COMP 790.139 (Fall 2017) Natural Language Processing (with deep learning and connections to vision/robotics)

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Mohit Bansal

(various slides adapted/borrowed from courses by Dan Klein, Richard Socher, Chris Manning, others)

Announcements

- Chapter section summaries were due yesterday
- Make sure you regularly check your ConnectCarolina email id's
- 1st Coding assignment to be out soon
- Start thinking of projects early!
- TA: Yixin Nie (<u>yixin1@cs.unc.edu</u>) -- will announce office hours soon!

Recap of Distributional Semantics

- Words occurring in similar context have similar linguistic behavior (meaning) [Harris, 1954; Firth, 1957]
- Traditional approach: context-counting vectors
 - Count left and right context in window
 - Reweight with PMI or LLR
 - Reduce dimensionality with SVD or NNMF

[Pereira et al., 1993; Lund & Burgess, 1996; Lin, 1998; Lin and Pantel, 2001; Sahlgren, 2006; Pado & Lapata, 2007; Turney and Pantel, 2010; Baroni and Lenci, 2010]

More word representations: hierarchical clustering based on bigram LM LL [Brown et al., 1992]

0.6 -0.2 0.9 0.3 -0.4

0.5

Unsupervised Embeddings

Vector space representations learned on unlabeled linear context (i.e., left/right words): distributional semantics (Harris, 1954; Firth, 1957)

Distributional Semantics -- NNs

Newer approach: context-predicting vectors (NNs)

SENNA [Collobert and Weston, 2008; Collobert et al., 2011]: Multi-layer DNN w/ ranking-loss objective; BoW and sentence-level feature layers, followed by std. NN layers. Similar to [Bengio et al., 2003].

Distributional Semantics -- NNs

CBOW, SKIP, word2vec [Mikolov et al., 2013]: Simple, super-fast NN w/ no hidden layer. Continuous BoW model predicts word given context, skipgram model predicts surrounding context words given current word

Other: [Mnih and Hinton, 2007; Turian et al., 2010]

Demos: <u>https://code.google.com/p/word2vec</u>, <u>http://metaoptimize.com/projects/wordreprs/</u>, <u>http://ml.nec-labs.com/senna/</u>

Skipgram word2vec

[Mikolov et al., 2013]

Skip-gram word2vec Objective Function

[Mikolov et al., 2013]

Objective of Skip-gram model is to max. the avg. log probability:

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log p(w_{t+j}|w_t)$$

The above conditional probability is defined via the softmax function:

$$p(w_O|w_I) = \frac{\exp\left(v_{w_O}'^{\top} v_{w_I}\right)}{\sum_{w=1}^{W} \exp\left(v_w'^{\top} v_{w_I}\right)}$$

where v and v' are the "input" and "output" vector representations of w, and W is the number of words in the vocabulary

Efficient Skip-gram word2vec:

[Mikolov et al., 2013]

Negative Sampling:

$$\log \sigma(v_{w_O}^{\prime \top} v_{w_I}) + \sum_{i=1}^k \mathbb{E}_{w_i \sim P_n(w)} \left[\log \sigma(-v_{w_i}^{\prime \top} v_{w_I})\right]$$

I.e., to distinguish the target word w_o from draws from the noise distribution P_n(w) using logistic regression, where there are k negative samples for each data sample.

Efficient Skip-gram word2vec:

[Mikolov et al., 2013]

Hierarchical Softmax:

$$p(w|w_I) = \prod_{j=1}^{L(w)-1} \sigma\left(\left[n(w, j+1) = ch(n(w, j)) \right] \cdot v'_{n(w, j)}^{\top} v_{w_I} \right)$$

- Instead of evaluating W output nodes in the neural network to obtain the probability distribution, it is needed to evaluate only about log₂(W) nodes.
- Uses a binary tree representation of the output layer with the W words as its leaves and, for each node, explicitly represents the relative probabilities of its child nodes. These define a random walk that assigns probabilities to words.

[Mikolov et al., 2013]

[Mikolov et al., 2013]

Figure 2: Two-dimensional PCA projection of the 1000-dimensional Skip-gram vectors of countries and their capital cities. The figure illustrates ability of the model to automatically organize concepts and learn implicitly the relationships between them, as during the training we did not provide any supervised information about what a capital city means.

