
COMP 790.139 (Fall 2017)
Natural Language Processing

Mohit Bansal

(various slides adapted/borrowed from courses by Dan Klein, Richard Socher, Chris Manning, JurafskyMartin-SLP3, others)

Lecture 4: Syntactic Parsing (Constituent, Dependency,
CCG, etc.)

Announcements

!   Chapter section summary due Sunday Sep24 midnight

!   Coding-HW1 (on word vector training+evaluation_
+visualization) will be release in 1-2 days – TA Yixin will
give overview of the homework today!

!   TA Yixin Nie’s office hours: 2.30-3.30pm Wednesdays
(SN-372; might move to 2nd floor reading room)

Coding HW1 (TA Yixin Nie’s presentation)

Syntactic Parsing

Constituent Parsing

Syntactic Parsing -- Constituent

!   Phrase-structure parsing or Bracketing

!   Demos: http://tomato.banatao.berkeley.edu:8080/parser/parser.html

VBD	

VP

met	

NP	

S

NP

 her	

PRP John	

NNP

Probabilistic Context-free Grammars

!   A context-free grammar is a tuple <N, T, S, R>

N : the set of non-terminals
Phrasal categories: S, NP, VP, ADJP, etc.
Parts-of-speech (pre-terminals): NN, JJ, DT, VB

T : the set of terminals (the words)

S : the start symbol
Often written as ROOT or TOP
Not usually the sentence non-terminal S

R : the set of rules
Of the form X → Y1 Y2 … Yk, with X, Yi ∈ N
Examples: S → NP VP, VP → VP CC VP
Also called rewrites, productions, or local trees

Probabilistic Context-free Grammars

!   A PCFG:

!   Adds a top-down production probability per rule P(Y1 Y2 … Yk |

X)

!   Allows us to find the ‘most probable parse’ for a sentence

!   The probability of a parse is just the product of the
probabilities of the individual rules

ROOT → S 1

S → NP VP . 1

NP → PRP 1

VP → VBD ADJP 1

…..

Treebank PCFG

Model F1
Baseline 72.0

[Charniak, 1996] 3

Treebank�PCFGs
� Use�PCFGs�for�broad�coverage�parsing
� Can�take�a�grammar�right�off�the�trees�(doesn’t�work�well):

ROOT o S 1

S o NP VP . 1

NP o PRP 1

VP o VBD ADJP 1

…..

Model F1
Baseline 72.0

[Charniak 96]
!   Can just count the frequency of each rule and

normalize (but not very effective)

Real Treebank Examples

16

Treebank�Sentences!   Long, complex sentences with several clauses, nested
prepositions, etc.

Grammar Refinement

!   Conditional independence assumptions often too strong! Not every
NP expansion can fill every NP slot

!   Better results by enriching the grammar e.g.,

!   Lexicalization [Collins, 1999; Charniak, 2000]

4

Conditional�Independence?

� Not�every�NP�expansion�can�fill�every�NP�slot
� A�grammar�with�symbols�like�“NP”�won’t�be�contextͲfree
� Statistically,�conditional�independence�too�strong

-noise	

-She	

Grammar Refinement

!   Conditional independence assumptions often too strong! Not every
NP expansion can fill every NP slot

!   Better results by enriching the grammar e.g.,

!   Lexicalization [Collins, 1999; Charniak, 2000]

! Markovization, Manual Tag-splitting [Johnson, 1998; Klein & Manning, 2003]

4

Conditional�Independence?

� Not�every�NP�expansion�can�fill�every�NP�slot
� A�grammar�with�symbols�like�“NP”�won’t�be�contextͲfree
� Statistically,�conditional�independence�too�strong

^VP	

^S	

Grammar Refinement

!   Conditional independence assumptions often too strong! Not every
NP expansion can fill every NP slot

!   Better results by enriching the grammar e.g.,

!   Lexicalization [Collins, 1999; Charniak, 2000]

! Markovization, Manual Tag-splitting [Johnson, 1998; Klein & Manning, 2003]

!   Latent Tag-splitting [Matsuzaki et al., 2005; Petrov et al., 2006] 4

Conditional�Independence?

� Not�every�NP�expansion�can�fill�every�NP�slot
� A�grammar�with�symbols�like�“NP”�won’t�be�contextͲfree
� Statistically,�conditional�independence�too�strong

-7	

-3	

 bestScore(s)
 for (i : [0,n-1])
 for (X : tags[s[i]])
 score[X][i][i+1] = tagScore(X,s[i])
 for (diff : [2,n])
 for (i : [0,n-diff])
 j = i + diff
 for (X->YZ : rule)
 for (k : [i+1, j-1])
 score[X][i][j] = max{score[X][i][j], score(X->YZ)
 *score[Y][i][k]
 *score[Z][k][j]}

Y Z

X

i k j

CKY (or CYK) Parsing Algorithm (Bottom-up)

[Cocke, 1970; Kasami, 1965; Younger, 1967]

12.2 • CKY PARSING: A DYNAMIC PROGRAMMING APPROACH 7

function CKY-PARSE(words, grammar) returns table

for j from 1 to LENGTH(words) do
for all {A | A ! words[j] 2 grammar}

table[j�1, j] table[j�1, j] [A
for i from j�2 downto 0 do

for k i+1 to j�1 do
for all {A | A ! BC 2 grammar and B 2 table[i,k] and C 2 table[k, j]}

table[i,j] table[i,j] [A

Figure 12.5 The CKY algorithm.

...

...

[0,n]

[i,i+1] [i,i+2] [i,j-2] [i,j-1]

[i+1,j]

[i+2,j]

[j-1,j]

[j-2,j]

[i,j]

...

[0,1]

[n-1, n]

Figure 12.6 All the ways to fill the [i, j]th cell in the CKY table.

Figure 12.7 shows how the five cells of column 5 of the table are filled after the
word Houston is read. The arrows point out the two spans that are being used to add
an entry to the table. Note that the action in cell [0,5] indicates the presence of three
alternative parses for this input, one where the PP modifies the flight, one where
it modifies the booking, and one that captures the second argument in the original
VP! Verb NP PP rule, now captured indirectly with the VP! X2 PP rule.

CKY Parsing Algorithm (Bottom-up)

[Jurafsky-Martin-SLP3]

12.2 • CKY PARSING: A DYNAMIC PROGRAMMING APPROACH 7

function CKY-PARSE(words, grammar) returns table

for j from 1 to LENGTH(words) do
for all {A | A ! words[j] 2 grammar}

table[j�1, j] table[j�1, j] [A
for i from j�2 downto 0 do

for k i+1 to j�1 do
for all {A | A ! BC 2 grammar and B 2 table[i,k] and C 2 table[k, j]}

table[i,j] table[i,j] [A

Figure 12.5 The CKY algorithm.

...

...

[0,n]

[i,i+1] [i,i+2] [i,j-2] [i,j-1]

[i+1,j]

[i+2,j]

[j-1,j]

[j-2,j]

[i,j]

...

[0,1]

[n-1, n]

Figure 12.6 All the ways to fill the [i, j]th cell in the CKY table.

Figure 12.7 shows how the five cells of column 5 of the table are filled after the
word Houston is read. The arrows point out the two spans that are being used to add
an entry to the table. Note that the action in cell [0,5] indicates the presence of three
alternative parses for this input, one where the PP modifies the flight, one where
it modifies the booking, and one that captures the second argument in the original
VP! Verb NP PP rule, now captured indirectly with the VP! X2 PP rule.

Latent Variable Grammars

[Petrov et al., 2006] 39

Latent�Variable�Grammars

Parse Tree
Sentence Parameters

...

