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Automatic Document Summarization 



Single-Document Summarization 

1

Statistical NLP
Spring 2011

Lecture 25: Summarization
Dan Klein – UC Berkeley

Document Summarization!   Full document to a salient, non-redundant summary of ~100 words 



Multi-Document Summarization 

2

Multi-document Summarization

… 27,000+ more

Extractive Summarization

!   Several news sources with articles on the same topic (can use 
overlapping info across articles as a good feature for summarization) 



Extractive Summarization 
!   Directly selecting existing sentences from input document instead of 

rewriting them 

2

Multi-document Summarization

… 27,000+ more

Extractive Summarization



Graph-based Extractive Summ 

5

• Maximum Marginal Relevance
• Graph algorithms

mid-‘90s

present ss11

ss33

ss22

ss44
Nodes are sentences

Edges are similarities

Stationary distribution 
represents node centrality

Selection

• Maximum Marginal Relevance
• Graph algorithms
• Word distribution models

mid-‘90s

present

Input document distribution Summary distribution

~
ww PPAA(w)(w)

Obama ?
speech ?
health ?

Montana ?

ww PPDD(w)(w)
Obama 0.017
speech 0.024
health 0.009

Montana 0.002

Selection

[Mihalcea et al., 2004, 2005; inter alia]	



Maximize Concept Coverage 

[Gillick and Favre, 2009]	

15

[Gillick and Favre, 2008]

Universal health care is a divisive issue.

Obama addressed the House on Tuesday.

President Obama remained calm.

conceptconcept valuevalue
obama 3
health 2
house 1

ss11

ss22

ss33

ss44

The health care bill is a major test for the 
Obama administration.

summarysummary lengthlength valuevalue
{s1, s3} 17 5

{s2, s3, s4} 17 6

Length limit: 
18 words

greedy

optimal

Selection

Maximize Concept Coverage

[Gillick and Favre 09]

Optimization problem: Set Coverage

Value of
concept c

Set of concepts 
present in summary sSet of extractive summaries

of document set D

Results

2009

Baseline

Bigram Recall

2009

Baseline

Pyramid

23.5

35.0

4.00

6.85



Maximize Concept Coverage 

[Gillick and Favre, 2009]	
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{s1, s3} 17 5

{s2, s3, s4} 17 6
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18 words
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Maximize Concept Coverage

[Gillick and Favre 09]

Optimization problem: Set Coverage

Value of
concept c

Set of concepts 
present in summary sSet of extractive summaries

of document set D

Results

2009

Baseline

Bigram Recall

2009

Baseline

Pyramid

23.5

35.0

4.00

6.85

!   A set coverage optimization problem 



Maximize Concept Coverage 

[Gillick et al., 2008]	[Gillick and Favre, 2009]	
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[Gillick, Riedhammer, Favre, Hakkani-Tur, 2008]

total concept value

summary length limit

maintain consistency between 
selected sentences and concepts

Integer Linear Program for the maximum coverage model

Selection

[Gillick and Favre, 2009]

This ILP is tractable for reasonable 
problems

Selection

!   Can be solved using an integer linear program with constraints: 



Beyond Extraction: Compression 

[Berg-Kirkpatrick et al., 2011]	

19

Problems with Extraction

It is therefore unsurprising that Lindsay pleaded 
not guilty yesterday afternoon to the charges 
filed against her, according to her publicist. 

What would a human do?

Problems with Extraction

It is therefore unsurprising that Lindsay pleaded 
not guilty yesterday afternoon to the charges 
filed against her, according to her publicist. 

What would a human do?

!   If you had to write a concise summary, making effective use of the 
100-word limit, you would remove some information from the lengthy 
sentences in the original article 



Beyond Extraction: Compression 

20

Sentence Rewriting

[Berg-Kirkpatrick, Gillick, and Klein 11]

Sentence Rewriting

[Berg-Kirkpatrick, Gillick, and Klein 11]
[Berg-Kirkpatrick et al., 2011]	

!   Model should learn the subtree deletions/cuts that allow compression 



Beyond Extraction: Compression 

[Berg-Kirkpatrick et al., 2011]	
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Sentence Rewriting

[Berg-Kirkpatrick, Gillick, and Klein 11]

Sentence Rewriting

[Berg-Kirkpatrick, Gillick, and Klein 11]

New Optimization problem: Safe Deletions

Set branch cut deletions
made in creating summary s

Value of
deletion d

How do we know how much a given deletion costs?