[Mikolov et al., 2013]

Newspapers							
New York	New York Times	Baltimore	Baltimore Sun				
San Jose	San Jose Mercury News	Cincinnati	Cincinnati Enquirer				
	NHL Team	S					
Boston	Boston Bruins	Montreal	Montreal Canadiens				
Phoenix	Phoenix Coyotes	Nashville	Nashville Predators				
NBA Teams							
Detroit	Detroit Pistons	Toronto	Toronto Raptors				
Oakland	Golden State Warriors	Memphis	Memphis Grizzlies				
	Airlines	·					
Austria	Austrian Airlines	Spain	Spainair				
Belgium	Brussels Airlines	Greece	Aegean Airlines				
Company executives							
Steve Ballmer	Microsoft	Larry Page	Google				
Samuel J. Palmisano	IBM	Werner Vogels	Amazon				

Table 2: Examples of the analogical reasoning task for phrases (the full test set has 3218 examples). The goal is to compute the fourth phrase using the first three. Our best model achieved an accuracy of 72% on this dataset.

[Mikolov et al., 2013]

Czech + currency	Vietnam + capital	German + airlines	Russian + river	French + actress
koruna	Hanoi	airline Lufthansa	Moscow	Juliette Binoche
Check crown	Ho Chi Minh City	carrier Lufthansa	Volga River	Vanessa Paradis
Polish zolty	Viet Nam	flag carrier Lufthansa	upriver	Charlotte Gainsbourg
CTK	Vietnamese	Lufthansa	Russia	Cecile De

Table 5: Vector compositionality using element-wise addition. Four closest tokens to the sum of two vectors are shown, using the best Skip-gram model.

Distributional Semantics

- Other approaches: spectral methods, e.g., CCA
 - Word-context correlation [Dhillon et al., 2011, 2012]
 - Multilingual correlation [Faruqui and Dyer, 2014; Lu et al., 2015]
- Multi-sense embeddings [Reisinger and Mooney, 2010; Neelakantan et al., 2014]
- Some later ideas: Train task-tailored embeddings to capture specific types of similarity/semantics, e.g.,
 - Dependency context [Bansal et al., 2014, Levy and Goldberg, 2014]
 - Predicate-argument structures [Hashimoto et al., 2014; Madhyastha et al., 2014]
 - Lexicon evidence (PPDB, WordNet, FrameNet) [Xu et al., 2014; Yu and Dredze, 2014; Faruqui et al., 2014; Wieting et al., 2015]
 - Combining advantages of global matrix factorization and local context window methods [GloVe; Pennington et al., 2014]

Multi-sense Embeddings

Different vectors for each sense of a word

Figure 1: Overview of the multi-prototype approach to near-synonym discovery for a single target word independent of context. Occurrences are clustered and cluster centroids are used as prototype vectors. Note the "hurricane" sense of *position* (cluster 3) is not typically considered appropriate in WSD.

[Reisinger and Mooney, 2010]

Figure 2: Architecture of Multi-Sense Skip-gram (MSSG) model with window size $R_t = 2$ and K = 3. Context c_t of word w_t consists of $w_{t-1}, w_{t-2}, w_{t+1}, w_{t+2}$. The sense is predicted by finding the cluster center of the context that is closest to the average of the context vectors.

[Neelakantan et al., 2014]

Syntactically Tailored Embeddings

[Bansal et al., 2014]

- Context window size (SKIP)
 - Smaller window \rightarrow syntactic/functional similarity
 - ► Larger window \rightarrow topical similarity

Similar effect in distributional representations (Lin and Wu, 2009)

Cluster Examples

[Bansal et al., 2014]

▶ SKIP, w = 10:

[attendant, takeoff, airport, carry-on, airplane, flown, landings, flew, fly, cabins, ...] [maternity, childbirth, clinic, physician, doctor, medical, health-care, day-care, ...] [transactions, equity, investors, capital, financing, stock, fund, purchases, ...]

