COMP 790.139 (Fall 2017) Natural Language Processing

Lecture 4: Syntactic Parsing (Constituent, Dependency, CCG, etc.)

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Mohit Bansal

(various slides adapted/borrowed from courses by Dan Klein, Richard Socher, Chris Manning, JurafskyMartin-SLP3, others)

Announcements

- Chapter section summary due Sunday Sep24 midnight
- Coding-HW1 (on word vector training+evaluation_ +visualization) will be release in 1-2 days – TA Yixin will give overview of the homework today!
- TA Yixin Nie's office hours: 2.30-3.30pm Wednesdays (SN-372; might move to 2nd floor reading room)

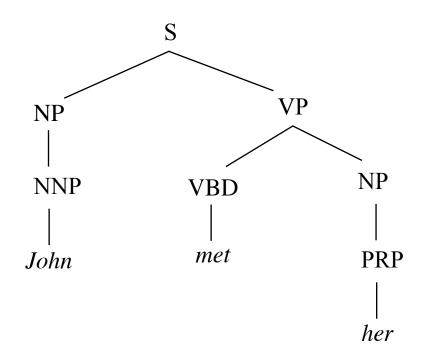
Coding HW1 (TA Yixin Nie's presentation)

Syntactic Parsing

Constituent Parsing

Syntactic Parsing -- Constituent

Phrase-structure parsing or Bracketing



Demos: <u>http://tomato.banatao.berkeley.edu:8080/parser/parser.html</u>

Probabilistic Context-free Grammars

A context-free grammar is a tuple <N, T, S, R>

N : the set of non-terminals Phrasal categories: S, NP, VP, ADJP, etc. Parts-of-speech (pre-terminals): NN, JJ, DT, VB

T: the set of terminals (the words)

S : the start symbol

Often written as ROOT or TOP *Not* usually the sentence non-terminal S

R : the set of rules

Of the form $X \rightarrow Y_1 Y_2 \dots Y_k$, with X, $Y_i \in N$ Examples: $S \rightarrow NP VP$, $VP \rightarrow VP CC VP$ Also called rewrites, productions, or local trees

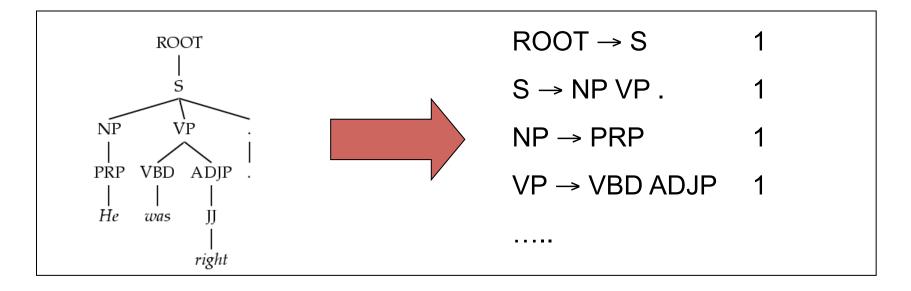
Probabilistic Context-free Grammars

A PCFG:

- Adds a top-down production probability per rule P(Y₁ Y₂ ... Y_k| X)
- Allows us to find the 'most probable parse' for a sentence
- The probability of a parse is just the product of the probabilities of the individual rules

Treebank PCFG

Can just count the frequency of each rule and normalize (but not very effective)



Model	F1
Baseline	72.0

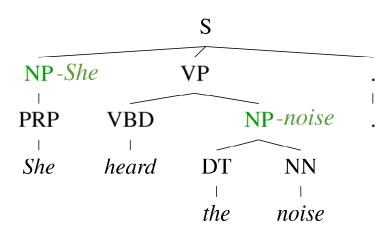
[Charniak, 1996]

Real Treebank Examples

Long, complex sentences with several clauses, nested prepositions, etc.

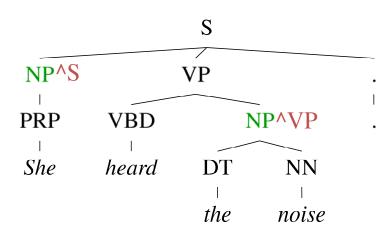
```
( (S (NP-SBJ The move)
     (VP followed
         (NP (NP a round)
             (PP of
                 (NP (NP similar increases)
                      (PP by
                          (NP other lenders))
                      (PP against
                          (NP Arizona real estate loans)))))
         (S-ADV (NP-SBJ *)
                (VP reflecting
                     (NP (NP a continuing decline)
                         (PP-LOC in
                                 (NP that market))))))
     .))
```