!   Model should learn the subtree deletions/cuts that allow compression 



Beyond Extraction: Compression 

[Berg-Kirkpatrick et al., 2011]	
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Sentence Rewriting

[Berg-Kirkpatrick, Gillick, and Klein 11]

Sentence Rewriting

[Berg-Kirkpatrick, Gillick, and Klein 11]

New Optimization problem: Safe Deletions

Set branch cut deletions
made in creating summary s

Value of
deletion d

How do we know how much a given deletion costs?

!   The new optimization problem looks to maximize the concept values 
as well as safe deletion values in the candidate summary: 

!   To decide the value/cost of a deletion, we decide relevant deletion 
features and the model learns their weights: 

21

Sentence Rewriting

[Berg-Kirkpatrick, Gillick, and Klein 11]

Sentence Rewriting

[Berg-Kirkpatrick, Gillick, and Klein 11]

New Optimization problem: Safe Deletions

Set branch cut deletions
made in creating summary s

Value of
deletion d

How do we know how much a given deletion costs?



Beyond Extraction: Compression 

[Berg-Kirkpatrick et al., 2011]	

Features

COUNT: Bucketed document counts

STOP: Stop word indicators

POSITION: First document position 
indicators

CONJ: All two- and three-way 
conjunctions of above

BIAS: Always one

f(b)Bigram Features Cut Features f(c)

COORD: Coordinated phrase, four 
versions: NP,  VP,  S,  SBAR

S-ADJUNCT: Adjunct to matrix verb, 
four versions:  CC,  PP, 
ADVP,  SBAR

REL-C: Relative clause indicator

ATTR-C: Attribution clause indicator

ATTR-PP: PP attribution indicator

TEMP-PP: Temporal PP indicator

TEMP-NP Temporal NP indicator

BIAS: Always one

!   Some example features for concept bigrams and cuts/deletions: 



Neural Abstractive Summarization 

!   Mostly based on sequence-to-sequence RNN models 

!   Later added attention, coverage, pointer/copy, hierarchical encoder/
attention, metric rewards RL, etc. 

!   Examples: Rush et al., 2015; Nallapati et al., 2016; See et al., 2017; 
Paulus et al., 2017 



Feature-Augmented Encoder-Decoder 

tion 3 contextualizes our models with respect to
closely related work on the topic of abstractive text
summarization. We present the results of our ex-
periments on three different data sets in Section 4.
We also present some qualitative analysis of the
output from our models in Section 5 before con-
cluding the paper with remarks on our future di-
rection in Section 6.

2 Models

In this section, we first describe the basic encoder-
decoder RNN that serves as our baseline and then
propose several novel models for summarization,
each addressing a specific weakness in the base-
line.

2.1 Encoder-Decoder RNN with Attention
and Large Vocabulary Trick

Our baseline model corresponds to the neural ma-
chine translation model used in Bahdanau et al.
(2014). The encoder consists of a bidirectional
GRU-RNN (Chung et al., 2014), while the decoder
consists of a uni-directional GRU-RNN with the
same hidden-state size as that of the encoder, and
an attention mechanism over the source-hidden
states and a soft-max layer over target vocabu-
lary to generate words. In the interest of space,
we refer the reader to the original paper for a de-
tailed treatment of this model. In addition to the
basic model, we also adapted to the summariza-
tion problem, the large vocabulary ‘trick’ (LVT)
described in Jean et al. (2014). In our approach,
the decoder-vocabulary of each mini-batch is re-
stricted to words in the source documents of that
batch. In addition, the most frequent words in the
target dictionary are added until the vocabulary
reaches a fixed size. The aim of this technique
is to reduce the size of the soft-max layer of the
decoder which is the main computational bottle-
neck. In addition, this technique also speeds up
convergence by focusing the modeling effort only
on the words that are essential to a given example.
This technique is particularly well suited to sum-
marization since a large proportion of the words in
the summary come from the source document in
any case.