Cluster Examples

[Bansal et al., 2014]

[*Mr.*, *Mrs.*, *Ms.*, *Prof.*, *III*, *Jr.*, *Dr.*] [*Jeffrey*, *William*, *Dan*, *Robert*, *Stephen*, *Peter*, *John*, *Richard*, ...] [*Portugal*, *Iran*, *Cuba*, *Ecuador*, *Greece*, *Thailand*, *Indonesia*, ...]

[his, your, her, its, their, my, our] [Your, Our, Its, My, His, Their, Her]

[truly, wildly, politically, financially, completely, potentially, ...]

Syntactically Tailored Embeddings

[Bansal et al., 2014]

- Syntactic context (SKIP_{DEP})
 - Condition on dependency context instead of linear
 - First parse a large corpus with baseline parser:

Syntactically Tailored Embeddings

[Bansal et al., 2014]

- Syntactic context (SKIP_{DEP})
 - Condition on dependency context instead of linear
 - Then convert each dependency to a tuple:

 Syntactic information in clustering, topic, semantic space models (Sagae and Gordon, 2009; Haffari et al., 2011; Grave et al., 2013; Boyd-Graber and Blei, 2008; Pado and Lapata, 2007)

Intrinsic Evaluation

[Bansal et al., 2014]

(F	(Finkelstein et al., 2002)					
Representation	SIM	TAG				
Brown	_	89.3				
Senna	49.8	85.2				
HUANG	62.6	78.1				
SKIP, $w = 10$	44.6	71.5				
SKIP, $w = 5$	44.4	81.1				
SKIP, $w = 1$	37.8	86.6				
$S_{KIP_{DEP}}$	34.6	88.3				
	<u> </u>					
	Topical	Syntactic/				
		Functional				

Parsing Experiments

[Bansal et al., 2014]

Main WSJ results:

System	Test	
Baseline	91.9	
BROWN	92.7	
Senna	92.3	
TURIAN	92.3	
HUANG	92.4	
Skip	92.3	
SKIP _{DEP}	92.7	(faster)
Ensemble	Results	
ALL – BROWN	92.9	(
ALL	93.0	(complementary)

Task-Trained Embeddings

[Chen and Manning, 2014; CS224n]

Can also directly train word embeddings on the task, via back-prop from the task supervision (XE errors), e.g., dependency parsing:

Softmax probabilities

Multilingual Embeddings via CCA

► Translational context (say, English ← → German) can help learn stronger embeddings, e.g., separate antonyms vs. synonyms

CCA on translation pairs to map them to shared space

$$\max_{\mathbf{u}\in\mathbb{R}^{D_x},\mathbf{v}\in\mathbb{R}^{D_y}} \quad \frac{\mathbb{E}\left[(\mathbf{u}^{\top}\mathbf{x})(\mathbf{v}^{\top}\mathbf{y})\right]}{\sqrt{\mathbb{E}\left[(\mathbf{u}^{\top}\mathbf{x})^2\right]}\sqrt{\mathbb{E}\left[(\mathbf{v}^{\top}\mathbf{y})^2\right]}} \\ = \frac{\mathbf{u}^{\top}\boldsymbol{\Sigma}_{xy}\mathbf{v}}{\sqrt{\mathbf{u}^{\top}\boldsymbol{\Sigma}_{xx}\mathbf{u}}\sqrt{\mathbf{v}^{\top}\boldsymbol{\Sigma}_{yy}\mathbf{v}}}$$

[Faruqui and Dyer, 2014]

Multi-view Embeddings via CCA

[Faruqui and Dyer, 2014]

Linear vs Deep CCA

Linear CCA results:

Embeddings	WS-353	WS-SIM	WS-REL	SL-999
Original	46.7	56.3	36.6	26.5
CCA-1	67.2	73.0	63.4	40.7
CCA-Ens	67.5	73.1	63.7	40.4

- Linear feature mapping not sufficiently powerful to capture hidden, non-linear relationships within data
- Use deep NNs to learn non-linear transformations of orig. embeddings to space where linear correlation maximized

