
COMP 790.139 (Fall 2017)
Natural Language Processing

Mohit Bansal

(various slides adapted/borrowed from courses by Dan Klein, JurafskyMartin-SLP3, Manning/Socher, others)

Machine Translation 3 (Neural); Dialogue Models

Statistical Machine Translation Recap

IBM Model 1
!   Alignments: a hidden vector called an alignment specifies which

English source is responsible for each French target word.
!   The first, simplest IBM model treated alignment probabilities as

roughly uniform:

��

IBM�Model�1�(Brown�93)
� Alignments:�a�hidden�vector�called�an�alignment specifies�which�English�

source�is�responsible�for�each�French�target�word.

[Brown et al., 1993]	

IBM Model 2 (Distortion)

[Brown et al., 1993]	

��

IBM�Model�2
� Alignments�tend�to�the�diagonal�(broadly�at�least)

� Other�schemes�for�biasing�alignments�towards�the�diagonal:
� Relative�vs�absolute�alignment
� Asymmetric�distances
� Learning�a�full�multinomial�over�distances

!   The next more advanced model captures the notion of ‘distortion’,
i.e., how far from the diagonal is the alignment

!   Other approaches for biasing alignment towards diagonal include
relative vs absolute alignment, asymmetric distances, and learning
a full multinomial over distances

IBM Models 3/4/5 (Fertility)

[Vogel et al., 1996]	

��

IBM�Models�3/4/5

Mary did not slap the green witch

Mary not slap slap slap the green witch

Mary not slap slap slap NULL the green witch

n(3|slap)

Mary no daba una botefada a la verde bruja

Mary no daba una botefada a la bruja verde

P(NULL)

t(la|the)

d(j|i)

[from Al-Onaizan and Knight, 1998]

Synchronous Tree-Substitution Grammars

��

[Shieber, 2004; Graehl et al., 2008]	

Neural Machine Translation

Traditional Stat. Machine Translation

!   Lots of feature engineering

!   Very complex pipeline systems with multiple steps to generate
the final huge phrase table!

!   Incentive to do it end-to-end and jointly

!   Can neural models be a powerful enough alternative to do so?

Machine Translation Progress

7
NMT slides from ACL 2016 Tutorial (Luong, Cho, Manning)	

Neural Machine Translation

Die Proteste waren am Wochenende eskaliert <EOS> The protests escalated over the weekend

0.2
0.6

-0.1
-0.7
0.1

0.4
-0.6
0.2

-0.3
0.4

0.2
-0.3
-0.1
-0.4
0.2

0.2
0.4
0.1

-0.5
-0.2

0.4
-0.2
-0.3
-0.4
-0.2

0.2
0.6

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.7
0.1

-0.1
0.3

-0.1
-0.7
0.1

-0.2
0.6
0.1
0.3
0.1

-0.4
0.5

-0.5
0.4
0.1

0.2
0.6

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.7
0.1

0.2
-0.2
-0.1
0.1
0.1

0.2
0.6

-0.1
-0.7
0.1

0.1
0.3

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.4
0.1

0.2
-0.8
-0.1
-0.5
0.1

0.2
0.6

-0.1
-0.7
0.1

-0.4
0.6

-0.1
-0.7
0.1

0.2
0.6

-0.1
0.3
0.1

-0.1
0.6

-0.1
0.3
0.1

0.2
0.4

-0.1
0.2
0.1

0.3
0.6

-0.1
-0.5
0.1

0.2
0.6

-0.1
-0.7
0.1

0.2
-0.1
-0.1
-0.7
0.1

0.1
0.3
0.1

-0.4
0.2

0.2
0.6

-0.1
-0.7
0.1

0.4
0.4
0.3

-0.2
-0.3

0.5
0.5
0.9

-0.3
-0.2

0.2
0.6

-0.1
-0.5
0.1

-0.1
0.6

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.7
0.1

0.3
0.6

-0.1
-0.7
0.1

0.4
0.4

-0.1
-0.7
0.1

-0.2
0.6

-0.1
-0.7
0.1

-0.4
0.6

-0.1
-0.7
0.1

-0.3
0.5

-0.1
-0.7
0.1

0.2
0.6

-0.1
-0.7
0.1

The protests escalated over the weekend <EOS>

Modern Sequence Models for NMT
[Sutskever et al. 2014, Bahdanau et al. 2014, et seq.]
following [Jordan 1986] and more closely [Elman 1990]