Grammar Refinement



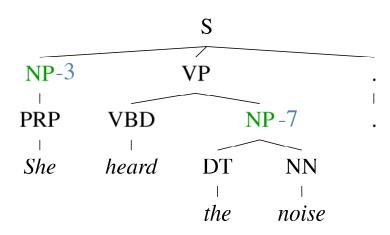
- Conditional independence assumptions often too strong! Not every NP expansion can fill every NP slot
- Better results by enriching the grammar e.g.,
 - Lexicalization [Collins, 1999; Charniak, 2000]

Grammar Refinement



- Conditional independence assumptions often too strong! Not every NP expansion can fill every NP slot
- Better results by enriching the grammar e.g.,
 - Lexicalization [Collins, 1999; Charniak, 2000]
 - Markovization, Manual Tag-splitting [Johnson, 1998; Klein & Manning, 2003]

Grammar Refinement



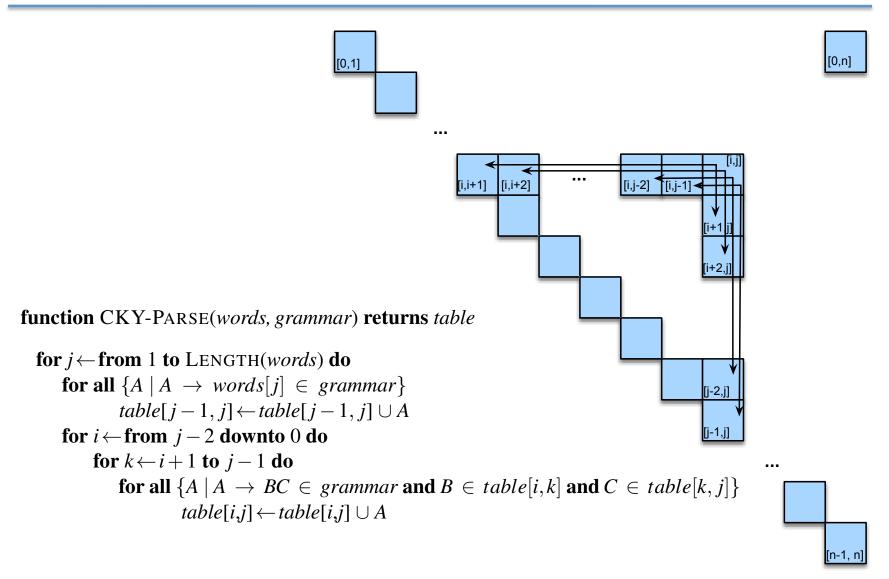
- Conditional independence assumptions often too strong! Not every NP expansion can fill every NP slot
- Better results by enriching the grammar e.g.,
 - Lexicalization [Collins, 1999; Charniak, 2000]
 - Markovization, Manual Tag-splitting [Johnson, 1998; Klein & Manning, 2003]
 - Latent Tag-splitting [Matsuzaki et al., 2005; Petrov et al., 2006]

CKY (or CYK) Parsing Algorithm (Bottom-up)

```
bestScore(s)
                                                   Х
for (i : [0, n-1])
  for (X : tags[s[i]])
    score[X][i][i+1] = tagScore(X,s[i])
for (diff : [2,n])
  for (i : [0,n-diff])
                                                    k
    j = i + diff
    for (X->YZ : rule)
      for (k : [i+1, j-1])
        score[X][i][j] = max{score[X][i][j], score(X->YZ)
                                               *score[Y][i][k]
                                               *score[Z][k][j]}
```

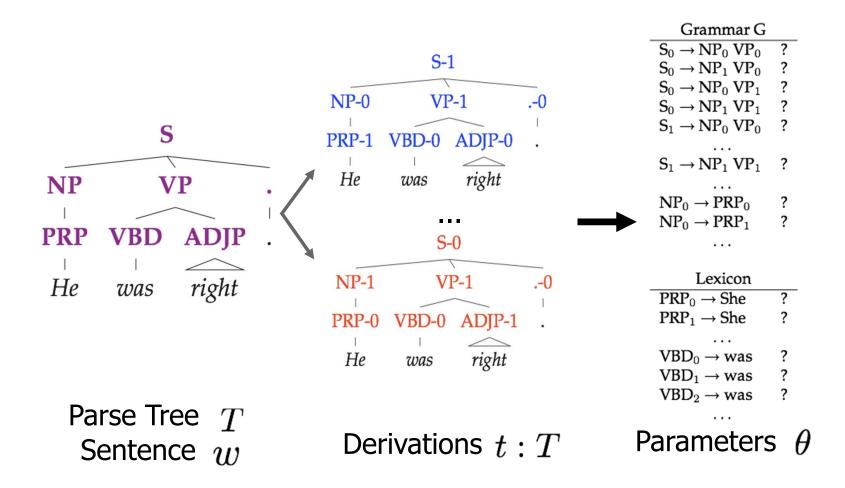
[Cocke, 1970; Kasami, 1965; Younger, 1967]