Deep-CCA

Deep-CCA

- 2 DNNs f, g extract features from the 2 input views x and y
- DNNs are trained to maximize output linear correlation of 2 views
- DNN weights and linear projections optimized together:

$$\max_{\mathbf{W_f},\mathbf{W_g},\mathbf{u},\mathbf{v}} \quad \frac{\mathbf{u}^{\top} \boldsymbol{\Sigma}_{fg} \mathbf{v}}{\sqrt{\mathbf{u}^{\top} \boldsymbol{\Sigma}_{ff} \mathbf{u}} \sqrt{\mathbf{v}^{\top} \boldsymbol{\Sigma}_{gg} \mathbf{v}}}$$

- Covariance matrices computed for $\{\mathbf{f}(\mathbf{x}_i), \mathbf{g}(\mathbf{y}_i)\}_{i=1}^N$, as in CCA
- Mini-batch SGD: Feed-forward a sample to estimate (u, v) and gradient and then update NN weights via back-propagation

Results

Word-similarity improvements

Embeddings	WS-353	WS-SIM	WS-REL	SL-999
Original	46.7	56.3	36.6	26.5
CCA-1	67.2	73.0	63.4	40.7
CCA-Ens	67.5	73.1	63.7	40.4
DCCA-1 (BestAvg)	69.6	73.9	65.6	38.9
DCCA-Ens (BestAvg)	70.8	75.2	67.3	41.7
DCCA-1 (MostBeat)	68.6	73.5	65.7	42.3
DCCA-Ens (MostBeat)	69.9	74.4	66.7	42.3

Also gets improvements on bigram similarity datasets

Analysis

High-similarity word pairs that change most with DCCA

better wit	h DCCA	worse w	vith DCCA
arrive	come	author	creator
locate	find	leader	manager
way	manner	buddy	companion
recent	new	crowd	bunch
take	obtain	achieve	succeed
boundary	border	attention	interest
win	accomplish	join	add
contemplate	think	mood	emotion

DCCA discards hypernymy, separates senses

Analysis

DCCA more cleanly separates synonym-antonym lists

Retrofitting Word Embeddings to Lexicons

We want the inferred word vector to be close to the observed value q[^] and close to its neighbors q_j, ∀j such that (i, j) ∈ E, where E is the set of relations in a dictionary/lexicon (e.g., WordNet, PPDB, etc.)

$$\Psi(Q) = \sum_{i=1}^{n} \left[\alpha_i \|q_i - \hat{q}_i\|^2 + \sum_{(i,j)\in E} \beta_{ij} \|q_i - q_j\|^2 \right]$$

Figure 1: Word graph with edges between related words showing the observed (grey) and the inferred (white) word vector representations.

Bias in Word Embeddings

Extreme <i>she</i> 1. homemaker 2. nurse 3. receptionist	Extreme <i>he</i> 1. maestro 2. skipper 3. protege	sewing-carpentry nurse-surgeon	Gender stereotype <i>she-he</i> an registered nurse-physician interior designer-architect	alogies housewife-shopkeeper softball-baseball
 4. librarian 5. socialite 6. hairdresser 	 4. philosopher 5. captain 6. architect 	blond-burly giggle-chuckle sassy-snappy volleyball-football	feminism-conservatism vocalist-guitarist diva-superstar cupcakes-pizzas	cosmetics-pharmaceuticals petite-lanky charming-affable lovely-brilliant
 nanny bookkeeper stylist housekeeper 	 financier warrior broadcaster magician 	queen-king waitress-waiter	Gender appropriate she-he and sister-brother ovarian cancer-prostate cancer	nalogies mother-father convent-monastery

Figure 1: Left The most extreme occupations as projected on to the she-he gender direction on w2vNEWS. Occupations such as *businesswoman*, where gender is suggested by the orthography, were excluded. Right Automatically generated analogies for the pair *she-he* using the procedure described in text. Each automatically generated analogy is evaluated by 10 crowd-workers to whether or not it reflects gender stereotype.

Debiasing word embeddings via identifying pairs (sets) of words to correct/neutralize, identify bias direction (subspace), and then debias via neutralize+equalize or soften algorithms.