Derivations

Learning Latent Splits (Inside-Outside)

[Petrov et al., 2006]

40

Forward

Learning�Latent�Annotations

EM�algorithm:

X1

X2 X7X4

X5 X6X3

He was right

.

� Brackets are known
� Base categories are known
� Only induce subcategories

Just�like�ForwardͲBackward�for�HMMs.
Backward

!   Forward-backward (last week) but for trees

DT Tag Splits Example

[Petrov et al., 2006]

41

Refinement�of�the�DT�tag

DT

DT-1 DT-2 DT-3 DT-4

Other Learned Splits

[Petrov et al., 2006]
49

Learned�Splits

� Proper Nouns (NNP):

� Personal pronouns (PRP):

NNP-14 Oct. Nov. Sept.
NNP-12 John Robert James
NNP-2 J. E. L.
NNP-1 Bush Noriega Peters

NNP-15 New San Wall
NNP-3 York Francisco Street

PRP-0 It He I
PRP-1 it he they
PRP-2 it them him

Other Learned Splits

[Petrov et al., 2006]

50

� Relative�adverbs�(RBR):

� Cardinal�Numbers�(CD):

RBR-0 further lower higher
RBR-1 more less More
RBR-2 earlier Earlier later

CD-7 one two Three
CD-4 1989 1990 1988
CD-11 million billion trillion
CD-0 1 50 100
CD-3 1 30 31
CD-9 78 58 34

Learned�Splits

Latent PCFG Results

[Petrov et al., 2006]

51

Final�Results�(Accuracy)

� 40 words
F1

all
F1

EN
G

Charniak&Johnson ‘05 (generative) 90.1 89.6

Split / Merge 90.6 90.1

G
ER

Dubey ‘05 76.3 -

Split / Merge 80.8 80.1

C
H

N

Chiang et al. ‘02 80.0 76.6

Split / Merge 86.3 83.4

Still higher numbers from reranking / self-training methods

Evaluating Constituent Parsers

13.8 • EVALUATING PARSERS 27

13.8 Evaluating Parsers

The standard techniques for evaluating parsers and grammars are called the PAR-
SEVAL measures; they were proposed by Black et al. (1991) and were based on
the same ideas from signal-detection theory that we saw in earlier chapters. The
intuition of the PARSEVAL metric is to measure how much the constituents in the
hypothesis parse tree look like the constituents in a hand-labeled, gold-reference
parse. PARSEVAL thus assumes we have a human-labeled “gold standard” parse
tree for each sentence in the test set; we generally draw these gold-standard parses
from a treebank like the Penn Treebank.

Given these gold-standard reference parses for a test set, a given constituent in
a hypothesis parse Ch of a sentence s is labeled “correct” if there is a constituent in
the reference parse Cr with the same starting point, ending point, and non-terminal
symbol.

We can then measure the precision and recall just as we did for chunking in the
previous chapter.

labeled recall: = # of correct constituents in hypothesis parse of s
of correct constituents in reference parse of s

labeled precision: = # of correct constituents in hypothesis parse of s
of total constituents in hypothesis parse of s

As with other uses of precision and recall, instead of reporting them separately,
we often report a single number, the F-measure (van Rijsbergen, 1975): The F-F-measure
measure is defined as

Fb =
(b 2 +1)PR

b 2P+R

The b parameter differentially weights the importance of recall and precision,
based perhaps on the needs of an application. Values of b > 1 favor recall and values
of b < 1 favor precision. When b = 1, precision and recall are equally balanced;
this is sometimes called Fb=1 or just F1:

F1 =
2PR

P+R
(13.42)

The F-measure derives from a weighted harmonic mean of precision and recall.
Remember that the harmonic mean of a set of numbers is the reciprocal of the arith-
metic mean of the reciprocals:

HarmonicMean(a1,a2,a3,a4, ...,an) =
n

1
a1
+ 1

a2
+ 1

a3
+ ...+ 1

an

(13.43)

and hence the F-measure is

F =
1

a 1
P +(1�a) 1

R
or

✓
with b 2 =

1�a
a

◆
F =

(b 2 +1)PR
b 2P+R

(13.44)

We additionally use a new metric, crossing brackets, for each sentence s:

cross-brackets: the number of constituents for which the reference parse has a
bracketing such as ((A B) C) but the hypothesis parse has a bracketing such
as (A (B C)).

[Jurafsky-Martin-SLP3]

13.8 • EVALUATING PARSERS 27

13.8 Evaluating Parsers

The standard techniques for evaluating parsers and grammars are called the PAR-
SEVAL measures; they were proposed by Black et al. (1991) and were based on
the same ideas from signal-detection theory that we saw in earlier chapters. The
intuition of the PARSEVAL metric is to measure how much the constituents in the
hypothesis parse tree look like the constituents in a hand-labeled, gold-reference
parse. PARSEVAL thus assumes we have a human-labeled “gold standard” parse
tree for each sentence in the test set; we generally draw these gold-standard parses
from a treebank like the Penn Treebank.

Given these gold-standard reference parses for a test set, a given constituent in
a hypothesis parse Ch of a sentence s is labeled “correct” if there is a constituent in
the reference parse Cr with the same starting point, ending point, and non-terminal
symbol.

We can then measure the precision and recall just as we did for chunking in the
previous chapter.

labeled recall: = # of correct constituents in hypothesis parse of s
of correct constituents in reference parse of s

labeled precision: = # of correct constituents in hypothesis parse of s
of total constituents in hypothesis parse of s

As with other uses of precision and recall, instead of reporting them separately,
we often report a single number, the F-measure (van Rijsbergen, 1975): The F-F-measure
measure is defined as

Fb =
(b 2 +1)PR

b 2P+R

The b parameter differentially weights the importance of recall and precision,
based perhaps on the needs of an application. Values of b > 1 favor recall and values
of b < 1 favor precision. When b = 1, precision and recall are equally balanced;
this is sometimes called Fb=1 or just F1:

F1 =
2PR

P+R
(13.42)

The F-measure derives from a weighted harmonic mean of precision and recall.
Remember that the harmonic mean of a set of numbers is the reciprocal of the arith-
metic mean of the reciprocals:

HarmonicMean(a1,a2,a3,a4, ...,an) =
n

1
a1
+ 1

a2
+ 1

a3
+ ...+ 1

an

(13.43)

and hence the F-measure is

F =
1

a 1
P +(1�a) 1

R
or

✓
with b 2 =

1�a
a

◆
F =

(b 2 +1)PR
b 2P+R

(13.44)

We additionally use a new metric, crossing brackets, for each sentence s:

cross-brackets: the number of constituents for which the reference parse has a
bracketing such as ((A B) C) but the hypothesis parse has a bracketing such
as (A (B C)).

13.8 • EVALUATING PARSERS 27

13.8 Evaluating Parsers

The standard techniques for evaluating parsers and grammars are called the PAR-
SEVAL measures; they were proposed by Black et al. (1991) and were based on
the same ideas from signal-detection theory that we saw in earlier chapters. The
intuition of the PARSEVAL metric is to measure how much the constituents in the
hypothesis parse tree look like the constituents in a hand-labeled, gold-reference
parse. PARSEVAL thus assumes we have a human-labeled “gold standard” parse
tree for each sentence in the test set; we generally draw these gold-standard parses
from a treebank like the Penn Treebank.

Given these gold-standard reference parses for a test set, a given constituent in
a hypothesis parse Ch of a sentence s is labeled “correct” if there is a constituent in
the reference parse Cr with the same starting point, ending point, and non-terminal
symbol.