CKY Parsing Algorithm (Bottom-up)



[Jurafsky-Martin-SLP3]

Latent Variable Grammars



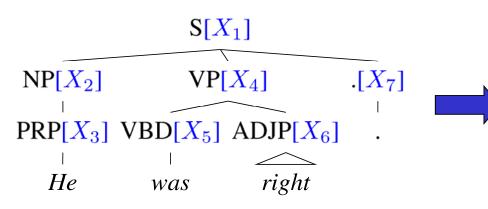
[Petrov et al., 2006]

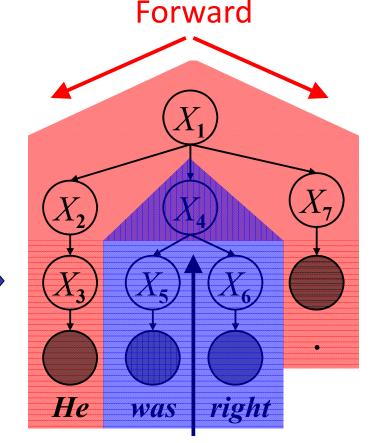
Learning Latent Splits (Inside-Outside)

Forward-backward (last week) but for trees

EM algorithm:

- Brackets are known
- Base categories are known
- Only induce subcategories

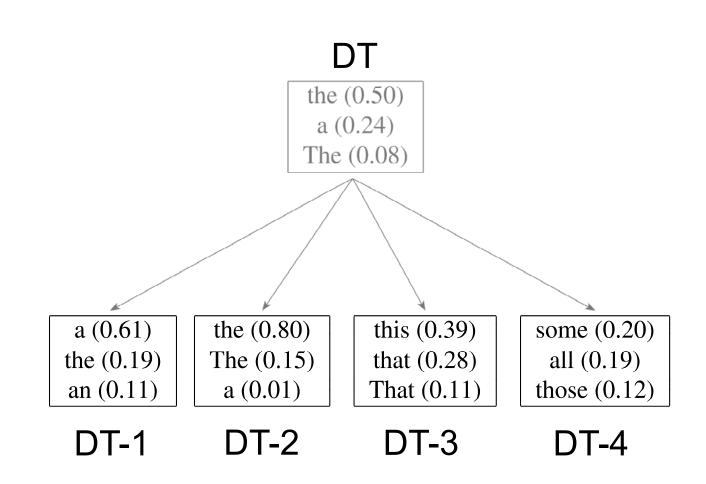




Backward

[[]Petrov et al., 2006]

DT Tag Splits Example



[Petrov et al., 2006]

Other Learned Splits

Proper Nouns (NNP):

NNP-14	Oct.	Nov.	Sept.
NNP-12	John	Robert	James
NNP-2	J.	E.	L.
NNP-1	Bush	Noriega	Peters
NNP-15	New	San	Wall
NNP-3	York	Francisco	Street

Personal pronouns (PRP):

PRP-0	It	He	l.
PRP-1	it	he	they
PRP-2	it	them	him

Other Learned Splits

Relative adverbs (RBR):

RBR-0	further	lower	higher
RBR-1	more	less	More
RBR-2	earlier	Earlier	later

Cardinal Numbers (CD):

CD-7	one	two	Three
CD-4	1989	1990	1988
CD-11	million	billion	trillion
CD-0	1	50	100
CD-3	1	30	31
CD-9	78	58	34

Latent PCFG Results

		≤ 40 words	all
		F1	F1
E	Charniak&Johnson '05 (generative)	90.1	89.6
ENG	Split / Merge	90.6	90.1
G	Dubey '05	76.3	-
ËR	Split / Merge	80.8	80.1
C	Chiang et al. '02	80.0	76.6
CHN	Split / Merge	86.3	83.4

Evaluating Constituent Parsers

labeled recall: = $\frac{\text{# of correct constituents in hypothesis parse of }s}{\text{# of correct constituents in reference parse of }s}$

labeled precision: = $\frac{\text{# of correct constituents in hypothesis parse of s}}{\text{# of total constituents in hypothesis parse of s}}$

$$F_{\beta} = \frac{(\beta^2 + 1)PR}{\beta^2 P + R} \qquad \qquad F_1 = \frac{2PR}{P + R}$$

cross-brackets: the number of constituents for which the reference parse has a bracketing such as ((A B) C) but the hypothesis parse has a bracketing such as (A (B C)).