- Composing, combining word vectors to representations for longer units: phrases, sentences, paragraphs, …
- Initial approaches: point-wise sum, multiplication [Mitchell and Lapata, 2010; Blacoe and Lapata, 2012]
- Vector-matrix compositionality [Baroni and Zamparelli, 2010; Zanzotto et al., 2010; Grefenstette and Sadrzadeh, 2011; Socher et al., 2011; Yessenalina and Cardie, 2011]
- Linguistic information added via say parses in RvNNs [Socher et al., 2011b, 2012, 2013a, 2013b, 2014; Hermann and Blunsom, 2013]
- Sequential RNNs (with GRU/LSTM gates) (Simple vector averaging w/ updating sometimes competitive)

Feed-forward NNs with back-propagation

Softmax (= logistic regression) is not very powerful

• Softmax only linear decision boundaries

Feed-forward NNs with back-propagation

Neural Nets for the Win!

• Neural networks can learn much more complex functions and nonlinear decision boundaries!

Feed-forward NNs with back-propagation

A neuron is essentially a binary logistic regression unit

h_{w,b}(x)

$$h_{w,b}(x) = f(w^{\mathsf{T}}x + b) \longleftarrow$$

$$f(z) = \frac{1}{1 + e^{-z}}$$

X3.

b: We can have an "always on" feature, which gives a class prior, or separate it out, as a bias term

w, *b* are the parameters of this neuron i.e., this logistic regression model

Feed-forward NNs with back-propagation

A neural network

= running several logistic regressions at the same time

Before we know it, we have a multilayer neural network....

Feed-forward NNs with back-propagation

Training with Backpropagation

• Let's consider the derivative of a single weight W_{ij}

$$\frac{\partial s}{\partial W} = \frac{\partial}{\partial W} U^T a = \frac{\partial}{\partial W} U^T f(z) = \frac{\partial}{\partial W} U^T f(Wx + b)$$

- This only appears inside a_i
- For example: W_{23} is only used to compute a_2

Feed-forward NNs with back-propagation

Training with Backpropagation $\frac{\partial s}{\partial W} = \frac{\partial}{\partial W} U^T a = \frac{\partial}{\partial W} U^T f(z) = \frac{\partial}{\partial W} U^T f(Wx + b)$ $\frac{\partial y}{\partial x} = \frac{\partial y}{\partial u} \frac{\partial u}{\partial x}$ Derivative of weight W_{ii} : $z_i = W_{i.}x + b_i = \sum_{i=1}^{3} W_{ij}x_j + b_i$ $\frac{\partial}{\partial W_{ii}} U^T a \rightarrow \frac{\partial}{\partial W_{ii}} U_i a_i$ $a_i = f(z_i)$ U_{2} $U_i \frac{\partial}{\partial W_{ij}} a_i = U_i \frac{\partial a_i}{\partial z_i} \frac{\partial z_i}{\partial W_{ij}}$ $= U_i \frac{\partial f(z_i)}{\partial z_i} \frac{\partial z_i}{\partial W_{\cdot \cdot}}$ W_{23} $= U_i f'(z_i) \frac{\partial z_i}{\partial W_{ii}}$ $= U_i f'(z_i) \frac{\partial W_i \cdot x + b_i}{\partial W \cdot \cdot}$

າດ

Feed-forward NNs with back-propagation

Training with Backpropagation

Derivative of single weight W_{ij} : $z_i = W_{i,x} + b_i = \sum_{i=1}^{\infty} W_{ij}x_j + b_i$ $U_i \frac{\partial}{\partial W_{ii}} a_i = U_i f'(z_i) \frac{\partial W_i \cdot x + b_i}{\partial W_{ii}}$ $a_i = f(z_i)$ $= U_i f'(z_i) \frac{\partial}{\partial W_{ij}} \sum_{k} W_{ik} x_k$ $= \underbrace{U_i f'(z_i)}_{\delta_i} x_j$ $= \underbrace{\delta_i}_{\mathbf{v}_j} x_j$ U_2 a_1 W_{23} Local input Local error signal signal where f'(z) = f(z)(1 - f(z)) for logistic f

Syntactically Recursive NNs

Socher et al., 2013a, 2014: RvNNs on constituent and dependency parse trees

Recurrent NNs

- Recurrent NNs (RNNs) are non-tree, sequential versions of recursive RvNNs
- Weights tied together for each time step
- Loss function on identity of predicted word at each time step

LSTM RNNs

LSTM (Long short term memory) RNNs have gates for forgetting, allowing learning of longer-term connections by avoiding vanishing/ exploding gradients

Character RNNs

- Can directly process each character as a unit!
- Helps learn prefixes, stems, suffixes (form vs. function, rare/ unseen words, etc.)