We can then measure the precision and recall just as we did for chunking in the
previous chapter.

labeled recall: = # of correct constituents in hypothesis parse of s
of correct constituents in reference parse of s

labeled precision: = # of correct constituents in hypothesis parse of s
of total constituents in hypothesis parse of s

As with other uses of precision and recall, instead of reporting them separately,
we often report a single number, the F-measure (van Rijsbergen, 1975): The F-F-measure
measure is defined as

Fb =
(b 2 +1)PR

b 2P+R

The b parameter differentially weights the importance of recall and precision,
based perhaps on the needs of an application. Values of b > 1 favor recall and values
of b < 1 favor precision. When b = 1, precision and recall are equally balanced;
this is sometimes called Fb=1 or just F1:

F1 =
2PR

P+R
(13.42)

The F-measure derives from a weighted harmonic mean of precision and recall.
Remember that the harmonic mean of a set of numbers is the reciprocal of the arith-
metic mean of the reciprocals:

HarmonicMean(a1,a2,a3,a4, ...,an) =
n

1
a1
+ 1

a2
+ 1

a3
+ ...+ 1

an

(13.43)

and hence the F-measure is

F =
1

a 1
P +(1�a) 1

R
or

✓
with b 2 =

1�a
a

◆
F =

(b 2 +1)PR
b 2P+R

(13.44)

We additionally use a new metric, crossing brackets, for each sentence s:

cross-brackets: the number of constituents for which the reference parse has a
bracketing such as ((A B) C) but the hypothesis parse has a bracketing such
as (A (B C)).

13.8 • EVALUATING PARSERS 27

13.8 Evaluating Parsers

The standard techniques for evaluating parsers and grammars are called the PAR-
SEVAL measures; they were proposed by Black et al. (1991) and were based on
the same ideas from signal-detection theory that we saw in earlier chapters. The
intuition of the PARSEVAL metric is to measure how much the constituents in the
hypothesis parse tree look like the constituents in a hand-labeled, gold-reference
parse. PARSEVAL thus assumes we have a human-labeled “gold standard” parse
tree for each sentence in the test set; we generally draw these gold-standard parses
from a treebank like the Penn Treebank.

Given these gold-standard reference parses for a test set, a given constituent in
a hypothesis parse Ch of a sentence s is labeled “correct” if there is a constituent in
the reference parse Cr with the same starting point, ending point, and non-terminal
symbol.

We can then measure the precision and recall just as we did for chunking in the
previous chapter.

labeled recall: = # of correct constituents in hypothesis parse of s
of correct constituents in reference parse of s

labeled precision: = # of correct constituents in hypothesis parse of s
of total constituents in hypothesis parse of s

As with other uses of precision and recall, instead of reporting them separately,
we often report a single number, the F-measure (van Rijsbergen, 1975): The F-F-measure
measure is defined as

Fb =
(b 2 +1)PR

b 2P+R

The b parameter differentially weights the importance of recall and precision,
based perhaps on the needs of an application. Values of b > 1 favor recall and values
of b < 1 favor precision. When b = 1, precision and recall are equally balanced;
this is sometimes called Fb=1 or just F1:

F1 =
2PR

P+R
(13.42)

The F-measure derives from a weighted harmonic mean of precision and recall.
Remember that the harmonic mean of a set of numbers is the reciprocal of the arith-
metic mean of the reciprocals:

HarmonicMean(a1,a2,a3,a4, ...,an) =
n

1
a1
+ 1

a2
+ 1

a3
+ ...+ 1

an

(13.43)

and hence the F-measure is

F =
1

a 1
P +(1�a) 1

R
or

✓
with b 2 =

1�a
a

◆
F =

(b 2 +1)PR
b 2P+R

(13.44)

We additionally use a new metric, crossing brackets, for each sentence s:

cross-brackets: the number of constituents for which the reference parse has a
bracketing such as ((A B) C) but the hypothesis parse has a bracketing such
as (A (B C)).

Other Results

!   Collins, 1999 ! 88.6 F1 (generative lexical)

! Charniak and Johnson, 2005 ! 89.7 / 91.3 F1
(generative lexical / reranking)

! Petrov et al., 2006 ! 90.7 F1 (generative unlexical)

! McClosky et al., 2006 – 92.1 F1 (generative +
reranking + self‐training)

Syntactic Ambiguities

!   I saw the old man with a telescope

!   I shot an elephant in my pajamas

!   I cleaned the dishes in my pajamas

!   I cleaned the dishes in the sink

Real-Data PP Attachment Ambiguities

9

Ambiguities:�PP�Attachment

Attachment Ambiguity Types

11

Syntactic�Ambiguities�I

� Prepositional�phrases:
They�cooked�the�beans�in�the�pot�on�the�stove�with�handles.

� Particle�vs.�preposition:
The�puppy�tore�up�the�staircase.

� Complement�structures
The�tourists�objected�to�the�guide�that�they�couldn’t�hear.
She�knows�you�like�the�back�of�her�hand.

� Gerund�vs.�participial�adjective
Visiting�relatives�can�be�boring.
Changing�schedules�frequently�confused�passengers.

Attachment Ambiguity Types

12

Syntactic�Ambiguities�II
� Modifier�scope�within�NPs

impractical�design�requirements
plastic�cup�holder

� Multiple�gap�constructions
The�chicken�is�ready�to�eat.
The�contractors�are�rich�enough�to�sue.

� Coordination�scope:
Small�rats�and�mice�can�squeeze�into�holes�or�cracks�in�the�
wall.

World Knowledge is Important

Clean the dishes in
the sink.	

Web Features for Syntactic Parsing

They considered running the ad during the Super Bowl.

VP

VBD

considered

S

VP

VBG

running

NP

the ad

PP

IN

during

NP

the Super Bowl

1

VP

VBD

considered

S

VP

VBG

running

NP

the ad

PP

IN

during

NP

the Super Bowl

2

Dependency:

Constituent:

[Nakov and Hearst 2005; Pitler et al., 2010; Bansal and Klein, 2011]

Web Features for Syntactic Parsing

count(running it during) > count(considered it during)	

Web Ngrams

[Bansal and Klein, 2011]

They considered running the ad during the Super Bowl.

90.5

91.5

92.5

McDonald & Pereira 2006 Us

U
A

S !   7-10% relative error reduction over 90-92% parsers

Visual Recognition Cues

!   Joint parsing and image recognition

the mug on the table with a crack	

Visual Recognition Cues

!   Joint parsing and image recognition

the mug on the table with a crack	

red chair and table	
light green table	

Visual Recognition Cues

[Christie et al., 2016]

Resolving Language and Vision Ambiguities Together: Joint
Segmentation & Prepositional Attachment Resolution in Captioned Scenes

Gordon Christie1,⇤, Ankit Laddha2,⇤, Aishwarya Agrawal1, Stanislaw Antol1
Yash Goyal1, Kevin Kochersberger1, Dhruv Batra3,1

1Virginia Tech 2Carnegie Mellon University 3Georgia Institute of Technology
ankit1991laddha@gmail.com

{gordonac,aish,santol,ygoyal,kbk,dbatra}@vt.edu

Abstract

We present an approach to simultaneously per-
form semantic segmentation and prepositional
phrase attachment resolution for captioned
images. Some ambiguities in language can-
not be resolved without simultaneously rea-
soning about an associated image. If we con-
sider the sentence “I shot an elephant in my
pajamas”, looking at language alone (and not
using common sense), it is unclear if it is the
person or the elephant wearing the pajamas
or both. Our approach produces a diverse
set of plausible hypotheses for both semantic
segmentation and prepositional phrase attach-
ment resolution that are then jointly reranked
to select the most consistent pair. We show
that our semantic segmentation and preposi-
tional phrase attachment resolution modules
have complementary strengths, and that joint
reasoning produces more accurate results than
any module operating in isolation. Multiple
hypotheses are also shown to be crucial to im-
proved multiple-module reasoning. Our vi-
sion and language approach significantly out-
performs the Stanford Parser (De Marneffe et
al., 2006) by 17.91% (28.69% relative) and
12.83% (25.28% relative) in two different ex-
periments. We also make small improvements
over DeepLab-CRF (Chen et al., 2015).

