embeddings
trained via other algorithms and find similar biases (Appendix B).

In this paper, we quantitatively demonstrate that word-embeddings contain biases in their geometry
that reflect gender stereotypes present in broader society.1 Due to their wide-spread usage as basic
features, word embeddings not only reflect such stereotypes but can also amplify them. This poses a
significant risk and challenge for machine learning and its applications. The analogies generated from
these embeddings spell out the bias implicit in the data on which they were trained. Hence, word
embeddings may serve as a means to extract implicit gender associations from a large text corpus
similar to how Implicit Association Tests [11] detect automatic gender associations possessed by
people, which often do not align with self reports.

To quantify bias, we will compare a word vector to the vectors of a pair of gender-specific words. For
instance, the fact that ���!nurse is close to ����!woman is not in itself necessarily biased(it is also somewhat
close to ��!man – all are humans), but the fact that these distances are unequal suggests bias. To make
this rigorous, consider the distinction between gender specific words that are associated with a gender
by definition, and the remaining gender neutral words. Standard examples of gender specific words
include brother, sister, businessman and businesswoman. We will use the gender specific words to
learn a gender subspace in the embedding, and our debiasing algorithm removes the bias only from
the gender neutral words while respecting the definitions of these gender specific words.

We propose approaches to reduce gender biases in the word embedding while preserving the useful
properties of the embedding. Surprisingly, not only does the embedding capture bias, but it also
contains sufficient information to reduce this bias.We will leverage the fact that there exists a low
dimensional subspace in the embedding that empirically captures much of the gender bias.

2 Related work and Preliminary
Gender bias and stereotype in English. It is important to quantify and understand bias in languages
as such biases can reinforce the psychological status of different groups [28]. Gender bias in language
has been studied over a number of decades in a variety of contexts (see, e.g., [13]) and we only
highlight some of the findings here. Biases differ across people though commonalities can be detected.
Implicit Association Tests [11] have uncovered gender-word biases that people do not self-report and
may not even be aware of. Common biases link female terms with liberal arts and family and male
terms with science and careers [23]. Bias is seen in word morphology, i.e., the fact that words such as

1 Stereotypes are biases that are widely held among a group of people. We show that the biases in the word
embedding are in fact closely aligned with social conception of gender stereotype, as evaluated by U.S.-based
crowd workers on Amazon’s Mechanical Turk. The crowd agreed that the biases reflected both in the location of
vectors (e.g.

���!
doctor closer to ��!man than to ����!woman) as well as in analogies (e.g., he:coward :: she:whore.) exhibit

common gender stereotypes.

2

! Debiasing word embeddings via identifying pairs (sets) of words to 
correct/neutralize, identify bias direction (subspace), and then 
debias via neutralize+equalize or soften algorithms. 



Compositional Semantics with NNs 

!   Composing, combining word vectors to representations 
for longer units: phrases, sentences, paragraphs, … 

!   Initial approaches: point-wise sum, multiplication    
[Mitchell and Lapata, 2010; Blacoe and Lapata, 2012] 

!   Vector-matrix compositionality [Baroni and Zamparelli, 2010; 
Zanzotto et al., 2010; Grefenstette and Sadrzadeh, 2011; Socher et al., 2011; 
Yessenalina and Cardie, 2011] 

!   Linguistic information added via say parses in RvNNs 
[Socher et al., 2011b, 2012, 2013a, 2013b, 2014; Hermann and Blunsom, 2013] 

!   Sequential RNNs (with GRU/LSTM gates)  
 (Simple vector averaging w/ updating sometimes competitive) 



Compositional Semantics with NNs 

!   Feed-forward NNs with back-propagation 

Softmax (=	logistic	regression)	is	not	very	powerful

4/7/16Richard	Socher29

• Softmax only	linear	decision	boundaries

• à Lame	when	problem
is	complex

• Wouldn’t	it	be	cool	to	
get	these	correct?

NN and backprop slides from CS224d – Richard Socher	



Compositional Semantics with NNs 

!   Feed-forward NNs with back-propagation 

Neural	Nets	for	the	Win!

4/7/16Richard	Socher30

• Neural	networks	can	learn	much	more	complex	
functions	and	nonlinear	decision	boundaries!



Compositional Semantics with NNs 

!   Feed-forward NNs with back-propagation 

A	neuron	is	essentially	a	binary	logistic	regression	unit

hw,b(x) = f (w
Tx + b)

f (z) = 1
1+ e−z

w,	b are	the	parameters	of	this	neuron
i.e.,	this	logistic	regression	model

33

b:	We	can	have	an	“always	on”	
feature,	which	gives	a	class	prior,	
or	separate	it	out,	as	a	bias	term



Compositional Semantics with NNs 

!   Feed-forward NNs with back-propagation 

A	neural	network	
=	running	several	logistic	regressions	at	the	same	time
Before	we	know	it,	we	have	a	multilayer	neural	network….

36



Compositional Semantics with NNs 

!   Feed-forward NNs with back-propagation 

Training	with	Backpropagation

• Let’s	consider	the	derivative	of	a	single	weight	Wij

• This	only	appears	inside	ai

• For	example:	W23 is	only	
used	to	compute	a2

x1 x2																	x3 +1

a1 a2

s		 U2

W23

19

b2



Compositional Semantics with NNs 

!   Feed-forward NNs with back-propagation 

Training	with	Backpropagation

Derivative	of	weight	Wij:

20

x1 x2																	x3 +1

a1 a2

s		 U2

W23



Compositional Semantics with NNs 

!   Feed-forward NNs with back-propagation 

where																																																		for	logistic	f

Training	with	Backpropagation

Derivative	of	single	weight	Wij :

Local	error	
signal

Local	input	
signal

21

x1 x2																	x3 +1

a1 a2

s		 U2

W23



Syntactically Recursive NNs 

! Socher et al., 2013a, 2014: RvNNs on constituent and dependency 
parse trees 

Figure 2: An example tree with a simple Recursive
Neural Network: The same weight matrix is repli-
cated and used to compute all non-terminal node
representations. Leaf nodes are n-dimensional
vector representations of words.

In order to compute a score of how plausible of
a syntactic constituent a parent is the RNN uses a
single-unit linear layer for all i:

s(p

(i)

) = v

T

p

(i)

,

where v 2 Rn is a vector of parameters that need
to be trained. This score will be used to find the
highest scoring tree. For more details on how stan-
dard RNNs can be used for parsing, see Socher et
al. (2011b).