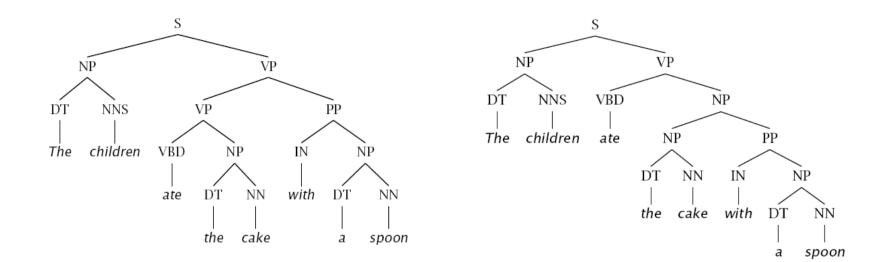
Other Results

- ► Collins, $1999 \rightarrow 88.6$ F1 (generative lexical)
- Charniak and Johnson, 2005 → 89.7 / 91.3 F1 (generative lexical / reranking)
- ▶ Petrov et al., $2006 \rightarrow 90.7$ F1 (generative unlexical)
- McClosky et al., 2006 92.1 F1 (generative + reranking + self-training)

Syntactic Ambiguities

- I saw the old man with a telescope
- I shot an elephant in my pajamas
- I cleaned the dishes in my pajamas
- I cleaned the dishes in the sink

Real-Data PP Attachment Ambiguities



The board approved [its acquisition] [by Royal Trustco Ltd.] fof Toronto] [for \$27 a share] [at its monthly meeting].

Attachment Ambiguity Types

- Prepositional phrases: They cooked the beans in the pot on the stove with handles.
- Particle vs. preposition: The puppy tore up the staircase.
- Complement structures The tourists objected to the guide that they couldn't hear. She knows you like the back of her hand.
- Gerund vs. participial adjective Visiting relatives can be boring. Changing schedules frequently confused passengers.

Attachment Ambiguity Types

- Modifier scope within NPs impractical design requirements plastic cup holder
- Multiple gap constructions The chicken is ready to eat. The contractors are rich enough to sue.
- Coordination scope:

Small rats and mice can squeeze into holes or cracks in the wall.

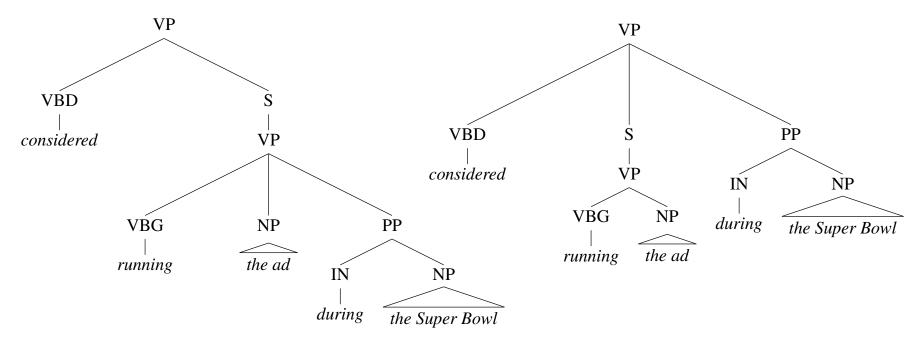
World Knowledge is Important

Web Features for Syntactic Parsing

Dependency:

They considered running the ad during the Super Bowl.

Constituent:



[Nakov and Hearst 2005; Pitler et al., 2010; Bansal and Klein, 2011]

Web Features for Syntactic Parsing They considered running the ad during the Super Bowl. Web Ngrams count(*running it during*) count(considered it during)

7-10% relative error reduction over 90-92% parsers

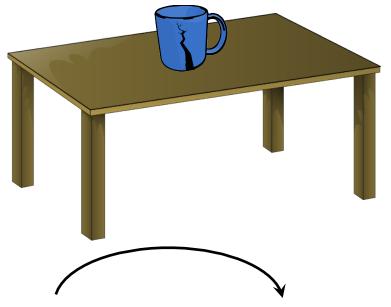
[Bansal and Klein, 2011]