1 Introduction

Perception and intelligence problems are hard.
Whether we are interested in understanding an im-

* Denotes equal contribution

PASCAL
Sentence Dataset

Consistent

NLP: Sentence Parsing

Ambiguity: (woman on couch)
vs (dog on couch)

Output: Parse Tree

“A dog is
standing next
to a woman
on a couch”

Vision: Semantic Segmentation
Labels: Chairs, desks, etc.

Person

Couch

Couch

Person

Dog

Solution
#1

Solution
#M

Ambiguity:*
(dog*next*to*woman)*on*couch
vs*dog*next*to*(woman*on*couch)

Ambiguity:*
(dog*next*to*woman)*on*couch
vs*dog*next*to*(woman*on*couch)

Figure 1: Overview of our approach. We propose a model
for simultaneous 2D semantic segmentation and preposi-
tional phrase attachment resolution by reasoning about
sentence parses. The language and vision modules each
produce M diverse hypotheses, and the goal is to select
a pair of consistent hypotheses. In this example the am-
biguity to be resolved from the image caption is whether
the dog is standing on or next to the couch. Both modules
benefit by selecting a pair of compatible hypotheses.

age or a sentence, our algorithms must operate un-
der tremendous levels of ambiguity. When a hu-
man reads the sentence “I eat sushi with tuna”, it
is clear that the preposition phrase “with tuna” mod-
ifies “sushi” and not the act of eating, but this may
be ambiguous to a machine. This problem of deter-
mining whether a prepositional phrase (“with tuna”)
modifies a noun phrase (“sushi”) or verb phrase
(“eating”) is formally known as Prepositional Phrase
Attachment Resolution (PPAR) (Ratnaparkhi et al.,
1994). Consider the captioned scene shown in Fig-

ar
X

iv
:1

60
4.

02
12

5v
4

 [c
s.C

V
]

26
 S

ep
 2

01
6

Dependency Parsing

Dependency Parsing

!   Predicting directed head-modifier relationship pairs

!   Demos: http://nlp.stanford.edu:8080/corenlp/

raising $ 30 million from debt
dobj pobj

prep

num
num

Dependency Parsing

32

Dependency�Parsing

� Lexicalized�parsers�can�be�seen�as�producing�dependency�trees

� Each�local�binary�tree�corresponds�to�an�attachment�in�the�dependency�
graph

questioned

lawyer witness

the the

Constituent Parse (with head words)	 Dependency Parse	

!   Can convert (lexicalized) constituent tree to
dependency tree (each local binary tree gives us a
dependency attachment from head to modifier)

Dependency Parsing
14.1 • DEPENDENCY RELATIONS 3

Clausal Argument Relations Description
NSUBJ Nominal subject
DOBJ Direct object
IOBJ Indirect object
CCOMP Clausal complement
XCOMP Open clausal complement
Nominal Modifier Relations Description
NMOD Nominal modifier
AMOD Adjectival modifier
NUMMOD Numeric modifier
APPOS Appositional modifier
DET Determiner
CASE Prepositions, postpositions and other case markers
Other Notable Relations Description
CONJ Conjunct
CC Coordinating conjunction
Figure 14.2 Selected dependency relations from the Universal Dependency set. (de Marn-
effe et al., 2014)

in terms of the role that the dependent plays with respect to its head. Familiar notions
such as subject, direct object and indirect object are among the kind of relations we
have in mind. In English these notions strongly correlate with, but by no means de-
termine, both position in a sentence and constituent type and are therefore somewhat
redundant with the kind of information found in phrase-structure trees. However, in
more flexible languages the information encoded directly in these grammatical rela-
tions is critical since phrase-based constituent syntax provides little help.

Not surprisingly, linguists have developed taxonomies of relations that go well
beyond the familiar notions of subject and object. While there is considerable vari-
ation from theory to theory, there is enough commonality that efforts to develop a
computationally useful standard are now possible. The Universal DependenciesUniversal

Dependencies
project (Nivre et al., 2016) provides an inventory of dependency relations that are
linguistically motivated, computationally useful, and cross-linguistically applicable.
Fig. 14.2 shows a subset of the relations from this effort. Fig. 14.3 provides some
example sentences illustrating selected relations.

The motivation for all of the relations in the Universal Dependency scheme is
beyond the scope of this chapter, but the core set of frequently used relations can be
broken into two sets: clausal relations that describe syntactic roles with respect to a
predicate (often a verb), and modifier relations that categorize the ways that words
that can modify their heads.

Consider the following example sentence:

(14.2)
United canceled the morning flights to Houston

nsubj

dobj

det

nmod

nmod

case

root

The clausal relations NSUBJ and DOBJ identify the subject and direct object of
the predicate cancel, while the NMOD, DET, and CASE relations denote modifiers of
the nouns flights and Houston.

[Jurafsky-Martin-SLP3]

Dependency Parsing

[Jurafsky-Martin-SLP3]

4 CHAPTER 14 • DEPENDENCY PARSING

Relation Examples with head and dependent
NSUBJ United canceled the flight.
DOBJ United diverted the flight to Reno.

We booked her the first flight to Miami.
IOBJ We booked her the flight to Miami.
NMOD We took the morning flight.
AMOD Book the cheapest flight.
NUMMOD Before the storm JetBlue canceled 1000 flights.
APPOS United, a unit of UAL, matched the fares.
DET The flight was canceled.

Which flight was delayed?
CONJ We flew to Denver and drove to Steamboat.
CC We flew to Denver and drove to Steamboat.
CASE Book the flight through Houston.
Figure 14.3 Examples of core Universal Dependency relations.

14.2 Dependency Formalisms

In their most general form, the dependency structures we’re discussing are simply
directed graphs. That is, structures G = (V,A) consisting of a set of vertices V , and
a set of ordered pairs of vertices A, which we’ll refer to as arcs.

For the most part we will assume that the set of vertices, V , corresponds exactly
to the set of words in a given sentence. However, they might also correspond to
punctuation, or when dealing with morphologically complex languages the set of
vertices might consist of stems and affixes of the kind discussed in Chapter 3. The
set of arcs, A, captures the head-dependent and grammatical function relationships
between the elements in V .

Further constraints on these dependency structures are specific to the underlying
grammatical theory or formalism. Among the more frequent restrictions are that the
structures must be connected, have a designated root node, and be acyclic or planar.
Of most relevance to the parsing approaches discussed in this chapter is the common,
computationally-motivated, restriction to rooted trees. That is, a dependency treeDependency

tree
is a directed graph that satisfies the following constraints:

1. There is a single designated root node that has no incoming arcs.
2. With the exception of the root node, each vertex has exactly one incoming arc.
3. There is a unique path from the root node to each vertex in V .

Taken together, these constraints ensure that each word has a single head, that the
dependency structure is connected, and that there is a single root node from which
one can follow a unique directed path to each of the words in the sentence.