Sentence
meaning

is built up

Source
sentence

Translation
generated

Feeding in
last word

A deep recurrent neural network

!   Encoder-Decoder RNN models:

Initial Improvement Sources

!   Stacking multiple layers

! Bidirectionality

!   Better memory units, e.g., GRUs

!   Pre-trained language models on tons of monolingual data

!   Ensembles

!   Attention/Alignment models

Alignment/Attention Models

!   Translating longer sentences better, e.g., via attention/alignment
module between encoder and decoder to jointly learn alignments
and translations end-to-end

• Simplified mechanism & more functions:
Bilinear form:
well-adopted.

142

Attention Mechanisms+

Alignment/Attention Models

!   Translating longer sentences better, e.g., via attention/alignment
module between encoder and decoder to jointly learn alignments
and translations end-to-end

Dzmitry Bahdanau, KyungHuyn Cho, and Yoshua Bengio. Neural Machine
Translation by Jointly Learning to Translate and Align. ICLR’15.132

Learning both
translation & alignment

Linguistic Insights in NMT

Constraints on “distortion”
(displacement) and fertility
� Constraints on attention [Cohn, Hoang, Vymolova, Yao,
Dyer & Haffari NAACL 2016; Feng, Liu, Li, Zhou 2016 arXiv;
Yang, Hu, Deng, Dyer, Smola 2016 arXiv].

Linguistic Insights in NMT

Extend to NMT – Linguistic insights

• [Cohn, Hoang, Vymolova, Yao, Dyer, Haffari,
NAACL’16]: position (IBM2) + Markov (HMM) +
fertility (IBM3-5) + alignment symmetry
(BerkeleyAligner).

• [Tu, Lu, Liu, Liu, Li, ACL’16]: linguistic & NN-based
coverage models.

151

Source word fertilityPer source word

Other New Ideas/Improvements

!   Extending vocabulary coverage and handling rare/unseen words

!   Handling more language variations, e.g., via character-level
models to capture morphology

!   Utilize more data resources, e.g., multilingual models (one to many,
many to one, many to many), multi-task learning (combine with
other encoder-decoder tasks with shared sides)

!   Zero-shot translation

!   See ACL 2016 tutorial: https://sites.google.com/site/acl16nmt/

Hybrid Char-Word NMT

ar
X

iv
:1

60
4.

00
78

8v
2

 [c
s.C

L]
 2

3
Ju

n
20

16

Achieving Open Vocabulary Neural Machine Translation
with Hybrid Word-Character Models

Minh-Thang Luong and Christopher D. Manning
Computer Science Department, Stanford University, Stanford, CA 94305

{lmthang,manning}@stanford.edu

Abstract

Nearly all previous work on neural ma-
chine translation (NMT) has used quite
restricted vocabularies, perhaps with a
subsequent method to patch in unknown
words. This paper presents a novel word-
character solution to achieving open vo-
cabulary NMT. We build hybrid systems
that translate mostly at the word level
and consult the character components for
rare words. Our character-level recur-
rent neural networks compute source word
representations and recover unknown tar-
get words when needed. The twofold
advantage of such a hybrid approach is
that it is much faster and easier to train
than character-based ones; at the same
time, it never produces unknown words
as in the case of word-based models. On
the WMT’15 English to Czech translation
task, this hybrid approach offers an ad-
dition boost of +2.1−11.4 BLEU points
over models that already handle unknown
words. Our best system achieves a new
state-of-the-art result with 20.7 BLEU
score. We demonstrate that our character
models can successfully learn to not only
generate well-formed words for Czech,
a highly-inflected language with a very
complex vocabulary, but also build correct
representations for English source words.

1 Introduction

Neural Machine Translation (NMT) is a sim-
ple new architecture for getting machines to
translate. At its core, NMT is a single
deep neural network that is trained end-to-end
with several advantages such as simplicity and
generalization. Despite being relatively new,

Figure 1: Hybrid NMT – example of a word-
character model for translating “a cute cat” into
“un joli chat”. Hybrid NMT translates at the word
level. For rare tokens, the character-level compo-
nents build source representations and recover tar-
get <unk>. “_” marks sequence boundaries.