Visual Recognition Cues

Joint parsing and image recognition

Visual Recognition Cues

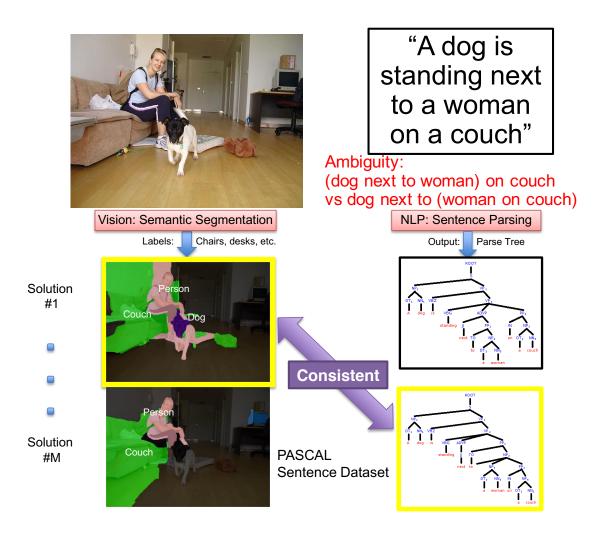
Joint parsing and image recognition



the mug on the table with a crack

red chair and table light green table

Visual Recognition Cues

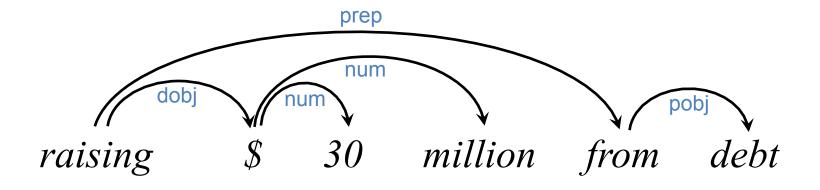


[Christie et al., 2016]

Dependency Parsing

Dependency Parsing

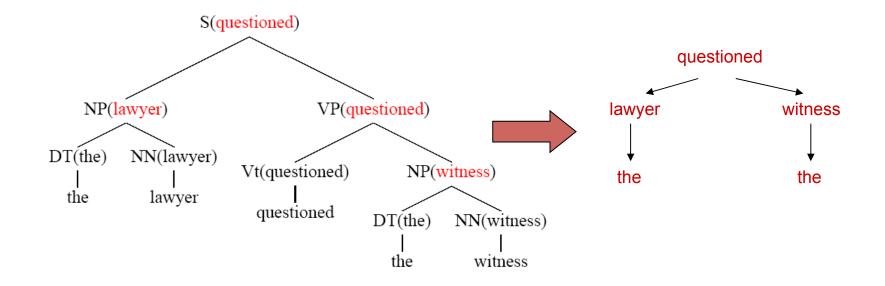
Predicting directed head-modifier relationship pairs



Demos: <u>http://nlp.stanford.edu:8080/corenlp/</u>

Dependency Parsing

Can convert (lexicalized) constituent tree to dependency tree (each local binary tree gives us a dependency attachment from head to modifier)



Constituent Parse (with head words)

Dependency Parse

Dependency Parsing

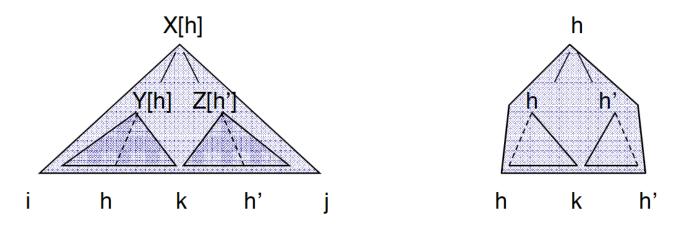
Clausal Argument Relations	Description
NSUBJ	Nominal subject
DOBJ	Direct object
IOBJ	Indirect object
ССОМР	Clausal complement
ХСОМР	Open clausal complement
Nominal Modifier Relations	Description
NMOD	Nominal modifier
AMOD	Adjectival modifier
NUMMOD	Numeric modifier
APPOS	Appositional modifier
DET	Determiner
CASE	Prepositions, postpositions and other case markers
Other Notable Relations	Description
CONJ	Conjunct
CC	Coordinating conjunction

Dependency Parsing

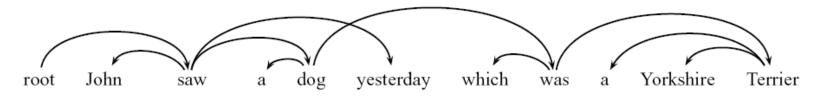
Relation	Examples with <i>head</i> and dependent		
NSUBJ	United <i>canceled</i> the flight.		
DOBJ	United <i>diverted</i> the flight to Reno.		
	We <i>booked</i> her the first flight to Miami.		
IOBJ	We <i>booked</i> her the flight to Miami.		
NMOD	We took the morning <i>flight</i> .		
AMOD	Book the cheapest <i>flight</i> .		
NUMMOD	Before the storm JetBlue canceled 1000 <i>flights</i> .		
APPOS	United, a unit of UAL, matched the fares.		
DET	The <i>flight</i> was canceled.		
	Which <i>flight</i> was delayed?		
CONJ	We <i>flew</i> to Denver and drove to Steamboat.		
CC	We flew to Denver and drove to Steamboat.		
CASE	Book the flight through Houston.		