14.2.1 Projectivity
The notion of projectivity imposes an additional constraint that is derived from the
order of the words in the input, and is closely related to the context-free nature of
human languages discussed in Chapter 11. An arc from a head to a dependent is
said to be projective if there is a path from the head to every word that lies between
the head and the dependent in the sentence. A dependency tree is then said to be
projective if all the arcs that make it up are projective. All the dependency trees
we’ve seen thus far have been projective. There are, however, many perfectly valid

Dependency Parsing

!   Pure (projective, 1st order) dependency parsing is only
cubic [Eisner, 1996]

!   Non-projective dependency parsing useful for Czech &
other languages – MST algorithms [McDonald et al., 2005]

Transition-based Dependency Parsing 8 CHAPTER 14 • DEPENDENCY PARSING

Dependency
Relations

wnw1 w2

s2

...

s1

sn

Parser

Input buffer

Stack Oracle

Figure 14.5 Basic transition-based parser. The parser examines the top two elements of the
stack and selects an action based on consulting an oracle that examines the current configura-
tion.

ROOT node, the word list is initialized with the set of the words or lemmatized tokens
in the sentence, and an empty set of relations is created to represent the parse. In the
final goal state, the stack and the word list should be empty, and the set of relations
will represent the final parse.

In the standard approach to transition-based parsing, the operators used to pro-
duce new configurations are surprisingly simple and correspond to the intuitive ac-
tions one might take in creating a dependency tree by examining the words in a
single pass over the input from left to right (Covington, 2001):

• Assign the current word as the head of some previously seen word,
• Assign some previously seen word as the head of the current word,
• Or postpone doing anything with the current word, adding it to a store for later

processing.

To make these actions more precise, we’ll create three transition operators that
will operate on the top two elements of the stack:

• LEFTARC: Assert a head-dependent relation between the word at the top of
stack and the word directly beneath it; remove the lower word from the stack.

• RIGHTARC: Assert a head-dependent relation between the second word on
the stack and the word at the top; remove the word at the top of the stack;

• SHIFT: Remove the word from the front of the input buffer and push it onto
the stack.

This particular set of operators implements the what is known as the arc stan-
dard approach to transition-based parsing (Covington 2001,Nivre 2003). There arearc standard
two notable characteristics to this approach: the transition operators only assert re-
lations between elements at the top of the stack, and once an element has been
assigned its head it is removed from the stack and is not available for further pro-
cessing. As we’ll see, there are alternative transition systems which demonstrate
different parsing behaviors, but the arc standard approach is quite effective and is
simple to implement.

10 CHAPTER 14 • DEPENDENCY PARSING

Step Stack Word List Action Relation Added
0 [root] [book, me, the, morning, flight] SHIFT
1 [root, book] [me, the, morning, flight] SHIFT
2 [root, book, me] [the, morning, flight] RIGHTARC (book! me)
3 [root, book] [the, morning, flight] SHIFT
4 [root, book, the] [morning, flight] SHIFT
5 [root, book, the, morning] [flight] SHIFT
6 [root, book, the, morning, flight] [] LEFTARC (morning flight)
7 [root, book, the, flight] [] LEFTARC (the flight)
8 [root, book, flight] [] RIGHTARC (book! flight)
9 [root, book] [] RIGHTARC (root! book)

10 [root] [] Done

Figure 14.7 Trace of a transition-based parse.

After several subsequent applications of the SHIFT and LEFTARC operators, the con-
figuration in Step 6 looks like the following:

Stack Word List Relations
[root, book, the, morning, flight] [] (book! me)

Here, all the remaining words have been passed onto the stack and all that is left
to do is to apply the appropriate reduce operators. In the current configuration, we
employ the LEFTARC operator resulting in the following state.

Stack Word List Relations
[root, book, the, flight] [] (book! me)

(morning flight)

At this point, the parse for this sentence consists of the following structure.

(14.6)
Book me the morning flight

dobj nmod

There are several important things to note when examining sequences such as
the one in Figure 14.7. First, the sequence given is not the only one that might lead
to a reasonable parse. In general, there may be more than one path that leads to the
same result, and due to ambiguity, there may be other transition sequences that lead
to different equally valid parses.

Second, we are assuming that the oracle always provides the correct operator
at each point in the parse — an assumption that is unlikely to be true in practice.
As a result, given the greedy nature of this algorithm, incorrect choices will lead to
incorrect parses since the parser has no opportunity to go back and pursue alternative
choices. Section 14.4.2 will introduce several techniques that allow transition-based
approaches to explore the search space more fully.

Finally, for simplicity, we have illustrated this example without the labels on
the dependency relations. To produce labeled trees, we can parameterize the LEFT-
ARC and RIGHTARC operators with dependency labels, as in LEFTARC(NSUBJ) or
RIGHTARC(DOBJ). This is equivalent to expanding the set of transition operators
from our original set of three to a set that includes LEFTARC and RIGHTARC opera-
tors for each relation in the set of dependency relations being used, plus an additional
one for the SHIFT operator. This, of course, makes the job of the oracle more difficult
since it now has a much larger set of operators from which to choose.

Parsing: Other Models and Methods

!   Combinatory Categorial Grammar [Steedman, 1996, 2000; Clark and Curran,
2004]

!   Transition-based Dependency Parsing [Yamada and Matsumoto, 2003; Nivre,
2003]

!   Tree-Insertion Grammar, DOP [Schabes and Waters, 1995; Hwa, 1998; Scha,
1990; Bod, 1993; Goodman, 1996; Bansal and Klein, 2010]

!   Tree-Adjoining Grammar [Resnik, 1992; Joshi and Schabes, 1998; Chiang, 2000]

!   Shift-Reduce Parser [Nivre and Scholz, 2004; Sagae and Lavie, 2005]

!   Other: Reranking, A*, K-Best, Self-training, Co-training, System
Combination, Cross-lingual Transfer [Sarkar, 2001; Steedman et al., 2003;
Charniak and Johnson, 2005; Hwa et al., 2005; Huang and Chiang, 2005; McClosky et al.,
2006; Fossum and Knight, 2009; Pauls and Klein, 2009; McDonald et al., 2011]

!   Other Demos: http://svn.ask.it.usyd.edu.au/trac/candc/wiki/Demo,
http://4.easy-ccg.appspot.com/

CCG Parsing

39

CCG�Parsing

� Combinatory�
Categorial�Grammar
� Fully�(monoͲ)�

lexicalized�grammar
� Categories�encode�

argument�sequences
� Very�closely�related�

to�the�lambda�
calculus�(more�later)

� Can�have�spurious�
ambiguities�(why?)

!   Combinatory Categorial
Grammars:

!   Each category encodes an argument
sequence (fwd/bwd slashes specify
argument order/direction)

!   Closely related to lambda calculus

!   Captures both syntactic and semantic
info

!   Naturally allows meaning

representation and semantic parsing
(next week!)

Parser Reranking

30

Parse�Reranking

� Assume�the�number�of�parses�is�very�small
� We�can�represent�each�parse�T�as�an�arbitrary�feature�vector�M(T)

� Typically,�all�local�rules�are�features
� Also�nonͲlocal�features,�like�how�rightͲbranching�the�overall�tree�is
� [Charniak�and�Johnson�05]�gives�a�rich�set�of�features

!   Can first get the k-best list of parses based on parser probability

!   Then we can fire features on full tree (as opposed to local features
in the parser’s dynamic program)

!   Can fire non-local, global features like tree depth, width, right-
branching vs left-branching, etc.

!   See [Charniak and Johnson, 2005] for feature list.