2.2 Capturing Keywords using Feature-rich
Encoder

In summarization, one of the key challenges is to
identify the key concepts and key entities in the

document, around which the story revolves. In
order to accomplish this goal, we may need to
go beyond the word-embeddings-based represen-
tation of the input document and capture addi-
tional linguistic features such as parts-of-speech
tags, named-entity tags, and TF and IDF statis-
tics of the words. We therefore create additional
look-up based embedding matrices for the vocab-
ulary of each tag-type, similar to the embeddings
for words. For continuous features such as TF
and IDF, we convert them into categorical values
by discretizing them into a fixed number of bins,
and use one-hot representations to indicate the bin
number they fall into. This allows us to map them
into an embeddings matrix like any other tag-type.
Finally, for each word in the source document, we
simply look-up its embeddings from all of its as-
sociated tags and concatenate them into a single
long vector, as shown in Fig. 1. On the target side,
we continue to use only word-based embeddings
as the representation.
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ENCODER

DECODER

Figure 1: Feature-rich-encoder: We use one embedding
vector each for POS, NER tags and discretized TF and IDF
values, which are concatenated together with word-based em-
beddings as input to the encoder.

2.3 Modeling Rare/Unseen Words using
Switching Generator-Pointer

Often-times in summarization, the keywords or
named-entities in a test document that are central
to the summary may actually be unseen or rare
with respect to training data. Since the vocabulary
of the decoder is fixed at training time, it cannot
emit these unseen words. Instead, a most common
way of handling these out-of-vocabulary (OOV)
words is to emit an ‘UNK’ token as a placeholder.
However this does not result in legible summaries.
In summarization, an intuitive way to handle such
OOV words is to simply point to their location in
the source document instead. We model this no-

[Nallapati et al., 2016]	



Generation+Copying 

[Nallapati et al., 2016]	

tion using our novel switching decoder/pointer ar-
chitecture which is graphically represented in Fig-
ure 2. In this model, the decoder is equipped with
a ‘switch’ that decides between using the genera-
tor or a pointer at every time-step. If the switch
is turned on, the decoder produces a word from its
target vocabulary in the normal fashion. However,
if the switch is turned off, the decoder instead gen-
erates a pointer to one of the word-positions in the
source. The word at the pointer-location is then
copied into the summary. The switch is modeled
as a sigmoid activation function over a linear layer
based on the entire available context at each time-
step as shown below.

P (si = 1) = �(v
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s
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)),

where P (si = 1) is the probability of the switch
turning on at the i

th time-step of the decoder, hi

is the hidden state, E[oi�1] is the embedding vec-
tor of the emission from the previous time step,
ci is the attention-weighted context vector, and
W
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s
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s and v

s are the switch parame-
ters. We use attention distribution over word posi-
tions in the document as the distribution to sample
the pointer from.
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pi = argmax

j
(P

a
i (j)) for j 2 {1, . . . , Nd}.

In the above equation, pi is the pointer value at
i

th word-position in the summary, sampled from
the attention distribution P

a
i over the document

word-positions j 2 {1, . . . , Nd}, where P

a
i (j) is

the probability of the i

th time-step in the decoder
pointing to the j

th position in the document, and
h

d
j is the encoder’s hidden state at position j.
At training time, we provide the model with ex-

plicit pointer information whenever the summary
word does not exist in the target vocabulary. When
the OOV word in summary occurs in multiple doc-
ument positions, we break the tie in favor of its
first occurrence. At training time, we optimize the
conditional log-likelihood shown below, with ad-
ditional regularization penalties.

logP (y|x) =
X

i

(gi log{P (yi|y�i,x)P (si)}

+(1� gi) log{P (p(i)|y�i,x)(1� P (si))})

where y and x are the summary and document
words respectively, gi is an indicator function that

is set to 0 whenever the word at position i in the
summary is OOV with respect to the decoder vo-
cabulary. At test time, the model decides automat-
ically at each time-step whether to generate or to
point, based on the estimated switch probability
P (si). We simply use the argmax of the poste-
rior probability of generation or pointing to gener-
ate the best output at each time step.