Supervised Sentence Embedding Models

- Just like word embeddings were supervised using lexicons, dictionaries, taxonomies (WordNet) etc., sentence embeddings also benefit greatly from supervision!
- 2 examples: supervision based on bidirectional sentence similarity (paraphrases) or directed similarity (entailment vs contradiction vs neutral)

Phrases that mean the same, are replaceable in context

main reason why		principal reason for
informed about the outcome		notified of the results
with particular emphasis		with specific focus
we 'll have a good time		we 're gonna have fun
50 years ago		five decades ago
that , according to		which , in accordance with
program is aimed at		programme aims to
are under the obligation		have a duty
a critical component		an essential element

Paraphrase-based Sentence Embeddings

- PPDB: Massive, useful resource (220M) automatically extracted from parallel bilingual corpora [Ganitkevitch et al., 2013]
- Idea summary: carefully extract a few (< 0.05%) +ve and -ve pairs from unannotated PPDB as weak supervision
- Train a parametric paraphrase model (2-view RNN with hinge loss) on these pairs, to be able to represent arbitrary phrases as embeddings
- This learns strong word/phrase embeddings that better predict paraphrases on new annotated PPDB subset and gets SoA on word/bigram similarity datasets

Paraphrase Model

2 parse-based RvNNs with a hinge-based loss function

Paraphrase Model

Loss: +ve pairs closer than -ve pairs with margin δ

[Wieting, Bansal, Gimpel, Livescu, Roth, 2015]

SNLI and Multi-NLI corpora with sentence pairs of 3 relationships: entailment, contradiction, neutral/unrelated

Premise	Label	Hypothesis	Genre
The Old One always comforted Ca'daan, except today.	neutral	Ca'daan knew the Old One very well.	Fiction
Your gift is appreciated by each and every student who will benefit from your generosity.	neutral	Hundreds of students will benefit from your generosity.	Letters
yes now you know if if everybody like in August when everybody's on vacation or something we can dress a little more casual or	contradiction	August is a black out month for vacations in the company.	Telephone Speech
At the other end of Pennsylvania Avenue, people began to line up for a White House tour.	entailment	People formed a line at the end of Pennsylvania Avenue.	9/11 Report
A black race car starts up in front of a crowd of people.	contradiction	A man is driving down a lonely road.	SNLI

[Bowman et al., 2015; Williams et al., 2017]

[Conneau et al., 2017]