The standard RNN requires a single composi-
tion function to capture all types of compositions:
adjectives and nouns, verbs and nouns, adverbs
and adjectives, etc. Even though this function is
a powerful one, we find a single neural network
weight matrix cannot fully capture the richness of
compositionality. Several extensions are possible:
A two-layered RNN would provide more expres-
sive power, however, it is much harder to train be-
cause the resulting neural network becomes very
deep and suffers from vanishing gradient prob-
lems. Socher et al. (2012) proposed to give ev-
ery single word a matrix and a vector. The ma-
trix is then applied to the sibling node’s vector
during the composition. While this results in a
powerful composition function that essentially de-
pends on the words being combined, the number
of model parameters explodes and the composi-
tion functions do not capture the syntactic com-
monalities between similar POS tags or syntactic
categories.

Based on the above considerations, we propose
the Compositional Vector Grammar (CVG) that
conditions the composition function at each node
on discrete syntactic categories extracted from a

(A, a=       )        (B, b=       )       (C, c=       )

P(1), p(1)=       

 P(2), p(2)=        

= f   W(B,C) b
c

= f   W(A,P  ) a
p(1)

(1)

Figure 3: Example of a syntactically untied RNN
in which the function to compute a parent vector
depends on the syntactic categories of its children
which we assume are given for now.

PCFG. Hence, CVGs combine discrete, syntactic
rule probabilities and continuous vector composi-
tions. The idea is that the syntactic categories of
the children determine what composition function
to use for computing the vector of their parents.
While not perfect, a dedicated composition func-
tion for each rule RHS can well capture common
composition processes such as adjective or adverb
modification versus noun or clausal complementa-
tion. For instance, it could learn that an NP should
be similar to its head noun and little influenced by
a determiner, whereas in an adjective modification
both words considerably determine the meaning of
a phrase. The original RNN is parameterized by a
single weight matrix W . In contrast, the CVG uses
a syntactically untied RNN (SU-RNN) which has
a set of such weights. The size of this set depends
on the number of sibling category combinations in
the PCFG.

Fig. 3 shows an example SU-RNN that com-
putes parent vectors with syntactically untied
weights. The CVG computes the first parent vec-
tor via the SU-RNN:

p

(1)

= f

✓
W

(B,C)


b

c

�◆
,

where W

(B,C) 2 Rn⇥2n is now a matrix that de-
pends on the categories of the two children. In
this bottom up procedure, the score for each node
consists of summing two elements: First, a single
linear unit that scores the parent vector and sec-
ond, the log probability of the PCFG for the rule
that combines these two children:

s

⇣
p

(1)

⌘
=

�
v

(B,C)

�
T

p

(1)

+ logP (P

1

! B C),

(4)

A man wearing a helmet jumps on his bike near a beach
det

nsubj

partmod det
dobj

root

prep poss
pobj

prep

det
pobj

Figure 2: Example of a full dependency tree for a longer sentence. The DT-RNN will compute vector representations
at every word that represents that word and an arbitrary number of child nodes. The final representation is computed
at the root node, here at the verb jumps. Note that more important activity and object words are higher up in this tree
structure.

supervised model of Huang et al. (2012) which can
learn single word vector representations from both
local and global contexts. The idea is to construct a
neural network that outputs high scores for windows
and documents that occur in a large unlabeled corpus
and low scores for window-document pairs where
one word is replaced by a random word. When
such a network is optimized via gradient descent the
derivatives backpropagate into a word embedding
matrix A which stores word vectors as columns. In
order to predict correct scores the vectors in the ma-
trix capture co-occurrence statistics. We use d = 50

in all our experiments. The embedding matrix X

is then used by finding the column index i of each
word: [w] = i and retrieving the corresponding col-
umn x

w

from X . Henceforth, we represent an input
sentence s as an ordered list of (word,vector) pairs:
s = ((w1, xw1), . . . , (wm

, x

wm)).
Next, the sequence of words (w1, . . . , wm

) is
parsed by the dependency parser of de Marneffe
et al. (2006). Fig. 2 shows an example. We can
represent a dependency tree d of a sentence s as
an ordered list of (child,parent) indices: d(s) =

{(i, j)}, where every child word in the sequence
i = 1, . . . ,m is present and has any word j 2
{1, . . . ,m} [ {0} as its parent. The root word has
as its parent 0 and we notice that the same word can
be a parent between zero and m number of times.
Without loss of generality, we assume that these in-
dices form a tree structure. To summarize, the input
to the DT-RNN for each sentence is the pair (s, d):
the words and their vectors and the dependency tree.

3.2 Forward Propagation in DT-RNNs

Given these two inputs, we now illustrate how the
DT-RNN computes parent vectors. We will use the
following sentence as a running example: Students1
ride2 bikes3 at4 night5. Fig. 3 shows its tree
and computed vector representations. The depen-

Students                 bikes           night

ride 
at          x1

x2

x3

x4
x5

h1

h2

h3

h4

h5

Figure 3: Example of a DT-RNN tree structure for com-
puting a sentence representation in a bottom up fashion.

dency tree for this sentence can be summarized by
the following set of (child, parent) edges: d =

{(1, 2), (2, 0), (3, 2), (4, 2), (5, 4)}.
The DT-RNN model will compute parent vectors

at each word that include all the dependent (chil-
dren) nodes in a bottom up fashion using a com-
positionality function g

✓

which is parameterized by
all the model parameters ✓. To this end, the algo-
rithm searches for nodes in a tree that have either
(i) no children or (ii) whose children have already
been computed and then computes the correspond-
ing vector.

In our example, the words x1, x3, x5 are leaf
nodes and hence, we can compute their correspond-
ing hidden nodes via:

h

c

= g

✓

(x

c

) = f(W

v

x

c

) for c = 1, 3, 5, (1)

where we compute the hidden vector at position c

via our general composition function g

✓

. In the case
of leaf nodes, this composition function becomes
simply a linear layer, parameterized by W

v

2 Rn⇥d,
followed by a nonlinearity. We cross-validate over
using no nonlinearity (f = id), tanh, sigmoid or
rectified linear units (f = max(0, x), but generally
find tanh to perform best.

The final sentence representation we want to com-
pute is at h2, however, since we still do not have h4,



Recurrent NNs 

!   Recurrent NNs (RNNs) are non-tree, sequential versions of 
recursive RvNNs 

!   Weights tied together for each time step 

!   Loss function on identity of predicted word at each time step 

Recurrent	Neural	Networks!

4/21/16Richard	Socher9

• RNNs	tie	the	weights	at	each	time	step

• Condition	the	neural	network	on	all	previous	words

• RAM	requirement	only	scales	with	number	of	words

xt−1 xt xt+1

ht−1 ht ht+1
W W

yt−1 yt yt+1



LSTM RNNs 

c
Memory cell

Input gate Output gate

Forget gate

Figure 3: Long Short-term Memory (LSTM) unit.