NMT has already achieved state-of-the-art trans-
lation results for several language pairs such
as English-French (Luong et al., 2015b), English-
German (Jean et al., 2015a; Luong et al., 2015a;
Luong and Manning, 2015), and English-Czech
(Jean et al., 2015b).

While NMT offers many advantages over tra-
ditional phrase-based approaches, such as small
memory footprint and simple decoder implemen-
tation, nearly all previous work in NMT has used
quite restricted vocabularies, crudely treating all
other words the same with an <unk> symbol.
Sometimes, a post-processing step that patches
in unknown words is introduced to alleviate this

[Luong and Manning, 2016]	

Char-level NMT with CNN Encoder

[Lee et al., 2016; Gehring et al., 2016]	

_ _ T h e s e c o n d p e r s o n _ _

Single-layer	Convolution
+	ReLU

Max	Pooling	
with	Stride	5

Four-layer	
Highway	Network

Single-layer
Bidirectional	GRU

Character
Embeddingsℝ#×%&	

ℝ()×(%&+,-#)	

ℝ/×%&	

ℝ/×(%& 0⁄)	

ℝ/×(%& 0⁄)	

Segment	
Embeddings

Figure 1: Encoder architecture schematics. Underscore denotes padding. A dotted vertical line delimits each segment.
The stride of pooling s is 5 in the diagram.

bank F = {f1, . . . , fm} where f

i

= Rd

c

⇥i⇥n

i is
a collection of n

i

filters of width i. Our model
uses m = 8, hence extracts character n-grams up
to 8 characters long. Outputs from all the filters
are stacked upon each other, giving a single repre-
sentation Y 2 RN⇥T

x , where the dimensionality
of each column is given by the total number of
filters N =

P
m

i=1 ni

. Finally, rectified linear
activation (ReLU) is applied elementwise to this
representation.

Max pooling with stride The output from the con-
volutional layer is first split into segments of width
s, and max-pooling over time is applied to each seg-
ment with no overlap. This procedure selects the
most salient features to give a segment embedding.
Each segment embedding is a summary of meaning-
ful character n-grams occurring in a particular (over-
lapping) subsequence in the source sentence. Note
that the rightmost segment (above ‘on’) in Figure 1
may capture ‘son’ (the filter in green) although ‘s’
occurs in the previous segment. In other words, our
segments are overlapping as opposed to in word- or
subword-level models with hard segmentation.

Segments act as our internal linguistic unit from
this layer and above: the attention mechanism, for
instance, attends to each source segment instead of
source character. This shortens the source repre-
sentation s-fold: Y

0
2 RN⇥(T

x

/s)
. Empirically, we

found using smaller s leads to better performance

at increased training time. We chose s = 5 in
our experiments as it gives a reasonable balance
between the two.

Highway network A sequence of segment embed-
dings from the max pooling layer is fed into a high-
way network (Srivastava et al., 2015). Highway net-
works are shown to significantly improve the qual-
ity of a character-level language model when used
with convolutional layers (Kim et al., 2015). A high-
way network transforms input x with a gating mech-
anism that adaptively regulates information flow:

y = g � ReLU(W1x+ b1) + (1� g)� x,

where g = �((W2x + b2)). We apply this to each
segment embedding individually.

Recurrent layer Finally, the output from the
highway layer is given to a bidirectional GRU from
§2, using each segment embedding as input.

Subword-level encoder Unlike a subword-level
encoder, our model does not commit to a specific
choice of segmentation; it is instead trained to
consider every possible character pattern and extract
only the most meaningful ones. Therefore, the
definition of segmentation in our model is dynamic
unlike subword-level encoders. During training,
the model finds the most salient character patterns
in a sentence via max-pooling, and the character

!   Later extended to convolutions for both encoder and decoder!

Google’s Zero-Shot Machine Translation

[Johnson et al., 2016]	

!   Play above gif video at
https://research.googleblog.com/2016/11/zero-shot-translation-with-googles.html

Google’s Zero-Shot Machine Translation

[Johnson et al., 2016]	

Figure 1: The model architecture of the Multilingual GNMT system. In addition to what is described in [29],
our input has an artificial token to indicate the required target language. In this example, the token “<2es>”
indicates that the target sentence is in Spanish, and the source sentence is reversed as a processing step. For
most of our experiments we also used direct connections between the encoder and decoder although we later
found out that the e�ect of these connections is negligible (however, once you train with those they have to
be present for inference as well). The rest of the model architecture is the same as in [29].