Model	MR	CR	SUBJ	MPQA	SST	TREC	MRPC	SICK-R	SICK-E	STS14
Unsupervised representatio	on train	ing (un	ordered s	sentences	s)					
Unigram-TFIDF	73.7	79.2	90.3	82.4	-	85.0	73.6/81.7	-	-	.58/.57
ParagraphVec (DBOW)	60.2	66.9	76.3	70.7	-	59.4	72.9/81.1	-	-	.42/.43
SDAE	74.6	78.0	90.8	86.9	-	78.4	73.7 /80.7	-	-	.37/.38
SIF (GloVe + WR)	-	-	-	-	82.2	-	-	-	84.6	.69 / -
word2vec BOW [†]	77.7	79.8	90.9	88.3	79.7	83.6	72.5/81.4	0.803	78.7	.65/.64
fastText BOW [†]	76.5	78.9	91.6	87.4	78.8	81.8	72.4/81.2	0.800	77.9	.63/.62
GloVe BOW^{\dagger}	78.7	78.5	91.6	87.6	79.8	83.6	72.1/80.9	0.800	78.6	.54/.56
GloVe Positional $Encoding^\dagger$	78.3	77.4	91.1	87.1	80.6	83.3	72.5/81.2	0.799	77.9	.51/.54
BiLSTM-Max (untrained) ^{\dagger}	77.5	81.3	89.6	88.7	80.7	85.8	73.2/81.6	0.860	83.4	.39/.48
Unsupervised representation	n train	ing (or	dered sen	tences)						
FastSent	70.8	78.4	88.7	80.6	-	76.8	72.2/80.3	-	-	.63/.64
FastSent+AE	71.8	76.7	88.8	81.5	-	80.4	71.2/79.1	-	-	.62/.62
SkipThought	76.5	80.1	93.6	87.1	82.0	<u>92.2</u>	73.0/82.0	0.858	82.3	.29/.35
SkipThought-LN	79.4	83.1	<u>93.7</u>	89.3	82.9	88.4	-	0.858	79.5	.44/.45
Supervised representation t	raining	Ţ								
CaptionRep (bow)	61.9	69.3	77.4	70.8	-	72.2	-	-	-	.46/.42
DictRep (bow)	76.7	78.7	90.7	87.2	-	81.0	68.4/76.8	-	-	.67/ <u>.70</u>
NMT En-to-Fr	64.7	70.1	84.9	81.5	-	82.8	-	-		.43/.42
Paragram-phrase	-	-	-	-	79.7	-	-	0.849	83.1	<u>.71</u> / -
BiLSTM-Max (on SST) [†]	(*)	83.7	90.2	89.5	(*)	86.0	72.7/80.9	0.863	83.1	.55/.54
BiLSTM-Max (on SNLI) [†]	79.9	84.6	92.1	89.8	83.3	88.7	75.1/82.3	<u>0.885</u>	<u>86.3</u>	.68/.65
BiLSTM-Max (on AllNLI) [†]	<u>81.1</u>	<u>86.3</u>	92.4	<u>90.2</u>	<u>84.6</u>	88.2	<u>76.2/83.1</u>	<u>0.884</u>	<u>86.3</u>	.70/.67
Supervised methods (direct	ly train	ed for e	each task	– no tra	nsfer)					
Naive Bayes - SVM	79.4	81.8	93.2	86.3	83.1	-	-	-	-	-
AdaSent	83.1	86.3	95.5	93.3	-	92.4	-	-	-	-
TF-KLD	-	-	-	-	-	-	80.4/85.9	-	-	-
Illinois-LH	-	-	-	-	-	-	-	-	84.5	-
Dependency Tree-LSTM	-	-	-	-	-	-	-	0.868	-	-

Encoder details: Starting point is 1-layer biLSTM with Max-pooling

[Nie and Bansal, 2017]

Improved Encoders: e.g., via shortcut-stacked RNNs (to help learn higher-level semantic features and to help sparse gradients from max-pooling to flow to lower layers

RepEval 2017 Shared Task Results

Team Name	Authors	Matched	Mismatched	Model Details
alpha (ensemble)	Chen et al.	74.9%	74.9%	STACK, CHAR, ATTN., POOL, PRODDIFF
YixinNie-UNC-NLP	Nie and Bansal	74.5%	73.5%	STACK, POOL, PRODDIFF, SNLI
alpha	Chen et al.	73.5%	73.6%	STACK, CHAR, ATTN, POOL, PRODDIFF
Rivercorners (ensemble)	Balazs et al.	72.2%	72.8%	Attn, Pool, ProdDiff, SNLI
Rivercorners	Balazs et al.	72.1%	72.1%	Attn, Pool, ProdDiff, SNLI
LCT-MALTA	Vu et al.	70.7%	70.8%	CHAR, ENHEMB, PRODDIFF, POOL
TALP-UPC	Yang et al.	67.9%	68.2%	CHAR, ATTN, SNLI
BiLSTM baseline	Williams et al.	67.0%	67.6%	Pool, ProdDiff, SNLI