Our model (Fig. 2) employs LSTMs as the nonlinear func-
tions f and g due to their ability to learn long-term depen-
dencies that exist over the instruction and action sequences,
without suffering from exploding or vanishing gradients.
Our model also integrates multi-level alignment to focus on
parts of the instruction that are more salient to the current
action at multiple levels of abstraction. We next describe
each component of our network in detail.

Encoder Our encoder takes as input the natural lan-
guage route instruction represented as a sequence
x1:N = (x1, x2, . . . , xN ), where x1 and xN are the
first and last words in the sentence, respectively. We treat
each word xi as a K-dimensional one-hot vector, where
K is the vocabulary size. We feed this sequence into an
LSTM-RNN that summarizes the temporal relationships
between previous words and returns a sequence of hidden
annotations h1:N = (h1, h2, . . . , hN ), where the annotation
hj summarizes the words up to and including xj .

We adopt an LSTM encoder architecture (Fig. 3) similar
to that of Graves, Abdel-rahman, and Hinton (2013),
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e
j = f

e
j � c

e
j�1 + i

e
j � g

e
j (4b)

hj = o

e
j � tanh(c

e
j) (4c)

where T

e is an affine transformation, � is the logistic sig-
moid that restricts its input to [0, 1], iej , fe

j , and o

e
j are the

input, output, and forget gates of the LSTM, respectively,
and c

e
j is the memory cell activation vector. The memory

cell cej summarizes the LSTM’s previous memory c

e
j�1 and

the current input, which are modulated by the forget and in-
put gates, respectively. The forget and input gates enable the
LSTM to regulate the extent to which it forgets its previous
memory and the input, while the output gate regulates the
degree to which the memory affects the hidden state.

Our encoder employs bidirectionality, encoding the sen-
tences in both the forward and backward directions, an ap-
proach that has been found to be successful in speech recog-
nition and machine translation (Graves, Abdel-rahman,
and Hinton 2013; Bahdanau, Cho, and Bengio 2014;
Cho et al. 2014). In this way, the hidden annotations

hj = (

�!
h

>
j ;
 �
h

>
j )

> concatenate forward
�!
h j and backward

annotations
 �
h j , each determined using Equation 4c.

Multi-level Aligner The context representation of the in-
struction is computed as a weighted sum of the word vectors
xj and encoder states hj . Whereas most previous work align
based only on the hidden annotations hj , we found that also
including the original input word xj in the aligner improves
performance. This multi-level representation allows the de-
coder to not just reason over the high-level, context-based
representation of the input sentence hj , but to also consider
the original low-level word representation xj . By adding xj ,
the model offsets information that is lost in the high-level
abstraction of the instruction. Intuitively, the model is able
to better match the salient words in the input sentence (e.g.,
“easel”) directly to the corresponding landmarks in the cur-
rent world state yt used in the decoder. The context vector
then takes the form

zt =

X

j

↵tj

✓
xj

hj

◆
(5)

The weight ↵tj associated with each pair (xj , hj) is

↵tj = exp(�tj)/

X

j

exp(�tj), (6)

where the alignment term �tj = f(st�1, xj , hj) weighs the
extent to which the word at position j and those around it
match the output at time t. The alignment is modelled as a
one-layer neural perceptron

�tj = v

>
tanh(Wst�1 + Uxj + V hj), (7)

where v, W , U , and V are learned parameters.

Decoder Our architecture uses an LSTM decoder (Fig. 3)
that takes as input the current world state yt, the context
of the instruction zt, and the LSTM’s previous hidden state
st�1. The output is the conditional probability distribution
Pa,t = P (at|a1:t�1, yt, x1:N ) over the next action (3), rep-
resented as a deep output layer (Pascanu et al. 2014)
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d
t = f

d
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d
t�1 + i

d
t � g

d
t (8b)

st = o

d
t � tanh(c

d
t ) (8c)

qt = L0(Eyt + Lsst + Lzzt) (8d)
Pa,t = softmax (qt) (8e)

where E is an embedding matrix and L0, Ls, and Lz are
parameters to be learned.

Training We train the encoder and decoder models so as
to predict the action sequence a

⇤
1:T according to Equation 1

for a given instruction x1:N and world state y1:T from the

4

!   LSTM (Long short term memory) RNNs have gates for forgetting, 
allowing learning of longer-term connections by avoiding vanishing/
exploding gradients 



Character RNNs 

!   Can directly process each character as a unit! 
!   Helps learn prefixes, stems, suffixes (form vs. function, rare/

unseen words, etc.) 

http://karpathy.github.io/2015/05/21/rnn-effectiveness/	



Supervised Sentence Embedding Models 

!   Just like word embeddings were supervised using lexicons, 
dictionaries, taxonomies (WordNet) etc., sentence embeddings 
also benefit greatly from supervision! 

!   2 examples: supervision based on bidirectional sentence similarity 
(paraphrases) or directed similarity (entailment vs contradiction vs 
neutral) 



Paraphrase-based Sentence Embeddings 

!   Phrases that mean the same, are replaceable in context 

 
main reason why 	 	 	 	||| 	 	principal reason for	
informed about the outcome	 	||| 	 	notified of the results	
with particular emphasis 	 	||| 	 	with specific focus	
we 'll have a good time 	 	 	||| 	 	we 're gonna have fun	
50 years ago 	 	 	 	 	||| 	 	five decades ago	
that , according to 	 	 	 	||| 	 	which , in accordance with	
program is aimed at	 	 	 	||| 	 	programme aims to	
are under the obligation	 	 	||| 	 	have a duty	
a critical component 	 	 	||| 	 	an essential element	



Paraphrase-based Sentence Embeddings 

!   PPDB: Massive, useful resource (220M) automatically extracted 
from parallel bilingual corpora 

!   Idea summary: carefully extract a few (< 0.05%) +ve and -ve pairs 
from unannotated PPDB as weak supervision 

 
!   Train a parametric paraphrase model (2-view RNN with hinge 

loss) on these pairs, to be able to represent arbitrary phrases as 
embeddings 

!   This learns strong word/phrase embeddings that better predict 
paraphrases on new annotated PPDB subset and gets SoA on 
word/bigram similarity datasets 

[Wieting, Bansal, Gimpel, Livescu, Roth, 2015] 

[Ganitkevitch et al., 2013] 



Paraphrase Model 

!   2 parse-based RvNNs with a hinge-based loss function 

1 2 3

4

5

6

7

3 4

5

1 2
cats catch miceThe Cats   eat   mice

Figure 1: An overview of our paraphrase model. The recursive autoencoder learns phrase features
for each node in a parse tree. The distances between all nodes then fill a similarity matrix whose
size depends on the length of the sentences. Using a novel dynamic pooling layer we can compare
the variable-sized sentences and classify pairs as being paraphrases or not.