The pointer mechanism may be more robust in
handling rare words because it uses the encoder’s
hidden-state representation of rare words to decide
which word from the document to point to. Since
the hidden state depends on the entire context of
the word, the model is able to accurately point to
unseen words although they do not appear in the
target vocabulary.1
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Figure 2: Switching generator/pointer model: When the
switch shows ’G’, the traditional generator consisting of the
softmax layer is used to produce a word, and when it shows
’P’, the pointer network is activated to copy the word from
one of the source document positions. When the pointer is
activated, the embedding from the source is used as input for
the next time-step as shown by the arrow from the encoder to
the decoder at the bottom.

2.4 Capturing Hierarchical Document
Structure with Hierarchical Attention

In datasets where the source document is very
long, in addition to identifying the keywords in
the document, it is also important to identify the
key sentences from which the summary can be
drawn. This model aims to capture this notion of
two levels of importance using two bi-directional

1Even when the word does not exist in the source vocabu-
lary, the pointer model may still be able to identify the correct
position of the word in the source since it takes into account
the contextual representation of the corresponding ’UNK’ to-
ken encoded by the RNN. Once the position is known, the
corresponding token from the source document can be dis-
played in the summary even when it is not part of the training
vocabulary either on the source side or the target side.



Hierarchical Attention 

[Nallapati et al., 2016]	

RNNs on the source side, one at the word level
and the other at the sentence level. The attention
mechanism operates at both levels simultaneously.
The word-level attention is further re-weighted by
the corresponding sentence-level attention and re-
normalized as shown below:

P

a
(j) =

P

a
w(j)P

a
s (s(j))PNd

k=1 P
a
w(k)P

a
s (s(k))

,

where P

a
w(j) is the word-level attention weight at

j

th position of the source document, and s(j) is
the ID of the sentence at jth word position, P a

s (l)

is the sentence-level attention weight for the l

th

sentence in the source, Nd is the number of words
in the source document, and P

a
(j) is the re-scaled

attention at the j

th word position. The re-scaled
attention is then used to compute the attention-
weighted context vector that goes as input to the
hidden state of the decoder. Further, we also con-
catenate additional positional embeddings to the
hidden state of the sentence-level RNN to model
positional importance of sentences in the docu-
ment. This architecture therefore models key sen-
tences as well as keywords within those sentences
jointly. A graphical representation of this model is
displayed in Figure 3.
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Figure 3: Hierarchical encoder with hierarchical attention:
the attention weights at the word level, represented by the
dashed arrows are re-scaled by the corresponding sentence-
level attention weights, represented by the dotted arrows.
The dashed boxes at the bottom of the top layer RNN rep-
resent sentence-level positional embeddings concatenated to
the corresponding hidden states.

3 Related Work

A vast majority of past work in summarization
has been extractive, which consists of identify-
ing key sentences or passages in the source doc-
ument and reproducing them as summary (Neto et

al., 2002; Erkan and Radev, 2004; Wong et al.,
2008a; Filippova and Altun, 2013; Colmenares et
al., 2015; Litvak and Last, 2008; K. Riedhammer
and Hakkani-Tur, 2010; Ricardo Ribeiro, 2013).