Shortcut-stacked RNNs also achieved encoding-based SotA on SNLI corpus

Madal		Accuracy			
Iviouei	SNLI	Multi-NLI Matched	Multi-NLI Mismatched		
CBOW (Williams et al., 2017)	80.6	65.2	64.6		
biLSTM Encoder (Williams et al., 2017)	81.5	67.5	67.1		
300D Tree-CNN Encoder (Mou et al., 2015)	82.1	—	_		
300D SPINN-PI Encoder (Bowman et al., 2016)	83.2	_	_		
300D NSE Encoder (Munkhdalai and Yu, 2016)	84.6	—	_		
biLSTM-Max Encoder (Conneau et al., 2017)	84.5	—	—		
Our biLSTM-Max Encoder	85.2	71.7	71.2		
Our Shortcut-Stacked Encoder	86.1	74.6	73.6		

Classification Tasks: Sentiment Analysis

This is a demonstration of **sentiment analysis** using a NLTK 2.0.4 powered **text classification** process. It can tell you whether it thinks the text you enter below expresses **positive sentiment**, **negative sentiment**, or if it's **neutral**. Using **hierarchical classification**, *neutrality* is determined first, and *sentiment polarity* is determined second, but only if the text is not neutral.

_	Analy	yze	Sen	timent
---	-------	-----	-----	--------

Language

english 🛊

Enter text

Analyze

It always amazes me how Universal never cares to create anything remotely clever when it comes to their animations, and so once again they come up with a harmless little story that wants to be cute and funny (which it is sometimes) but is only bound to be quickly forgotten.

Enter up to 50000 characters

Sentiment Analysis Results

The text is neg.

The final sentiment is determined by looking at the classification probabilities below.

Subjectivity

- neutral: 0.3
- polar: 0.7

Polarity

- pos: 0.2
- neg: 0.8

- Earlier methods used bag of words, e.g., lexicons of positive and negative words and phrases
- Cannot distinguish tricky cases like:
 - + white blood cells destroying an infection
 an infection destroying white blood cells

+ There are slow and repetitive parts but it has just enough spice to keep it interesting.

- Stealing Harvard doesn't care about cleverness, wit or any other kind of intelligent humor.

- Even simpler issues like negation hard to understand
- Socher et al., 2013b present new compositional training data and new composition model

- Even simpler issues like negation hard to understand
- Socher et al., 2013b present new compositional training data and new composition model

Sentiment Compositionality:

- Parse trees of 11,855 sentences
- 215,154 phrases with labels
- Allows training and evaluating with compositional information

Better Models: Recursive Neural Tensor Network (RNTN)

 y_2

 x_2

Better Models: Tree-based LSTM-RNNs

Tree LSTMs

- We can use those ideas in grammatical tree structures!
- Paper: Tai et al. 2015: Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks
- Idea: Sum the child vectors in a tree structure
- Each child has its own forget gate
- Same softmax on h

 x_1

 y_4

 y_3

 y_6

Sentiment Compositionality

Results on Stanford Sentiment Treebank

Method	Fine-grained	Binary
RAE (Socher et al., 2013)	43.2	82.4
MV-RNN (Socher et al., 2013)	44.4	82.9
RNTN (Socher et al., 2013)	45.7	85.4
DCNN (Blunsom et al., 2014)	48.5	86.8
Paragraph-Vec (Le and Mikolov, 2014)	48.7	87.8
CNN-non-static (Kim, 2014)	48.0	87.2
CNN-multichannel (Kim, 2014)	47.4	88.1
DRNN (Irsoy and Cardie, 2014)	49.8	86.6
LSTM	45.8	86.7
Bidirectional LSTM	49.1	86.8
2-layer LSTM	47.5	85.5
2-layer Bidirectional LSTM	46.2	84.8
Constituency Tree LSTM (no tuning)	46.7	86.6
Constituency Tree LSTM	50.6	86.9

Demos: <u>http://nlp.stanford.edu:8080/sentiment/rntnDemo.html</u>

[Yessenalina and Cardie, 2011; Socher et al., 2013b]

Other Classification Tasks

- Sentence similarity
- Entailment classification
- Spam detection
- Document topic classification
- Others: humor, rumor, sarcasm detection, etc.

SemEval has great new tasks every year with novel datasets in many cases! Some recent years: http://alt.qcri.org/semeval2017/index.php?id=tasks http://alt.qcri.org/semeval2016/index.php?id=tasks http://alt.qcri.org/semeval2015/index.php?id=tasks