2 Recursive Autoencoders
In this section we describe two variants of unsupervised recursive autoencoders which can be used
to learn features from parse trees. The RAE aims to find vector representations for variable-sized
phrases spanned by each node of a parse tree. These representations can then be used for subsequent
supervised tasks. Before describing the RAE, we briefly review neural language models which
compute word representations that we give as input to our algorithm.

2.1 Neural Language Models

The idea of neural language models as introduced by Bengio et al. [5] is to jointly learn an em-
bedding of words into an n-dimensional vector space and to use these vectors to predict how likely
a word is given its context. Collobert and Weston [6] introduced a new neural network model to
compute such an embedding. When these networks are optimized via gradient ascent the derivatives
modify the word embedding matrix L 2 Rn⇥|V |, where |V | is the size of the vocabulary. The word
vectors inside the embedding matrix capture distributional syntactic and semantic information via
the word’s co-occurrence statistics. For further details and evaluations of these embeddings, see
[5, 6, 7, 8].

Once this matrix is learned on an unlabeled corpus, we can use it for subsequent tasks by using each
word’s vector (a column in L) to represent that word. In the remainder of this paper, we represent a
sentence (or any n-gram) as an ordered list of these vectors (x1, . . . , xm). This word representation
is better suited for autoencoders than the binary number representations used in previous related
autoencoder models such as the recursive autoassociative memory (RAAM) model of Pollack [9, 10]
or recurrent neural networks [11] since the activations are inherently continuous.

2.2 Recursive Autoencoder

Fig. 2 (left) shows an instance of a recursive autoencoder (RAE) applied to a given parse tree as
introduced by [12]. Unlike in that work, here we assume that such a tree is given for each sentence by
a parser. Initial experiments showed that having a syntactically plausible tree structure is important
for paraphrase detection. Assume we are given a list of word vectors x = (x1, . . . , xm) as described
in the previous section. The binary parse tree for this input is in the form of branching triplets of
parents with children: (p ! c1c2). The trees are given by a syntactic parser. Each child can be
either an input word vector xi or a nonterminal node in the tree. For both examples in Fig. 2, we
have the following triplets: ((y1 ! x2x3), (y2 ! x1y1)), 8x, y 2 Rn.

Given this tree structure, we can now compute the parent representations. The first parent vector
p = y1 is computed from the children (c1, c2) = (x2, x3) by one standard neural network layer:

p = f(We[c1; c2] + b), (1)

where [c1; c2] is simply the concatenation of the two children, f an element-wise activation function
such as tanh and We 2 Rn⇥2n the encoding matrix that we want to learn. One way of assessing
how well this n-dimensional vector represents its direct children is to decode their vectors in a

2

notion of similarity more related to association than
paraphrase.

4 Paraphrase Models

We now present our parametric paraphrase model
and discuss training. The goal is to embed phrases
into a low-dimensional space such that cosine simi-
larity in the space corresponds to the strength of the
paraphrase relationship between phrases.

Our model is a recursive neural network (RNN),
similar to that used by Socher et al. (2014). We first
use a constituent parser to obtain a binarized parse of
a phrase. For phrase x, we compute its vector g(x)
through recursive computation on the parse. That is,
if phrase p is the yield of a parent node in a parse
tree, and phrases c1 and c2 are the yields of its two
child nodes, we define g(p) recursively as follows:

g(p) = f(W [g(c1); g(c2)] + b)

where f is an element-wise activation function
(tanh), [g(c1); g(c2)] 2 R2n is the concatenation
of the child vectors, W 2 Rn⇥2n is the composi-
tion matrix, b 2 Rn is the offset, and n is the di-
mensionality of the word embeddings. If node p

has no children (i.e., it is a single token), we define
g(p) = W

(p)
w

, where W

w

is the word embedding
matrix in which particular word vectors are indexed
using superscripts. The trainable parameters of the
model are W , b, and W

w

.

4.1 Objective Functions

We now present objective functions for training on
pairs extracted from PPDB. We note that we use our
new Annotated-PPDB dataset only for tuning hyper-
parameters and final testing. The training data con-
sists of (possibly noisy) pairs taken directly from the
original PPDB. In subsequent sections, we discuss
how we extract training pairs for particular tasks.

We assume our training data consists of a set X of
phrase pairs hx1, x2i, where x1 and x2 are assumed
to be paraphrases. To learn the model parame-
ters (W, b,W

w

), we minimize our objective function
over the data using AdaGrad (Duchi et al., 2011)

with mini-batches. The objective function follows:

min
W,b,Ww

1

|X|

 
X

hx1,x2i2X

max(0, ��g(x1) ·g(x2)+

g(x1)·g(t1))+max(0, ��g(x1)·g(x2)+g(x2)·g(t2))
◆

+ �

W

(kWk2 + kbk2) + �

Ww kW
winitial �W

w

k2
(1)

where �

W

and �

Ww are regularization parameters,
W

winitial is the initial word embedding matrix, � is
the margin (set to 1 in all of our experiments), and
t1 and t2 are carefully-selected negative examples
taken from a mini-batch during optimization.

The intuition for this objective is that we want
the two phrases to be more similar to each other
(g(x1) · g(x2)) than either is to their respective neg-
ative examples t1 and t2, by a margin of at least �.
For more efficient training, we used the dot product
in the objective rather than cosine similarity.

Selecting Negative Examples To select t1 and t2

in Eq. 1, we simply chose the most similar phrase in
the mini-batch (other than those in the given phrase
pair). E.g., for choosing t1 for a given hx1, x2i:

t1 = argmax

t:ht,·i2Xb\{hx1,x2i}
g(x1) · g(t)

where X

b

✓ X is the current mini-batch. That is,
we want to choose a negative example t

i

that is sim-
ilar to x

i

according to the current model parameters.
The downside of this approach is that we may oc-
casionally choose a phrase t

i

that is actually a true
paraphrase of x

i

. We also tried a strategy in which
we selected the least similar phrase that would trig-
ger an update (i.e., g(t

i

) ·g(x
i

) > g(x1) ·g(x2)��),
but we found the simpler strategy above to work bet-
ter and used it for all experiments reported below.

Discussion The objective in Eq. 1 is similar to one
used by Socher et al. (2014), but with several differ-
ences. Their objective compared text and projected
images. They also did not update the underlying
word embeddings; we do so here, and in a way such
that they are penalized from deviating from their ini-
tialization. Also, they do not select a single t1 and t2

as we do, but use the entire training set, which can
be very expensive with large training data.