Dependency Parsing

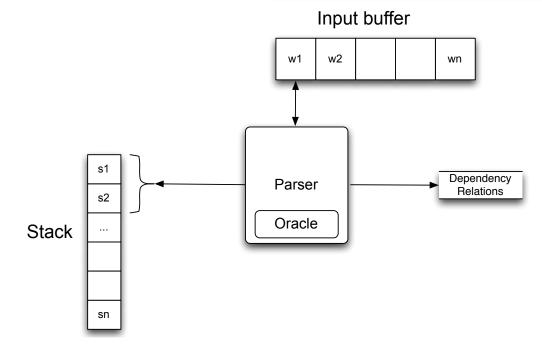
Pure (projective, 1st order) dependency parsing is only cubic [Eisner, 1996]



Non-projective dependency parsing useful for Czech & other languages – MST algorithms [McDonald et al., 2005]



Transition-based Dependency Parsing



Step	Stack	Word List	Action	Relation Added
0	[root]	[book, me, the, morning, flight]	SHIFT	
1	[root, book]	[me, the, morning, flight]	SHIFT	
2	[root, book, me]	[the, morning, flight]	RIGHTARC	$(book \rightarrow me)$
3	[root, book]	[the, morning, flight]	SHIFT	
4	[root, book, the]	[morning, flight]	SHIFT	
5	[root, book, the, morning]	[flight]	SHIFT	
6	[root, book, the, morning, flight]	[]	LEFTARC	$(morning \leftarrow flight)$
7	[root, book, the, flight]	[]	LEFTARC	$(\text{the} \leftarrow \text{flight})$
8	[root, book, flight]	[]	RIGHTARC	$(book \rightarrow flight)$
9	[root, book]	[]	RIGHTARC	$(root \rightarrow book)$
10	[root]	[]	Done	

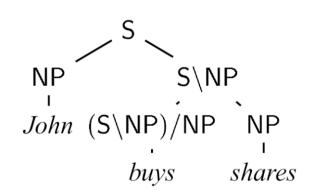
Parsing: Other Models and Methods

- Combinatory Categorial Grammar [Steedman, 1996, 2000; Clark and Curran, 2004]
- Transition-based Dependency Parsing [Yamada and Matsumoto, 2003; Nivre, 2003]
- Tree-Insertion Grammar, DOP [Schabes and Waters, 1995; Hwa, 1998; Scha, 1990; Bod, 1993; Goodman, 1996; Bansal and Klein, 2010]
- Tree-Adjoining Grammar [Resnik, 1992; Joshi and Schabes, 1998; Chiang, 2000]
- Shift-Reduce Parser [Nivre and Scholz, 2004; Sagae and Lavie, 2005]
- Other: Reranking, A*, K-Best, Self-training, Co-training, System Combination, Cross-lingual Transfer [Sarkar, 2001; Steedman et al., 2003; Charniak and Johnson, 2005; Hwa et al., 2005; Huang and Chiang, 2005; McClosky et al., 2006; Fossum and Knight, 2009; Pauls and Klein, 2009; McDonald et al., 2011]
- Other Demos: <u>http://svn.ask.it.usyd.edu.au/trac/candc/wiki/Demo,</u> <u>http://4.easy-ccg.appspot.com/</u>

CCG Parsing

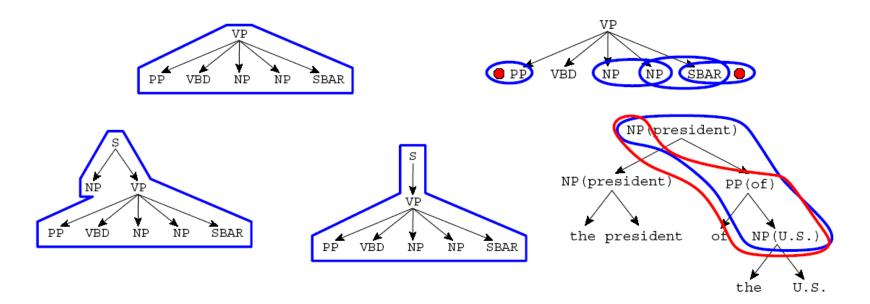
- Combinatory Categorial Grammars:
- Each category encodes an argument sequence (fwd/bwd slashes specify argument order/direction)
- Closely related to lambda calculus
- Captures both syntactic and semantic info
- Naturally allows meaning representation and semantic parsing (next week!)