Data Oriented Parsing (TIGs)

35

DataͲoriented�parsing:

� Rewrite�large�(possibly�lexicalized)�subtrees�in�a�single�step

� Formally,�a�treeͲinsertion�grammar
� Derivational�ambiguity�whether�subtrees�were�generated�atomically�

or�compositionally
� Most�probable�parse�is�NPͲcomplete

!   DOP is formally a Tree-Insertion Grammar, i.e., we can rewrite a
large subtree in a single step

!   Hence, this brings in derivational ambiguity

Data Oriented Parsing (TIGs)

36

TIG:�Insertion

Neural Models for Parsing

Word Embeddings for Parsing

!   Discrete or continuous, trained on large amounts of context

!   BROWN (Brown et al., 1992):

!   SKIPGRAM (Mikolov et al., 2013):

Ms. Haag plays Elianti .*

obj
proot

nmod sbj

Figure 1: An example of a labeled dependency tree. The
tree contains a special token “*” which is always the root
of the tree. Each arc is directed from head to modifier and
has a label describing the function of the attachment.

and clustering, Section 3 describes the cluster-based
features, Section 4 presents our experimental results,
Section 5 discusses related work, and Section 6 con-
cludes with ideas for future research.

2 Background

2.1 Dependency parsing

Recent work (Buchholz and Marsi, 2006; Nivre
et al., 2007) has focused on dependency parsing.
Dependency syntax represents syntactic informa-
tion as a network of head-modifier dependency arcs,
typically restricted to be a directed tree (see Fig-
ure 1 for an example). Dependency parsing depends
critically on predicting head-modifier relationships,
which can be difficult due to the statistical sparsity
of these word-to-word interactions. Bilexical depen-
dencies are thus ideal candidates for the application
of coarse word proxies such as word clusters.

In this paper, we take a part-factored structured
classification approach to dependency parsing. For a
given sentence x, let Y(x) denote the set of possible
dependency structures spanning x, where each y �
Y(x) decomposes into a set of “parts” r � y. In the
simplest case, these parts are the dependency arcs
themselves, yielding a first-order or “edge-factored”
dependency parsing model. In higher-order parsing
models, the parts can consist of interactions between
more than two words. For example, the parser of
McDonald and Pereira (2006) defines parts for sib-
ling interactions, such as the trio “plays”, “Elianti”,
and “.” in Figure 1. The Carreras (2007) parser
has parts for both sibling interactions and grandpar-
ent interactions, such as the trio “*”, “plays”, and
“Haag” in Figure 1. These kinds of higher-order
factorizations allow dependency parsers to obtain a
limited form of context-sensitivity.

Given a factorization of dependency structures
into parts, we restate dependency parsing as the fol-

apple pear Apple IBM bought run of in

01

100 101 110 111000 001 010 011

00

0

10

1

11

Figure 2: An example of a Brown word-cluster hierarchy.
Each node in the tree is labeled with a bit-string indicat-
ing the path from the root node to that node, where 0
indicates a left branch and 1 indicates a right branch.

lowing maximization:

PARSE(x;w) = argmax
y�Y(x)

X

r�y

w · f(x, r)

Above, we have assumed that each part is scored
by a linear model with parameters w and feature-
mapping f(·). For many different part factoriza-
tions and structure domains Y(·), it is possible to
solve the above maximization efficiently, and several
recent efforts have concentrated on designing new
maximization algorithms with increased context-
sensitivity (Eisner, 2000; McDonald et al., 2005b;
McDonald and Pereira, 2006; Carreras, 2007).

2.2 Brown clustering algorithm
In order to provide word clusters for our exper-
iments, we used the Brown clustering algorithm
(Brown et al., 1992). We chose to work with the
Brown algorithm due to its simplicity and prior suc-
cess in other NLP applications (Miller et al., 2004;
Liang, 2005). However, we expect that our approach
can function with other clustering algorithms (as in,
e.g., Li and McCallum (2005)). We briefly describe
the Brown algorithm below.

The input to the algorithm is a vocabulary of
words to be clustered and a corpus of text containing
these words. Initially, each word in the vocabulary
is considered to be in its own distinct cluster. The al-
gorithm then repeatedly merges the pair of clusters
which causes the smallest decrease in the likelihood
of the text corpus, according to a class-based bigram
language model defined on the word clusters. By
tracing the pairwise merge operations, one obtains
a hierarchical clustering of the words, which can be
represented as a binary tree as in Figure 2.

Within this tree, each word is uniquely identified
by its path from the root, and this path can be com-
pactly represented with a bit string, as in Figure 2.
In order to obtain a clustering of the words, we se-
lect all nodes at a certain depth from the root of the

SKIP

Few mins. vs. days/weeks/months!!

w(t)

w(t-2)

w(t-1)

w(t+1)

w(t+2)

INPUT PROJECTION OUTPUT

context
window

w

Mikolov et al., 2013!

apple ! 000
pear ! 001

 Apple ! 010

 apple ! [0.65 0.15 -0.21 0.15 0.70 -0.90]
 pear ! [0.51 0.05 -0.32 0.20 0.80 -0.95]
 Apple ! [0.11 0.33 0.51 -0.05 -0.41 0.50]

[Koo et al., 2008; Bansal et al., 2014]

Word Embeddings for Parsing

[Mr., Mrs., Ms., Prof., III, Jr., Dr.]
[Jeffrey, William, Dan, Robert, Stephen, Peter, John, Richard, ...]
[Portugal, Iran, Cuba, Ecuador, Greece, Thailand, Indonesia, …]

[truly, wildly, politically, financially, completely, potentially, ...]

[his, your, her, its, their, my, our]

[Your, Our, Its, My, His, Their, Her]

dep label	 dep label	grandparent	 parent	 child	

[PMOD<L> regulation<G> of safety PMOD<L>]

!   Condition on dependency context instead of linear, then
convert each dependency to a tuple:

[Bansal et al., 2014]

90.5

91.5

92.5

McDonald & Pereira 2006 Us

U
A

S

!   10% rel. error reduction
over 90-92% parsers

Neural Dependency Parser
[Chen and Manning, 2014; CS224n]

Christopher	Manning

Model	Architecture

Input layer x
lookup	+	concat

Hidden layer h
h = ReLU(Wx + b1)

Output layer y
y = softmax(Uh + b2)

Softmax probabilities

cross-entropy error will be
back-propagated to the
embeddings.

Neural Dependency Parser
[CS224n]

Further	developments	in	transition-based	
neural	dependency	parsing

This	work	was	further	developed	and	improved	by	others,	
including	in	particular	at	Google

• Bigger,	deeper	networks	with	better	tuned	hyperparameters
• Beam	search
• Global,	conditional	random	field	(CRF)-style	inference	over	
the	decision	sequence

Leading	to	SyntaxNet and	the	Parsey McParseFace model
https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

Method UAS LAS	(PTB WSJ	SD	3.3
Chen	&	Manning	2014 92.0 89.7
Weiss et	al.	2015 93.99 92.05
Andor et	al.	2016 94.61 92.79

Neural Constituent Parser
[Socher et al., 2013; CS224n] !   Compositional Vector Grammar (CVG)

(A, a=) (B, b=) (C, c=)

P(1), p(1)=

 P(2), p(2)=

Syntactically Untied Recursive Neural Network

= f W(B,C) b
c

= f W(A,P) a
p(1)

(1)

459

p

(1)

= f

✓
W

(B,C)

b

c

�◆

459

where P (P

1

! B C) comes from the PCFG.
This can be interpreted as the log probability of a
discrete-continuous rule application with the fol-
lowing factorization:

P ((P

1

, p

1

) ! (B, b)(C, c)) (5)
= P (p

1

! b c|P
1

! B C)P (P

1

! B C),

Note, however, that due to the continuous nature
of the word vectors, the probability of such a CVG
rule application is not comparable to probabilities
provided by a PCFG since the latter sum to 1 for
all children.

Assuming that node p

1

has syntactic category
P

1

, we compute the second parent vector via:

p

(2)

= f

✓
W

(A,P1)

a

p

(1)

�◆
.