Loss	

[Socher et al., 2011] 

Composition = 	



Paraphrase Model 

!   Loss: +ve pairs closer than -ve pairs with margin δ 

 

Positive training pairs	 Negative training pairs	

Regularization terms 	

min
W,b,Ww

1

|X|

 
X

hx1,x2i2X

max(0, � � g(x1) · g(x2) + g(x1) · g(t1))

+max(0, � � g(x1) · g(x2) + g(x2) · g(t2))
◆

+�

W

(kWk2 + kbk2) + �

Ww kW
winitial �W

w

k2

1

[Wieting, Bansal, Gimpel, Livescu, Roth, 2015] 



Entailment-based Embeddings 

!   SNLI and Multi-NLI corpora with sentence pairs of 3 relationships: 
entailment, contradiction, neutral/unrelated 

[Bowman et al., 2015; Williams et al., 2017] 

Premise Label Hypothesis Genre 
The Old One always comforted Ca'daan, except 
today. neutral Ca'daan knew the Old One very well.  Fiction 

Your gift is appreciated by each and every student 
who will benefit from your generosity. neutral Hundreds of students will benefit from your 

generosity.  Letters 

yes now you know if if everybody like in August when 
everybody's on vacation or something we can dress a 
little more casual or 

contradiction August is a black out month for vacations in 
the company.  

Telephone 
Speech 

At the other end of Pennsylvania Avenue, people 
began to line up for a White House tour. entailment People formed a line at the end of 

Pennsylvania Avenue.  9/11 Report 

A black race car starts up in front of a crowd of people. contradiction A man is driving down a lonely road. SNLI 



Entailment-based Embeddings 

[Conneau et al., 2017] 

Encoder 

Encoder 

MLP Prediction 

Premise 

Hypothesis 

Same 
Structure 

v

u

|v � u|

v ⌦ u

[v, u, v ⌦ u, |v � u|]

Encoding Matching 



Entailment-based Embeddings 

[Conneau et al., 2017] 

Model MR CR SUBJ MPQA SST TREC MRPC SICK-R SICK-E STS14

Unsupervised representation training (unordered sentences)

Unigram-TFIDF 73.7 79.2 90.3 82.4 - 85.0 73.6/81.7 - - .58/.57

ParagraphVec (DBOW) 60.2 66.9 76.3 70.7 - 59.4 72.9/81.1 - - .42/.43

SDAE 74.6 78.0 90.8 86.9 - 78.4 73.7/80.7 - - .37/.38

SIF (GloVe + WR) - - - - 82.2 - - - 84.6 .69/ -

word2vec BOW† 77.7 79.8 90.9 88.3 79.7 83.6 72.5/81.4 0.803 78.7 .65/.64

fastText BOW† 76.5 78.9 91.6 87.4 78.8 81.8 72.4/81.2 0.800 77.9 .63/.62

GloVe BOW† 78.7 78.5 91.6 87.6 79.8 83.6 72.1/80.9 0.800 78.6 .54/.56

GloVe Positional Encoding† 78.3 77.4 91.1 87.1 80.6 83.3 72.5/81.2 0.799 77.9 .51/.54

BiLSTM-Max (untrained)† 77.5 81.3 89.6 88.7 80.7 85.8 73.2/81.6 0.860 83.4 .39/.48

Unsupervised representation training (ordered sentences)

FastSent 70.8 78.4 88.7 80.6 - 76.8 72.2/80.3 - - .63/.64

FastSent+AE 71.8 76.7 88.8 81.5 - 80.4 71.2/79.1 - - .62/.62

SkipThought 76.5 80.1 93.6 87.1 82.0 92.2 73.0/82.0 0.858 82.3 .29/.35

SkipThought-LN 79.4 83.1 93.7 89.3 82.9 88.4 - 0.858 79.5 .44/.45

Supervised representation training

CaptionRep (bow) 61.9 69.3 77.4 70.8 - 72.2 - - - .46/.42

DictRep (bow) 76.7 78.7 90.7 87.2 - 81.0 68.4/76.8 - - .67/.70

NMT En-to-Fr 64.7 70.1 84.9 81.5 - 82.8 - - .43/.42

Paragram-phrase - - - - 79.7 - - 0.849 83.1 .71/ -

BiLSTM-Max (on SST)† (*) 83.7 90.2 89.5 (*) 86.0 72.7/80.9 0.863 83.1 .55/.54

BiLSTM-Max (on SNLI)† 79.9 84.6 92.1 89.8 83.3 88.7 75.1/82.3 0.885 86.3 .68/.65

BiLSTM-Max (on AllNLI)† 81.1 86.3 92.4 90.2 84.6 88.2 76.2/83.1 0.884 86.3 .70/.67

Supervised methods (directly trained for each task – no transfer)

Naive Bayes - SVM 79.4 81.8 93.2 86.3 83.1 - - - - -

AdaSent 83.1 86.3 95.5 93.3 - 92.4 - - - -

TF-KLD - - - - - - 80.4/85.9 - - -

Illinois-LH - - - - - - - - 84.5 -

Dependency Tree-LSTM - - - - - - - 0.868 - -

Table 4: Transfer test results for various architectures trained in different ways. Underlined are best

results for transfer learning approaches, in bold are best results among the models trained in the same

way. † indicates methods that we trained, other transfer models have been extracted from (Hill et al.,

2016). For best published supervised methods (no transfer), we consider AdaSent (Zhao et al., 2015),

TF-KLD (?), Tree-LSTM (Tai et al., 2015) and Illinois-LH system (Lai and Hockenmaier, 2014). (*)

Our model trained on SST obtained 83.4 for MR and 86.0 for SST (MR and SST come from the same

source), which we do not put in the tables for fair comparison with transfer methods.

els (BiLSTM-Max, HConvNet, inner-att), which

demonstrate unequal abilities to incorporate more

information as the size grows. We hypothesize

that such networks are able to incorporate infor-

mation that is not directly relevant to the objective

task (results on SNLI are relatively stable with re-

gard to embedding size) but that can nevertheless

be useful as features for transfer tasks.

5.2 Task transfer

We report in Table 4 transfer tasks results for

different architectures trained in different ways.