Humans on the other hand, tend to paraphrase
the original story in their own words. As such, hu-
man summaries are abstractive in nature and sel-
dom consist of reproduction of original sentences
from the document. The task of abstractive sum-
marization has been standardized using the DUC-
2003 and DUC-2004 competitions.2 The data for
these tasks consists of news stories from various
topics with multiple reference summaries per story
generated by humans. The best performing system
on the DUC-2004 task, called TOPIARY (Zajic
et al., 2004), used a combination of linguistically
motivated compression techniques, and an unsu-
pervised topic detection algorithm that appends
keywords extracted from the article onto the com-
pressed output. Some of the other notable work in
the task of abstractive summarization includes us-
ing traditional phrase-table based machine transla-
tion approaches (Banko et al., 2000), compression
using weighted tree-transformation rules (Cohn
and Lapata, 2008) and quasi-synchronous gram-
mar approaches (Woodsend et al., 2010).

With the emergence of deep learning as a viable
alternative for many NLP tasks (Collobert et al.,
2011), researchers have started considering this
framework as an attractive, fully data-driven alter-
native to abstractive summarization. In Rush et
al. (2015), the authors use convolutional models
to encode the source, and a context-sensitive at-
tentional feed-forward neural network to generate
the summary, producing state-of-the-art results on
Gigaword and DUC datasets. In an extension to
this work, Chopra et al. (2016) used a similar con-
volutional model for the encoder, but replaced the
decoder with an RNN, producing further improve-
ment in performance on both datasets.

In another paper that is closely related to our
work, Hu et al. (2015) introduce a large dataset
for Chinese short text summarization. They show
promising results on their Chinese dataset using
an encoder-decoder RNN, but do not report exper-
iments on English corpora.

In another very recent work, Cheng and Lapata
(2016) used RNN based encoder-decoder for ex-
tractive summarization of documents. This model
is not directly comparable to ours since their

2http://duc.nist.gov/



Pointer-Generator Networks 

[See et al., 2017]	
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Pointer-Generator Networks 

[See et al., 2017]	
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Pointer-Generator Networks 

[See et al., 2017]	
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Coverage for Redundancy Reduction 

[See et al., 2017]	
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Guest Talk by Ramakanth Pasunuru: 
 

“Towards Improving Abstractive Summarization via 
Entailment Generation” 

 
(30 mins) 

[Pasunuru, Guo, Bansal.	New	Summarization Frontiers Workshop, EMNLP 2017]	



Machine Translation 



Machine Translation 

!   Useful for tons of companies, online traffic, and our international 
communication! 



Statistical Machine Translation 

Current	statistical	machine	translation	systems

• Source	language	f,	e.g.	French
• Target	language	e,	e.g.	English
• Probabilistic	formulation	(using	Bayes	rule)

• Translation	model	p(f|e)	trained	on	parallel	corpus
• Language	model	p(e)	trained	on	English	only	corpus	(lots,	free!)

4/26/16Richard	Socher10

TranslationModel
p(f|e)French	à à Pieces	of	English	à Language	Model

p(e)

Decoder
argmax p(f|e)p(e) à Proper	English

[Richard Socher CS224d]	

!   Source language f (e.g., French) 

!   Target language e (e.g., English)  

!   We want the best target (English) translation given the source 
(French) input sentence, hence the probabilistic formulation is: 

!   Using Bayes rule, we get the following (since p(f) in the denominator 
is independent of the argmax over e): 

Current	statistical	machine	translation	systems

• Source	language	f,	e.g.	French
• Target	language	e,	e.g.	English
• Probabilistic	formulation	(using	Bayes	rule)

• Translation	model	p(f|e)	trained	on	parallel	corpus
• Language	model	p(e)	trained	on	English	only	corpus	(lots,	free!)

4/26/16Richard	Socher10

TranslationModel
p(f|e)French	à à Pieces	of	English	à Language	Model

p(e)

Decoder
argmax p(f|e)p(e) à Proper	English



Statistical Machine Translation 

[Richard Socher CS224d]	

!   The first part is known as the ‘Translation Model’ p(f|e) and is trained 
on parallel corpora of {f,e} sentence pairs, e.g., from EuroParl or 
Canadian parliament proceedings in multiple languages 

!   The second part p(e) is the ‘Language Model’ and can be trained on 
tons more monolingual data, which is much easier to find! 