 $John \vdash NP$ $shares \vdash NP$ $buys \vdash (S \setminus NP) / NP$ $sleeps \vdash S \setminus NP$ $well \vdash (S \setminus NP) \setminus (S \setminus NP)$



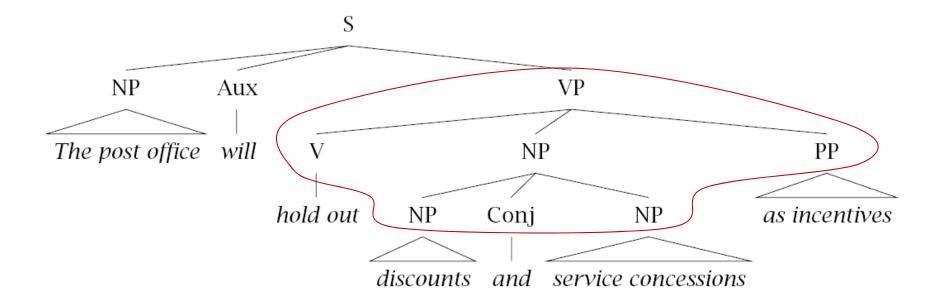
Parser Reranking

- Can first get the *k*-best list of parses based on parser probability
- Then we can fire features on full tree (as opposed to local features in the parser's dynamic program)
- Can fire non-local, global features like tree depth, width, rightbranching vs left-branching, etc.
- See [Charniak and Johnson, 2005] for feature list.

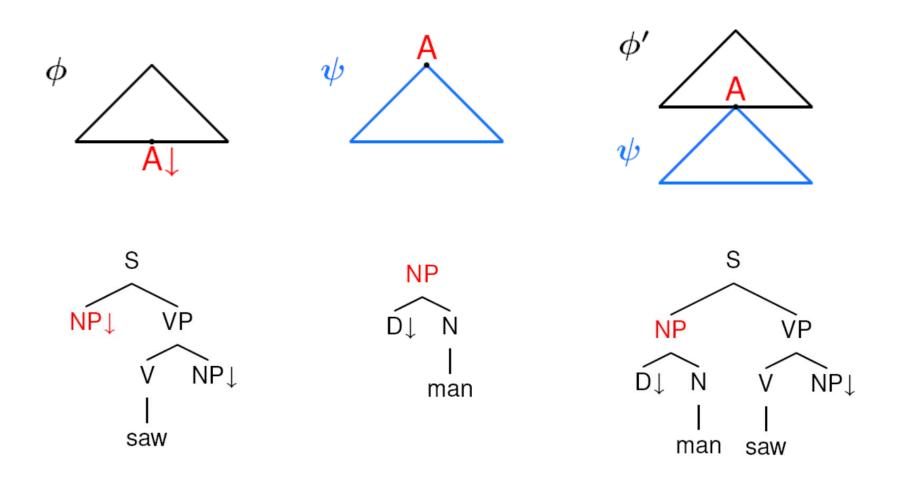


Data Oriented Parsing (TIGs)

- DOP is formally a Tree-Insertion Grammar, i.e., we can rewrite a large subtree in a single step
- Hence, this brings in derivational ambiguity



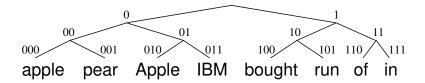
Data Oriented Parsing (TIGs)



Neural Models for Parsing

Word Embeddings for Parsing

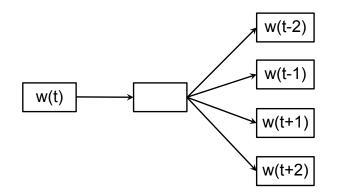
- Discrete or continuous, trained on large amounts of context
- BROWN (Brown et al., 1992):



apple	\rightarrow	000
pear	\rightarrow	001
Apple	\rightarrow	010

SKIPGRAM (Mikolov et al., 2013):

INPUT PROJECTION OUTPUT

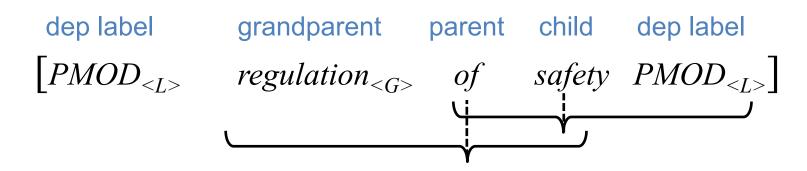


apple →	[0.65	0.15	-0.21	0.15	0.70	-0.90]
pear →	[0.51	0.05	-0.32	0.20	0.80	-0.95]
Apple →	[0.11	0.33	0.51	-0.05	-0.41	0.50]

[Koo et al., 2008; Bansal et al., 2014]

Word Embeddings for Parsing

Condition on dependency context instead of linear, then convert each dependency to a tuple:



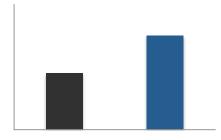
[*Mr.*, *Mrs.*, *Ms.*, *Prof.*, *III*, *Jr.*, *Dr.*] [*Jeffrey*, *William*, *Dan*, *Robert*, *Stephen*, *Peter*, *John*, *Richard*, ...] [*Portugal*, *Iran*, *Cuba*, *Ecuador*, *Greece*, *Thailand*, *Indonesia*, ...]