We group models by the nature of the data

on which they were trained. The first group

corresponds to models trained with unsuper-

vised unordered sentences. This includes bag-

of-words models such as word2vec-SkipGram,

the Unigram-TFIDF model, the Paragraph Vector

model (Le and Mikolov, 2014), the Sequential De-

noising Auto-Encoder (SDAE) (Hill et al., 2016)

and the SIF model (Arora et al., 2017), all trained

on the Toronto book corpus (?). The second group

consists of models trained with unsupervised or-

dered sentences such as FastSent and SkipThought

(also trained on the Toronto book corpus). We also

include the FastSent variant “FastSent+AE” and

the SkipThought-LN version that uses layer nor-

malization. We report results from models trained

on supervised data in the third group, and also re-

port some results of supervised methods trained



Entailment-based Embeddings 

[Nie and Bansal, 2017] 

!   Encoder details: Starting point is 1-layer biLSTM with Max-pooling 
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Entailment-based Embeddings 

[Nie and Bansal, 2017] 

!   Improved Encoders: e.g., via shortcut-stacked RNNs (to help learn 
higher-level semantic features and to help sparse gradients from 
max-pooling to flow to lower layers 



Entailment-based Embeddings 

[Nangia et al., 2017] 

! RepEval 2017 Shared Task Results 

#Examples #Wds. ‘S’ parses
Genre Train Dev. Test Prem. Prem. Hyp. Agrmt. BiLSTM Acc.

SNLI 550,152 10,000 10,000 14.1 74% 88% 89.0% 81.5%

FICTION 77,348 2,000 2,000 14.4 94% 97% 89.4% 66.8%
GOVERNMENT 77,350 2,000 2,000 24.4 90% 97% 87.4% 68.0%
SLATE 77,306 2,000 2,000 21.4 94% 98% 87.1% 68.4%
TELEPHONE 83,348 2,000 2,000 25.9 71% 97% 88.3% 67.7%
TRAVEL 77,350 2,000 2,000 24.9 97% 98% 89.9% 66.8%

9/11 0 2,000 2,000 20.6 98% 99% 90.1% 68.5%
FACE-TO-FACE 0 2,000 2,000 18.1 91% 96% 89.5% 67.5%
LETTERS 0 2,000 2,000 20.0 95% 98% 90.1% 66.4%
OUP 0 2,000 2,000 25.7 96% 98% 88.1% 66.7%
VERBATIM 0 2,000 2,000 28.3 93% 97% 87.3% 67.2%

MultiNLI Overall 392,702 20,000 20,000 22.3 91% 98% 88.7% 67.4%

Table 2: Key statistics for the corpus broken down by genre, presented alongside figures from SNLI
for comparison. The first five genres represent the matched section of the development and test sets, and
the remaining five represent the mismatched section. The first three statistics shown are the number of
examples in each genre. #Wds. Prem. is the mean token count among premise sentences. ‘S’ parses is
the percentage of premises or hypotheses which the Stanford Parser labeled as full sentences rather than
fragments. Agrmt. is the percent of individual annotator labels that match the assigned gold label used
in evaluation. BiLSTM Acc. gives the test accuracy on the full test set for the BiLSTM baseline model
trained on MultiNLI and SNLI.

Team Name Authors Matched Mismatched Model Details

alpha (ensemble) Chen et al. 74.9% 74.9% STACK, CHAR, ATTN., POOL, PRODDIFF
YixinNie-UNC-NLP Nie and Bansal 74.5% 73.5% STACK, POOL, PRODDIFF, SNLI
alpha Chen et al. 73.5% 73.6% STACK, CHAR, ATTN, POOL, PRODDIFF
Rivercorners (ensemble) Balazs et al. 72.2% 72.8% ATTN, POOL, PRODDIFF, SNLI
Rivercorners Balazs et al. 72.1% 72.1% ATTN, POOL, PRODDIFF, SNLI
LCT-MALTA Vu et al. 70.7% 70.8% CHAR, ENHEMB, PRODDIFF, POOL
TALP-UPC Yang et al. 67.9% 68.2% CHAR, ATTN, SNLI
BiLSTM baseline Williams et al. 67.0% 67.6% POOL, PRODDIFF, SNLI

Table 3: RepEval 2017 shared task competition results. The Model Details column lists some of the key
strategies used in each system, using keywords: STACK: use of multilayer bidirectional RNNs, CHAR:
character-level embeddings, ENHEMB: embeddings enhanced with auxiliary features, POOL: max or
mean pooling over RNN states, ATTN: intra-sentence attention, PRODDIFF: elementwise sentence prod-
uct and difference features in the final entailment classifier, SNLI: use of the SNLI training set.

veys the key differences between systems, and the
Model Details column in Table 3 serves as a sum-
mary reference for these differences.

Depth Chen et al. and Nie and Bansal use three-
layer bidirectional RNNs, while others only used
single-layer RNNs. This likely contributes signif-
icantly to their good performance, as it is the most
prominent feature shared only by these two top
systems. They both use shortcut connections be-
tween recurrent layers to ease gradient flow, and
Nie and Bansal find in an ablation study that using
shortcut connections improves their performance
by over 1% on both development sets.

Embeddings Systems vary reasonably widely
in their approach to input encoding. Yang
et al. and Chen et al. use a combination of GloVe
embeddings (Pennington et al., 2014, not fine
tuned) and character-level convolutional neural
networks (Kim et al., 2016) to extract represen-
tations of words. Balazs et al. also use pre-trained
GloVe embeddings without fine tuning, but report
(contra Chen et al.) that an added character-level
feature extractor does not improve performance.

Vu et al. use pre-trained GloVe word embed-
dings augmented with additional feature vectors.
They create embeddings for part-of-speech (POS),
character level information, and the dependency
relation between a word and its parent, and con-



Entailment-based Embeddings 

[Nie and Bansal, 2017] 

!   Shortcut-stacked RNNs also achieved encoding-based SotA on 
SNLI corpus 

Model

Accuracy

SNLI Multi-NLI Matched Multi-NLI Mismatched

CBOW (Williams et al., 2017) 80.6 65.2 64.6
biLSTM Encoder (Williams et al., 2017) 81.5 67.5 67.1

300D Tree-CNN Encoder (Mou et al., 2015) 82.1 – –
300D SPINN-PI Encoder (Bowman et al., 2016) 83.2 – –
300D NSE Encoder (Munkhdalai and Yu, 2016) 84.6 – –
biLSTM-Max Encoder (Conneau et al., 2017) 84.5 – –

Our biLSTM-Max Encoder 85.2 71.7 71.2
Our Shortcut-Stacked Encoder 86.1 74.6 73.6

Table 5: Final Test Results on SNLI and Multi-NLI datasets.

mization with 32 batch size. The starting learning
rate is 0.0002 with half decay every two epochs.
The number of hidden units for MLP in classifier
is 1600. Dropout layer is also applied on the out-
put of each layer of MLP, with dropout rate set to
0.1. We used pre-trained 300D Glove 840B vec-
tors (Pennington et al., 2014) to initialize the word
embeddings. Tuning decisions for word embed-
ding training strategy, the hyperparameters of di-
mension and number of layers for biLSTM, and
the activation type and number of layers for MLP,
are all explained in Section 4.