Current	statistical	machine	translation	systems

• Source	language	f,	e.g.	French
• Target	language	e,	e.g.	English
• Probabilistic	formulation	(using	Bayes	rule)

• Translation	model	p(f|e)	trained	on	parallel	corpus
• Language	model	p(e)	trained	on	English	only	corpus	(lots,	free!)

4/26/16Richard	Socher10

TranslationModel
p(f|e)French	à à Pieces	of	English	à Language	Model

p(e)

Decoder
argmax p(f|e)p(e) à Proper	English



Statistical Machine Translation 

Step	1:	Alignment	

4/26/16Richard	Socher11

Goal:	know	which	word	or	phrases	in	source	language	
would	translate	to	what	words	or	phrases	in	target	
language?	à Hard	already!

Alignment	examples	from	Chris	Manning/CS224n

9/24/14 

4 

Statistical MT 

Pioneered at IBM in the early 1990s 
 
Let’s make a probabilistic model of translation 
P(e | f) 
 
Suppose f is de rien 
P(you’re welcome | de rien)  = 0.45 
P(nothing | de rien)    = 0.13 
P(piddling | de rien)   = 0.01 
P(underpants | de rien)   = 0.000000001 

Hieroglyphs 

Statistical Solution 

•  Parallel Texts 
– Rosetta Stone 

Demotic 

Greek 

Statistical Solution 

–  Instruction Manuals 
–  Hong Kong/Macao 

Legislation 
–  Canadian Parliament 

Hansards 
–  United Nations Reports 
–  Official Journal 

of the European 
Communities 

–  Translated news 

•  Parallel Texts Hmm, every time one sees  
“banco”, translation is  
�bank” or “bench” …   
If it’s “banco de…”, it 
always becomes “bank”,  
never “bench”… 

A Division of Labor 

Spanish Broken 
English 

English 

Spanish/English 
Bilingual Text 

English 
Text 

Statistical Analysis Statistical Analysis 

Que hambre tengo yo I am so hungry 

Translation 
Model P(f|e) 

Language 
Model P(e) 

Decoding algorithm 
argmax P(f|e) * P(e) 
     e 

What hunger have I, 
Hungry I am so, 
I am so hungry, 
Have I that hunger … 

Fidelity Fluency 

Alignments 
We can factor the translation model P(f | e ) 
by identifying alignments (correspondences) 
between words in f and words in e 

Japan 
shaken 

by 
two 

new 
quakes 

Le 
Japon 
secoué 
par 
deux 
nouveaux 
séismes 

Japan 
shaken 

by 
two 

new 
quakes 

Le
 

Ja
po

n 
se

co
ué

 
pa

r 
de

ux
 

no
uv

ea
ux

 
sé

is
m

es
 

�spurious� 
word 

Alignments: harder 

And 
the 

program 
has 

been 
implemented 

Le 
programme 
a 
été 
mis 
en 
application 

�zero fertility� word 
not translated 

And 
the 

program 
has 

been 
implemented 

Le
 

pr
og

ra
m

m
e 

a ét
é 

m
is

 
en

 
ap

pl
ic

at
io

n 

one-to-many 
alignment 

!   First step in traditional machine translation is to find alignments or 
translational matchings between the two sentences, i.e., predict which 
words/phrases in French align to which words/phrases in English. 

!   Challenging problem: e.g., some words may not have any alignments: 
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Pioneered at IBM in the early 1990s 
 
Let’s make a probabilistic model of translation 
P(e | f) 
 
Suppose f is de rien 
P(you’re welcome | de rien)  = 0.45 
P(nothing | de rien)    = 0.13 
P(piddling | de rien)   = 0.01 
P(underpants | de rien)   = 0.000000001 

Hieroglyphs 

Statistical Solution 

•  Parallel Texts 
– Rosetta Stone 

Demotic 
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Statistical Solution 

–  Instruction Manuals 
–  Hong Kong/Macao 

Legislation 
–  Canadian Parliament 

Hansards 
–  United Nations Reports 
–  Official Journal 

of the European 
Communities 

–  Translated news 

•  Parallel Texts Hmm, every time one sees  
“banco”, translation is  
�bank” or “bench” …   
If it’s “banco de…”, it 
always becomes “bank”,  
never “bench”… 