[his, your, her, its, their, my, our]

[Your, Our, Its, My, His, Their, Her]

[truly, wildly, politically, financially, completely, potentially, ...]

10% rel. error reduction over 90-92% parsers

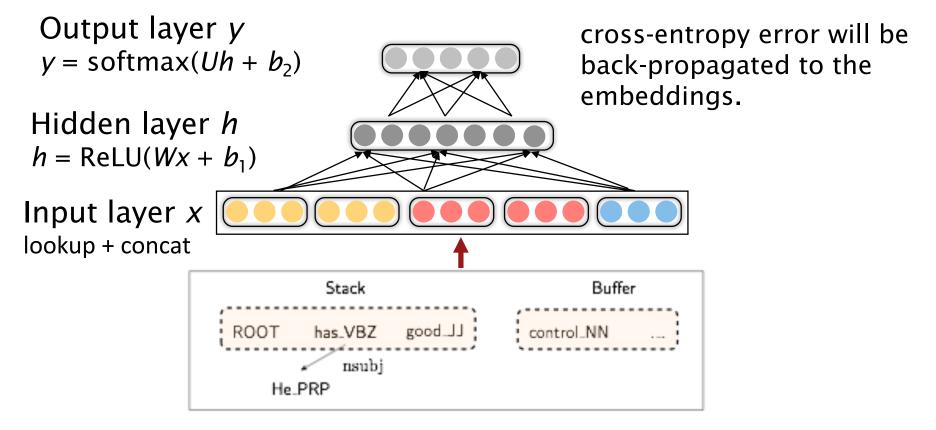


[Bansal et al., 2014]

Neural Dependency Parser

[Chen and Manning, 2014; CS224n]

Softmax probabilities



Neural Dependency Parser

[CS224n]

Further developments in transition-based neural dependency parsing

This work was further developed and improved by others, including in particular at Google

- Bigger, deeper networks with better tuned hyperparameters
- Beam search
- Global, conditional random field (CRF)-style inference over the decision sequence

Leading to SyntaxNet and the Parsey McParseFace model

https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html

Method	UAS	LAS (PTB WSJ SD 3.3
Chen & Manning 2014	92.0	89.7
Weiss et al. 2015	93.99	92.05
Andor et al. 2016	94.61	92.79

Neural Constituent Parser

Compositional Vector Grammar (CVG)

[Socher et al., 2013; CS224n]

$$p^{(1)} = f\left(W^{(B,C)} \left[\begin{array}{c} b\\ c \end{array}\right]\right)$$

$$s(p^{(1)}) = (v^{(B,C)})^T p^{(1)} + \log P(P_1 \to B C)$$

$$P((P_1, p_1) \to (B, b)(C, c))$$

= $P(p_1 \to b \ c | P_1 \to B \ C) P(P_1 \to B \ C)$

$$p^{(2)} = f\left(W^{(A,P_1)} \left[\begin{array}{c}a\\p^{(1)}\end{array}\right]\right)$$

Syntactically Untied Recursive Neural Network

$$\begin{bmatrix}
P^{(2)}, p^{(2)} = \bigcirc = f \begin{bmatrix} W^{(A, P^{(1)})} \begin{bmatrix} a \\ p^{(1)} \end{bmatrix} \end{bmatrix}$$

$$\begin{bmatrix}
P^{(1)}, p^{(1)} = \bigcirc = f \begin{bmatrix} W^{(B,C)} \begin{bmatrix} b \\ c \end{bmatrix} \end{bmatrix}$$

$$(A, a = \bigcirc) \quad (B, b = \bigcirc) \quad (C, c = \bigcirc)$$

$$s\left(p^{(2)}\right) = \left(v^{(A,P_1)}\right)^T p^{(2)} + \log P(P_2 \to A \ P_1)$$

Goodness of a tree is measured in terms of its score and the CVG score of a complete tree is the sum of the scores at each node \rightarrow

$$s(\mathtt{CVG}(\theta, x, \hat{y})) = \sum_{d \in N(\hat{y})} s\left(p^d\right)$$