4 Results and Analysis

4.1 Ablation Analysis Results

We now investigate the effectiveness of each of the
enhancement components in our overall model.
These ablation results are shown in Tables 1, 2, 3
and 4, all based on the Multi-NLI development
sets. Finally, Table 5 shows results for different
encoders on SNLI and Multi-NLI test sets.

First, Table 1 shows the performance changes
for different number of biLSTM layers and their
varying dimension size. The dimension size of
a biLSTM layer is referring to the dimension of
the hidden state for both the forward and back-
ward LSTM-RNNs. As shown, each added layer
model improves the accuracy and we achieve a
substantial improvement in accuracy (around 2%)
on both matched and mismatched settings, com-
pared to the single-layer biLSTM in Conneau et al.
(2017). We only experimented with up to 3 lay-
ers with 512, 1024, 2048 dimensions each, so the
model still has potential to improve the result fur-
ther with a larger dimension and more layers.

Next, in Table 2, we show that the shortcut
connections among the biLSTM layers is also
an important contributor to accuracy improve-
ment (around 1.5% on top of the full 3-layered
stacked-RNN model). This demonstrates that sim-
ply stacking the biLSTM layers is not sufficient

to handle a complex task like Multi-NLI and it is
significantly better to have the higher layer con-
nected to both the output and the original input of
all the previous layers (note that Table 1 results are
based on multi-layered models with shortcut con-
nections).

Next, in Table 3, we show that fine-tuning the
word embeddings also improves results, again for
both the in-domain task and cross-domain tasks
(the ablation results are based on a smaller model
with a 128+256 2-layer biLSTM). Hence, all our
models were trained with word embeddings being
fine-tuned. The last ablation in Table 4 shows that
a classifier with two layers of relu is preferable
than other options. Thus, we use that setting for
our strongest encoder.

4.2 Multi-NLI and SNLI Test Results

Finally, in Table 5, we report the test results
for MNLI and SNLI. First for Multi-NLI, we
improve substantially over the CBOW and biL-
STM Encoder baselines reported in the dataset pa-
per (Williams et al., 2017). We also show that
our final shortcut-based stacked encoder achieves
around 3% improvement as compared to the 1-
layer biLSTM-Max Encoder in the second last
row (using the exact same classifier and optimizer
settings). Our shortcut-encoder was also the top
singe-model (non-ensemble) result on the EMNLP
RepEval Shared Task leaderboard.

Next, for SNLI, we compare our shortcut-
stacked encoder with the current state-of-the-art
encoders from the SNLI leaderboard (https://
nlp.stanford.edu/projects/snli/).
We also compare to the recent biLSTM-Max
Encoder of Conneau et al. (2017), which served
as our model’s 1-layer starting point.1 The results
indicate that ‘Our Shortcut-Stacked Encoder’ sur-

1Note that the ‘Our biLSTM-Max Encoder’ results in the
second-last row are obtained using our reimplementation of
the Conneau et al. (2017) model; our version is 0.7% better,
likely due to our classifier and optimizer settings.



Classification Tasks: Sentiment Analysis 



Sentiment Analysis 

!   Earlier methods used bag of words, e.g., lexicons of 
positive and negative words and phrases 

!   Cannot distinguish tricky cases like: 

+ 	white 	blood 	cells 	destroying 	an 	infection	
− 	an 	infection	 	destroying 	white 	blood 	cells	
	
	
+ 	There are slow and repetitive parts but it has just enough 
spice to keep it interesting.	
− 	Stealing Harvard doesn’t care about cleverness, wit or any 
other kind of intelligent humor. 	



Sentiment Analysis 

!   Even simpler issues like negation hard to understand 

! Socher et al., 2013b present new compositional 
training data and new composition model 

Recursive Deep Models for Semantic Compositionality
Over a Sentiment Treebank

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason Chuang,
Christopher D. Manning, Andrew Y. Ng and Christopher Potts

Stanford University, Stanford, CA 94305, USA
richard@socher.org,{aperelyg,jcchuang,ang}@cs.stanford.edu

{jeaneis,manning,cgpotts}@stanford.edu

Abstract

Semantic word spaces have been very use-
ful but cannot express the meaning of longer
phrases in a principled way. Further progress
towards understanding compositionality in
tasks such as sentiment detection requires
richer supervised training and evaluation re-
sources and more powerful models of com-
position. To remedy this, we introduce a
Sentiment Treebank. It includes fine grained
sentiment labels for 215,154 phrases in the
parse trees of 11,855 sentences and presents
new challenges for sentiment composition-
ality. To address them, we introduce the
Recursive Neural Tensor Network. When
trained on the new treebank, this model out-
performs all previous methods on several met-
rics. It pushes the state of the art in single
sentence positive/negative classification from
80% up to 85.4%. The accuracy of predicting
fine-grained sentiment labels for all phrases
reaches 80.7%, an improvement of 9.7% over
bag of features baselines. Lastly, it is the only
model that can accurately capture the effects
of negation and its scope at various tree levels
for both positive and negative phrases.

1 Introduction

Semantic vector spaces for single words have been
widely used as features (Turney and Pantel, 2010).
Because they cannot capture the meaning of longer
phrases properly, compositionality in semantic vec-
tor spaces has recently received a lot of attention
(Mitchell and Lapata, 2010; Socher et al., 2010;
Zanzotto et al., 2010; Yessenalina and Cardie, 2011;
Socher et al., 2012; Grefenstette et al., 2013). How-
ever, progress is held back by the current lack of
large and labeled compositionality resources and
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Figure 1: Example of the Recursive Neural Tensor Net-
work accurately predicting 5 sentiment classes, very neg-
ative to very positive (– –, –, 0, +, + +), at every node of a
parse tree and capturing the negation and its scope in this
sentence.

models to accurately capture the underlying phe-
nomena presented in such data. To address this need,
we introduce the Stanford Sentiment Treebank and
a powerful Recursive Neural Tensor Network that
can accurately predict the compositional semantic
effects present in this new corpus.