A Division of Labor 

Spanish Broken 
English 

English 

Spanish/English 
Bilingual Text 

English 
Text 

Statistical Analysis Statistical Analysis 

Que hambre tengo yo I am so hungry 

Translation 
Model P(f|e) 

Language 
Model P(e) 

Decoding algorithm 
argmax P(f|e) * P(e) 
     e 

What hunger have I, 
Hungry I am so, 
I am so hungry, 
Have I that hunger … 

Fidelity Fluency 

Alignments 
We can factor the translation model P(f | e ) 
by identifying alignments (correspondences) 
between words in f and words in e 

Japan 
shaken 

by 
two 

new 
quakes 

Le 
Japon 
secoué 
par 
deux 
nouveaux 
séismes 

Japan 
shaken 

by 
two 

new 
quakes 

Le
 

Ja
po

n 
se

co
ué

 
pa

r 
de

ux
 

no
uv

ea
ux

 
sé

is
m

es
 

�spurious� 
word 

Alignments: harder 

And 
the 

program 
has 

been 
implemented 

Le 
programme 
a 
été 
mis 
en 
application 

�zero fertility� word 
not translated 

And 
the 

program 
has 

been 
implemented 

Le
 

pr
og

ra
m

m
e 

a ét
é 

m
is

 
en

 
ap

pl
ic

at
io

n 

one-to-many 
alignment 

!   One word in the source sentence might align to several words in the 
target sentence: 
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Alignments: harder 

The 
balance 

was 
the 

territory 
of 

the 
aboriginal 

people 

Le 
reste 
 
appartenait 
 
aux 
 
autochtones 

many-to-one 
alignments 

The 
balance 

was 
the 

territory 

of 
the 

aboriginal 
people 

 L
e 

re
st

e 

ap
pa

rte
na

it 
au

x 

au
to

ch
to

ne
s 

Alignments: hardest 

The 
poor 
don’t 
have 

any 
money 

Les 
pauvres 
sont 
démunis 

many-to-many 
alignment 

The 
poor 

don�t 
have 

any 

money 

Le
s 

pa
uv

re
s 

so
nt

 
dé

m
un

is
 

phrase 
alignment 

Alignment as a vector 

Mary 
did 
not 

slap 
 
 

the 
green 
witch 

1 
2 
3 
4 
 
 

5 
6 
7 

Maria 
no 
daba 
una 
botefada 
a 
la 
bruja 
verde 

1 
2 
3 
4 
5 
6 
7 
8 
9 

i j 

1 
3 
4 
4 
4 
0 
5 
7 
6 

aj=i 
•  used in all IBM models 
•  a is vector of length J 
•  maps indexes j to indexes i 
•  each aj 
 {0, 1 … I} 
•  aj = 0 	 fj is �spurious� 
•  no one-to-many alignments 
•  no many-to-many alignments 
•  but provides foundation for 

phrase-based alignment 

IBM Model 1 generative story 

And 
the 

program 
has 

been 
implemented 

aj 

Le
 

pr
og

ra
m

m
e 

a ét
é 

m
is

 
en

 
ap

pl
ic

at
io

n 

2  3  4  5  6  6  6  

Choose length J for French sentence 

For each j in 1 to J: 

–  Choose aj uniformly from 0, 1, … I 

–  Choose fj by translating eaj 

Given English sentence e1, e2, … eI 

We want to learn 
how to do this 

Want: P(f|e) 

IBM Model 1 parameters 

And 
the 

program 
has 

been 
implemented 

Le
 

pr
og

ra
m

m
e 

a ét
é 

m
is

 
en

 
ap

pl
ic

at
io

n 

2 3 4 5 6 6 6  aj 

Applying Model 1* 

As translation model 

As alignment model 

P(f, a | e) can be used as a translation model or an alignment model 

* Actually, any P(f, a | e), e.g., any IBM model 

Really	hard	:/	

!   Many words in the source sentence might align to a single word in the 
target sentence: 
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any 
money 