The score of the last parent in this trigram is com-
puted via:

s

⇣
p

(2)

⌘
=

�
v

(A,P1)
�
T

p

(2)

+ logP (P

2

! A P

1

).

3.4 Parsing with CVGs
The above scores (Eq. 4) are used in the search for
the correct tree for a sentence. The goodness of a
tree is measured in terms of its score and the CVG
score of a complete tree is the sum of the scores at
each node:

s(CVG(✓, x, ŷ)) =
X

d2N(ŷ)

s

⇣
p

d

⌘
. (6)

The main objective function in Eq. 3 includes a
maximization over all possible trees max

ŷ2Y (x)

.
Finding the global maximum, however, cannot be
done efficiently for longer sentences nor can we
use dynamic programming. This is due to the fact
that the vectors break the independence assump-
tions of the base PCFG. A (category, vector) node
representation is dependent on all the words in its
span and hence to find the true global optimum,
we would have to compute the scores for all bi-
nary trees. For a sentence of length n, there are
Catalan(n) many possible binary trees which is
very large even for moderately long sentences.

One could use a bottom-up beam search, keep-
ing a k-best list at every cell of the chart, possibly
for each syntactic category. This beam search in-
ference procedure is still considerably slower than
using only the simplified base PCFG, especially
since it has a small state space (see next section for

details). Since each probability look-up is cheap
but computing SU-RNN scores requires a matrix
product, we would like to reduce the number of
SU-RNN score computations to only those trees
that require semantic information. We note that
labeled F1 of the Stanford PCFG parser on the test
set is 86.17%. However, if one used an oracle to
select the best tree from the top 200 trees that it
produces, one could get an F1 of 95.46%.

We use this knowledge to speed up inference via
two bottom-up passes through the parsing chart.
During the first one, we use only the base PCFG to
run CKY dynamic programming through the tree.
The k = 200-best parses at the top cell of the
chart are calculated using the efficient algorithm
of (Huang and Chiang, 2005). Then, the second
pass is a beam search with the full CVG model (in-
cluding the more expensive matrix multiplications
of the SU-RNN). This beam search only consid-
ers phrases that appear in the top 200 parses. This
is similar to a re-ranking setup but with one main
difference: the SU-RNN rule score computation at
each node still only has access to its child vectors,
not the whole tree or other global features. This
allows the second pass to be very fast. We use this
setup in our experiments below.

3.5 Training SU-RNNs

The full CVG model is trained in two stages. First
the base PCFG is trained and its top trees are
cached and then used for training the SU-RNN
conditioned on the PCFG. The SU-RNN is trained
using the objective in Eq. 3 and the scores as ex-
emplified by Eq. 6. For each sentence, we use the
method described above to efficiently find an ap-
proximation for the optimal tree.

To minimize the objective we want to increase
the scores of the correct tree’s constituents and
decrease the score of those in the highest scor-
ing incorrect tree. Derivatives are computed via
backpropagation through structure (BTS) (Goller
and Küchler, 1996). The derivative of tree i has
to be taken with respect to all parameter matrices
W

(AB) that appear in it. The main difference be-
tween backpropagation in standard RNNs and SU-
RNNs is that the derivatives at each node only add
to the overall derivative of the specific matrix at
that node. For more details on backpropagation
through RNNs, see Socher et al. (2010)

460

s

⇣
p

(1)

⌘
=

�
v

(B,C)

�
T

p

(1)

+ logP (P

1

! B C),

(4)

459

where P (P

1

! B C) comes from the PCFG.
This can be interpreted as the log probability of a
discrete-continuous rule application with the fol-
lowing factorization:

P ((P

1

, p

1

) ! (B, b)(C, c)) (5)
= P (p

1

! b c|P
1

! B C)P (P

1

! B C),

Note, however, that due to the continuous nature
of the word vectors, the probability of such a CVG
rule application is not comparable to probabilities
provided by a PCFG since the latter sum to 1 for
all children.

Assuming that node p

1

has syntactic category
P

1

, we compute the second parent vector via:

p

(2)

= f

✓
W

(A,P1)

a

p

(1)

�◆
.

The score of the last parent in this trigram is com-
puted via:

s

⇣
p

(2)

⌘
=

�
v

(A,P1)
�
T

p

(2)

+ logP (P

2

! A P

1

).

3.4 Parsing with CVGs
The above scores (Eq. 4) are used in the search for
the correct tree for a sentence. The goodness of a
tree is measured in terms of its score and the CVG
score of a complete tree is the sum of the scores at
each node:

s(CVG(✓, x, ŷ)) =
X

d2N(ŷ)

s

⇣
p

d

⌘
. (6)

The main objective function in Eq. 3 includes a
maximization over all possible trees max

ŷ2Y (x)

.
Finding the global maximum, however, cannot be
done efficiently for longer sentences nor can we
use dynamic programming. This is due to the fact
that the vectors break the independence assump-
tions of the base PCFG. A (category, vector) node
representation is dependent on all the words in its
span and hence to find the true global optimum,
we would have to compute the scores for all bi-
nary trees. For a sentence of length n, there are
Catalan(n) many possible binary trees which is
very large even for moderately long sentences.

One could use a bottom-up beam search, keep-
ing a k-best list at every cell of the chart, possibly
for each syntactic category. This beam search in-
ference procedure is still considerably slower than
using only the simplified base PCFG, especially
since it has a small state space (see next section for

details). Since each probability look-up is cheap
but computing SU-RNN scores requires a matrix
product, we would like to reduce the number of
SU-RNN score computations to only those trees
that require semantic information. We note that
labeled F1 of the Stanford PCFG parser on the test
set is 86.17%. However, if one used an oracle to
select the best tree from the top 200 trees that it
produces, one could get an F1 of 95.46%.

We use this knowledge to speed up inference via
two bottom-up passes through the parsing chart.
During the first one, we use only the base PCFG to
run CKY dynamic programming through the tree.
The k = 200-best parses at the top cell of the
chart are calculated using the efficient algorithm
of (Huang and Chiang, 2005). Then, the second
pass is a beam search with the full CVG model (in-
cluding the more expensive matrix multiplications
of the SU-RNN). This beam search only consid-
ers phrases that appear in the top 200 parses. This
is similar to a re-ranking setup but with one main
difference: the SU-RNN rule score computation at
each node still only has access to its child vectors,
not the whole tree or other global features. This
allows the second pass to be very fast. We use this
setup in our experiments below.

3.5 Training SU-RNNs

The full CVG model is trained in two stages. First
the base PCFG is trained and its top trees are
cached and then used for training the SU-RNN
conditioned on the PCFG. The SU-RNN is trained
using the objective in Eq. 3 and the scores as ex-
emplified by Eq. 6. For each sentence, we use the
method described above to efficiently find an ap-
proximation for the optimal tree.

To minimize the objective we want to increase
the scores of the correct tree’s constituents and
decrease the score of those in the highest scor-
ing incorrect tree. Derivatives are computed via
backpropagation through structure (BTS) (Goller
and Küchler, 1996). The derivative of tree i has
to be taken with respect to all parameter matrices
W

(AB) that appear in it. The main difference be-
tween backpropagation in standard RNNs and SU-
RNNs is that the derivatives at each node only add
to the overall derivative of the specific matrix at
that node. For more details on backpropagation
through RNNs, see Socher et al. (2010)

460

where P (P

1

! B C) comes from the PCFG.
This can be interpreted as the log probability of a
discrete-continuous rule application with the fol-
lowing factorization:

P ((P

1

, p

1

) ! (B, b)(C, c)) (5)
= P (p

1

! b c|P
1

! B C)P (P

1

! B C),

Note, however, that due to the continuous nature
of the word vectors, the probability of such a CVG
rule application is not comparable to probabilities
provided by a PCFG since the latter sum to 1 for
all children.