The Stanford Sentiment Treebank is the first cor-
pus with fully labeled parse trees that allows for a
complete analysis of the compositional effects of
sentiment in language. The corpus is based on
the dataset introduced by Pang and Lee (2005) and
consists of 11,855 single sentences extracted from
movie reviews. It was parsed with the Stanford
parser (Klein and Manning, 2003) and includes a
total of 215,154 unique phrases from those parse
trees, each annotated by 3 human judges. This new
dataset allows us to analyze the intricacies of senti-
ment and to capture complex linguistic phenomena.
Fig. 1 shows one of the many examples with clear
compositional structure. The granularity and size of



Sentiment Analysis 

!   Even simpler issues like negation hard to understand 

! Socher et al., 2013b present new compositional 
training data and new composition model 1.	New	Sentiment	Treebank	



Sentiment Analysis 

!   Sentiment Compositionality: 1.	New	Sentiment	Treebank	

• Parse	trees	of	11,855	sentences
• 215,154	phrases	with	labels
• Allows	training	and	evaluating	

with	compositional	information



Sentiment Analysis 

!   Better Models: Recursive Neural Tensor Network 
(RNTN) 

Recursive	Neural	Tensor	Network
Recursive	Deep	Models	 for	Semantic	Compositionality	Over	a	Sentiment	Treebank	
Socher	et	al.	2013



Sentiment Analysis 

!   Better Models: Tree-based LSTM-RNNs 

Tree	LSTMs

• We	can	use	those	ideas	in	
grammatical	tree	structures!

• Paper:	Tai	et	al.	2015:
Improved	Semantic	Representations	From
Tree-Structured	Long	Short-Term	Memory	Networks	

• Idea:	Sum	the	child	vectors
in	a	tree	structure

• Each	child	has	its	own	
forget	gate

• Same	softmax on	h
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Sentiment Compositionality 

!   Demos: h#p://nlp.stanford.edu:8080/sen7ment/rntnDemo.html 
[Yessenalina and Cardie, 2011; Socher et al., 2013b] 

Results	on	Stanford	Sentiment	Treebank	

Method Fine-grained Binary

RAE (Socher et al., 2013) 43.2 82.4
MV-RNN (Socher et al., 2013) 44.4 82.9
RNTN (Socher et al., 2013) 45.7 85.4
DCNN (Blunsom et al., 2014) 48.5 86.8
Paragraph-Vec (Le and Mikolov, 2014) 48.7 87.8
CNN-non-static (Kim, 2014) 48.0 87.2
CNN-multichannel (Kim, 2014) 47.4 88.1
DRNN (Irsoy and Cardie, 2014) 49.8 86.6

LSTM 45.8 86.7
Bidirectional LSTM 49.1 86.8
2-layer LSTM 47.5 85.5
2-layer Bidirectional LSTM 46.2 84.8

Constituency Tree LSTM (no tuning) 46.7 86.6
Constituency Tree LSTM 50.6 86.9

Table 2: Test set accuracies on the Stanford Senti-
ment Treebank. Fine-grained: 5-class sentiment
classification. Binary: positive/negative senti-
ment classification. We give results for Tree-
LSTM models with and without fine-tuning of
word representations.

Sec. 4.2. For the similarity prediction network
(Eqs. 15) we use a hidden layer of size 50. We
compare two Tree-LSTM architectures for com-
posing sentence representations: the Child-Sum
Tree-LSTM architecture (Sec. 3.1) on dependency
trees (Chen and Manning, 2014) and the Binary
Tree-LSTM (Sec. 3.2) on binarized constituency
trees (Klein and Manning, 2003).

5.3 Hyperparameters and Training Details
The hyperparameters for our models were tuned
on the development set for each task.

We initialized our word representations using
publicly available 300-dimensional Glove vectors
(Pennington et al., 2014). For the sentiment classi-
fication task, word representations were fine-tuned
during training with a learning rate of 0.1; no fine-
tuning was performed for the semantic relatedness
task.

Our models were trained using AdaGrad (Duchi
et al., 2011) with a learning rate of 0.05 and a
minibatch size of 25. The model parameters were
regularized with a per-minibatch L2 regularization
strength of 10�4. The sentiment classifier was ad-
ditionally regularized using dropout (Hinton et al.,
2012).

6 Results

6.1 Sentiment Classification
Our results are summarized in Table 2. As was the
case with the convolutional neural network model

Method r ⇢ MSE

Mean vectors 0.8046 0.7294 0.3595
DT-RNN (Socher et al., 2014) 0.7863 0.7305 0.3983
SDT-RNN (Socher et al., 2014) 0.7886 0.7280 0.3859

Illinois-LH (Lai and Hockenmaier, 2014) 0.7993 0.7538 0.3692
UNAL-NLP (Jimenez et al., 2014) 0.8070 0.7489 0.3550
Meaning Factory (Bjerva et al., 2014) 0.8268 0.7721 0.3224
ECNU (Zhao et al., 2014) 0.8414 – –

LSTM 0.8477 0.7921 0.2949
Bidirectional LSTM 0.8522 0.7952 0.2850
2-layer LSTM 0.8411 0.7849 0.2980
2-layer Bidirectional LSTM 0.8488 0.7926 0.2893

Constituency Tree LSTM 0.8491 0.7873 0.2852
Dependency Tree LSTM 0.8627 0.8032 0.2635

Table 3: Test set results on the SICK semantic
relatedness subtask. The evaluation metrics are
Pearson’s r, Spearman’s ⇢, and mean squared er-
ror. Results are grouped as follows: (1) Our own
baselines; (2) SemEval 2014 submissions; (3) Se-
quential LSTM variants.

described by Kim (2014), we found that tuning
word representations yielded a significant boost in
performance on the fine-grained classification sub-
task, in contrast to the minor gains observed on the
binary classification subtask. This suggests that
fine-tuning helps distinguish positive/negative vs.
neutral, strongly positive vs. positive, and strongly
negative vs. negative, as opposed to positive vs.
negative in the binary case.

The Bidirectional LSTM significantly outper-
formed the standard LSTM on the fine-grained
subtask. Note that this result is achieved with-
out introducing any additional parameters in the
LSTM transition function since the forward and
backward parameters are shared. This indicates
that sentence length becomes a limiting factor
for the (unidirectional) LSTM on the fine-grained
subtask. Somewhat surprisingly, we do not ob-
serve a corresponding improvement on the binary
subtask (indeed, we achieve similar results on all
our single-layer LSTM models). We conjecture
that the state that needs to be retained by the net-
work in order to make a correct binary prediction
is easily preserved by both the LSTM and Bidi-
rectional LSTM models, whereas the fine-grained
case requires more complex interactions between
the input word representations and the hidden state
of the LSTM unit.

The Tree-LSTM over constituency trees outper-
forms existing systems on the fine-grained classi-
fication subtask.
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of	word	vectors



Other Classification Tasks 

!   Sentence similarity 

!   Entailment classification 

!   Spam detection 

!   Document topic classification 

!   Others: humor, rumor, sarcasm detection, etc. 

SemEval has great new tasks every year with novel 
datasets in many cases! Some recent years: 
http://alt.qcri.org/semeval2017/index.php?id=tasks 
http://alt.qcri.org/semeval2016/index.php?id=tasks 
http://alt.qcri.org/semeval2015/index.php?id=tasks  