Les 
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démunis 

many-to-many 
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don�t 
have 

any 
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pa
uv
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s 

so
nt
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m
un
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phrase 
alignment 

Alignment as a vector 

Mary 
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not 

slap 
 
 

the 
green 
witch 

1 
2 
3 
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5 
6 
7 

Maria 
no 
daba 
una 
botefada 
a 
la 
bruja 
verde 

1 
2 
3 
4 
5 
6 
7 
8 
9 

i j 

1 
3 
4 
4 
4 
0 
5 
7 
6 

aj=i 
•  used in all IBM models 
•  a is vector of length J 
•  maps indexes j to indexes i 
•  each aj 
 {0, 1 … I} 
•  aj = 0 	 fj is �spurious� 
•  no one-to-many alignments 
•  no many-to-many alignments 
•  but provides foundation for 

phrase-based alignment 

IBM Model 1 generative story 

And 
the 

program 
has 

been 
implemented 

aj 

Le
 

pr
og

ra
m

m
e 

a ét
é 

m
is

 
en

 
ap

pl
ic

at
io

n 

2  3  4  5  6  6  6  

Choose length J for French sentence 

For each j in 1 to J: 

–  Choose aj uniformly from 0, 1, … I 

–  Choose fj by translating eaj 

Given English sentence e1, e2, … eI 

We want to learn 
how to do this 

Want: P(f|e) 

IBM Model 1 parameters 

And 
the 

program 
has 

been 
implemented 

Le
 

pr
og

ra
m

m
e 

a ét
é 

m
is

 
en

 
ap

pl
ic

at
io

n 

2 3 4 5 6 6 6  aj 

Applying Model 1* 

As translation model 

As alignment model 

P(f, a | e) can be used as a translation model or an alignment model 

* Actually, any P(f, a | e), e.g., any IBM model 

!   And finally, many words in the source sentence might align to many 
words in the target sentence: 
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• We	could	spend	an	entire	lecture	on	alignment	models

• Not	only	single	words	but	could	use	phrases,	syntax

• Then	consider	reordering	of	translated	phrases

Example	from	Philipp	Koehn

Translation Process

• Task: translate this sentence from German into English

er geht ja nicht nach hause

er geht ja nicht nach hause

he does not go home

• Pick phrase in input, translate

Chapter 6: Decoding 6

!   After learning the word and phrase alignments, the model also needs 
to figure out the reordering, esp. important in language pairs with very 
different orders! 
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Each	phrase	in	source	language	has	many	possible	
translations	resulting	in	large	search	space:

Translation Options

he

er geht ja nicht nach hause

it
, it

, he

is
are

goes
go

yes
is

, of course

not
do not

does not
is not

after
to

according to
in

house
home

chamber
at home

not
is not

does not
do not

home
under house
return home

do not

it is
he will be

it goes
he goes

is
are

is after all
does

to
following
not after

not to

,

not
is not

are not
is not a

• Many translation options to choose from

– in Europarl phrase table: 2727 matching phrase pairs for this sentence
– by pruning to the top 20 per phrase, 202 translation options remain

Chapter 6: Decoding 8

!   After many steps, you get the large ‘phrase table’. Each phrase in the 
source language can have many possible translations in the target 
language, and hence the search space can be combinatorially large! 
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Hard	search	problem	that	also	includes	language	model
Decoding: Find Best Path

er geht ja nicht nach hause

are

it

he
goes

does not

yes

go

to

home

home

backtrack from highest scoring complete hypothesis

Chapter 6: Decoding 15

!   Finally, you decode this hard search problem to find the best 
translation, e.g., using beam search on the several combinatorial 
paths through this phrase table (and also include the language model 
p(e) to rerank) 



Next Week 

!   IBM Alignment Model Details 

!   HMM Alignment Model 

!   Syntactic Models 

!   Neural Machine Translation (NMT) 