Assuming that node p

1

has syntactic category
P

1

, we compute the second parent vector via:

p

(2)

= f

✓
W

(A,P1)

a

p

(1)

�◆
.

The score of the last parent in this trigram is com-
puted via:

s

⇣
p

(2)

⌘
=

�
v

(A,P1)
�
T

p

(2)

+ logP (P

2

! A P

1

).

3.4 Parsing with CVGs
The above scores (Eq. 4) are used in the search for
the correct tree for a sentence. The goodness of a
tree is measured in terms of its score and the CVG
score of a complete tree is the sum of the scores at
each node:

s(CVG(✓, x, ŷ)) =
X

d2N(ŷ)

s

⇣
p

d

⌘
. (6)

The main objective function in Eq. 3 includes a
maximization over all possible trees max

ŷ2Y (x)

.
Finding the global maximum, however, cannot be
done efficiently for longer sentences nor can we
use dynamic programming. This is due to the fact
that the vectors break the independence assump-
tions of the base PCFG. A (category, vector) node
representation is dependent on all the words in its
span and hence to find the true global optimum,
we would have to compute the scores for all bi-
nary trees. For a sentence of length n, there are
Catalan(n) many possible binary trees which is
very large even for moderately long sentences.

One could use a bottom-up beam search, keep-
ing a k-best list at every cell of the chart, possibly
for each syntactic category. This beam search in-
ference procedure is still considerably slower than
using only the simplified base PCFG, especially
since it has a small state space (see next section for

details). Since each probability look-up is cheap
but computing SU-RNN scores requires a matrix
product, we would like to reduce the number of
SU-RNN score computations to only those trees
that require semantic information. We note that
labeled F1 of the Stanford PCFG parser on the test
set is 86.17%. However, if one used an oracle to
select the best tree from the top 200 trees that it
produces, one could get an F1 of 95.46%.

We use this knowledge to speed up inference via
two bottom-up passes through the parsing chart.
During the first one, we use only the base PCFG to
run CKY dynamic programming through the tree.
The k = 200-best parses at the top cell of the
chart are calculated using the efficient algorithm
of (Huang and Chiang, 2005). Then, the second
pass is a beam search with the full CVG model (in-
cluding the more expensive matrix multiplications
of the SU-RNN). This beam search only consid-
ers phrases that appear in the top 200 parses. This
is similar to a re-ranking setup but with one main
difference: the SU-RNN rule score computation at
each node still only has access to its child vectors,
not the whole tree or other global features. This
allows the second pass to be very fast. We use this
setup in our experiments below.

3.5 Training SU-RNNs

The full CVG model is trained in two stages. First
the base PCFG is trained and its top trees are
cached and then used for training the SU-RNN
conditioned on the PCFG. The SU-RNN is trained
using the objective in Eq. 3 and the scores as ex-
emplified by Eq. 6. For each sentence, we use the
method described above to efficiently find an ap-
proximation for the optimal tree.

To minimize the objective we want to increase
the scores of the correct tree’s constituents and
decrease the score of those in the highest scor-
ing incorrect tree. Derivatives are computed via
backpropagation through structure (BTS) (Goller
and Küchler, 1996). The derivative of tree i has
to be taken with respect to all parameter matrices
W

(AB) that appear in it. The main difference be-
tween backpropagation in standard RNNs and SU-
RNNs is that the derivatives at each node only add
to the overall derivative of the specific matrix at
that node. For more details on backpropagation
through RNNs, see Socher et al. (2010)

460

where P (P

1

! B C) comes from the PCFG.
This can be interpreted as the log probability of a
discrete-continuous rule application with the fol-
lowing factorization:

P ((P

1

, p

1

) ! (B, b)(C, c)) (5)
= P (p

1

! b c|P
1

! B C)P (P

1

! B C),

Note, however, that due to the continuous nature
of the word vectors, the probability of such a CVG
rule application is not comparable to probabilities
provided by a PCFG since the latter sum to 1 for
all children.

Assuming that node p

1

has syntactic category
P

1

, we compute the second parent vector via:

p

(2)

= f

✓
W

(A,P1)

a

p

(1)

�◆
.

The score of the last parent in this trigram is com-
puted via:

s

⇣
p

(2)

⌘
=

�
v

(A,P1)
�
T

p

(2)

+ logP (P

2

! A P

1

).

3.4 Parsing with CVGs
The above scores (Eq. 4) are used in the search for
the correct tree for a sentence. The goodness of a
tree is measured in terms of its score and the CVG
score of a complete tree is the sum of the scores at
each node:

s(CVG(✓, x, ŷ)) =
X

d2N(ŷ)

s

⇣
p

d

⌘
. (6)

The main objective function in Eq. 3 includes a
maximization over all possible trees max

ŷ2Y (x)

.
Finding the global maximum, however, cannot be
done efficiently for longer sentences nor can we
use dynamic programming. This is due to the fact
that the vectors break the independence assump-
tions of the base PCFG. A (category, vector) node
representation is dependent on all the words in its
span and hence to find the true global optimum,
we would have to compute the scores for all bi-
nary trees. For a sentence of length n, there are
Catalan(n) many possible binary trees which is
very large even for moderately long sentences.

One could use a bottom-up beam search, keep-
ing a k-best list at every cell of the chart, possibly
for each syntactic category. This beam search in-
ference procedure is still considerably slower than
using only the simplified base PCFG, especially
since it has a small state space (see next section for

details). Since each probability look-up is cheap
but computing SU-RNN scores requires a matrix
product, we would like to reduce the number of
SU-RNN score computations to only those trees
that require semantic information. We note that
labeled F1 of the Stanford PCFG parser on the test
set is 86.17%. However, if one used an oracle to
select the best tree from the top 200 trees that it
produces, one could get an F1 of 95.46%.

We use this knowledge to speed up inference via
two bottom-up passes through the parsing chart.
During the first one, we use only the base PCFG to
run CKY dynamic programming through the tree.
The k = 200-best parses at the top cell of the
chart are calculated using the efficient algorithm
of (Huang and Chiang, 2005). Then, the second
pass is a beam search with the full CVG model (in-
cluding the more expensive matrix multiplications
of the SU-RNN). This beam search only consid-
ers phrases that appear in the top 200 parses. This
is similar to a re-ranking setup but with one main
difference: the SU-RNN rule score computation at
each node still only has access to its child vectors,
not the whole tree or other global features. This
allows the second pass to be very fast. We use this
setup in our experiments below.

3.5 Training SU-RNNs

The full CVG model is trained in two stages. First
the base PCFG is trained and its top trees are
cached and then used for training the SU-RNN
conditioned on the PCFG. The SU-RNN is trained
using the objective in Eq. 3 and the scores as ex-
emplified by Eq. 6. For each sentence, we use the
method described above to efficiently find an ap-
proximation for the optimal tree.

To minimize the objective we want to increase
the scores of the correct tree’s constituents and
decrease the score of those in the highest scor-
ing incorrect tree. Derivatives are computed via
backpropagation through structure (BTS) (Goller
and Küchler, 1996). The derivative of tree i has
to be taken with respect to all parameter matrices
W

(AB) that appear in it. The main difference be-
tween backpropagation in standard RNNs and SU-
RNNs is that the derivatives at each node only add
to the overall derivative of the specific matrix at
that node. For more details on backpropagation
through RNNs, see Socher et al. (2010)

460

Goodness of a tree is measured in terms of its
score and the CVG score of a complete tree is
the sum of the scores at each node !