4 Experiments and Results
In this section, we apply our proposed method to train multilingual models in several di�erent configurations.
Since we can have models with either single or multiple source/target languages we test three interesting
cases for mapping languages:

• many source languages to one target language (many to one),

• one source language to many target languages (one to many), and

• many source languages to many target languages (many to many).

As already discussed in Section 2, other models have been used to explore some of these cases already, but
for completeness we apply our technique to these interesting use cases again to give a full picture of the
e�ectiveness of our approach.

We will also show results and discuss benefits of bringing together many (un)related languages in a single
large-scale model trained on production data. Finally, we will present our findings on zero-shot translation
where the model learns to translate between pairs of languages for which no explicit parallel examples existed
in the training data, and show results of experiments where adding additional data improves zero-shot
translation quality further.

4.1 Datasets, Training Protocols and Evaluation Metrics
For WMT, we train our models on the WMT’14 English(En)æFrench(Fr) and the WMT’14 EnglishæGerman(De)
datasets. In both cases, we use newstest2014 as the test sets to be able to compare against previous
work [19, 24, 31, 29]. For WMT FræEn and DeæEn we use newstest2014 and newstest2015 as test sets.
Despite training on WMT’14 data, which is somewhat smaller than WMT’15, we test our DeæEn model on
newstest2015, similar to [18]. The combination of newstest2012 and newstest2013 is used as the development
set.

4

Dialogue Models

Examples

2 CHAPTER 29 • DIALOG SYSTEMS AND CHATBOTS

also often attempts to pass various forms of the Turing test (introduced in Chapter
1). Yet starting from the very first system, ELIZA (Weizenbaum, 1966), chatbots
have also been used for practical purposes, such as testing theories of psychological
counseling.

Note that the word ‘chatbot’ is often used in the media and in industry as a
synonym for conversational agent. In this chapter we will follow the common usage
in the natural language processing community, limiting the designation chatbot to
this second subclass of systems designed for extended, casual conversation.

Let’s see some examples of dialog systems. One dimension of difference across
systems is how many turns they can deal with. A dialog consists of multiple turns,turn

each a single contribution to the dialog (the terminology is as if dialog is a game in
which I take a turn, then you take a turn, then me, and so on). A turn can consist
of a sentence, although it might be as short as a single word or as long as multiple
sentences. The simplest such systems generally handle a single turn from the user,
acting more like question-answering or command-and-control systems. This is espe-
cially common with digital assistants. For example Fig. 29.1 shows screen captures
from an early version of Apple’s Siri personal assistant from 2014, demonstrating
this kind of single-query behavior.

(a) (b)

Figure 29.1 Two sets of interactions with Siri in 2014. (a) A question (”Find restaurants near me”) returns
restaurants, but the system was unable to interpret a follow-up question (“Are any of them Italian?”). (b) An
alternative followup (“Tell me more about the second one”) similarly fails. This early system’s confusion at
follow-up questions suggests that it is mainly designed for a single interaction.

By contrast, Fig. 29.2 shows that a 2017 version of the Siri digital assistant can
handle slightly longer dialogs, handling a second turn with a follow-up question.

While spoken dialogs with mobile phone digital assistants tend to be short, some
tasks do require longer dialogs. One such task is travel planning and management,
a key concern of dialog systems since the very influential GUS system for planning
airline travel (Bobrow et al., 1977); we’ll see an example in the next section.

Dialogue systems can even be used for much more complex domains like au-
tomatic tutoring. Figure 29.3 shows part of a dialog from the adaptive ITSPOKE
dialog system (Forbes-Riley and Litman, 2011). In this example the system detects
the hesitancy of the student’s first response (“Is it 19.6 m/s?”), and, even though the
answer is correct, decides to explain the answer and ask a follow-up question before
moving on.

Finally, conversational agents can be purely for fun, like the agents designed for
simple chit-chat like Cleverbot, an IR-based chatbot capable of carrying on the kinds

[Jurafsky SLP3 Book Chapter 29]	

Examples
3

(a) (b)

Figure 29.2 The same follow-up questions that Siri couldn’t answer in 2014 receive appropriate responses
when posed to Siri in 2017.

Tutor: What will the velocity of the object be a second after that (where the initial
velocity is 9.8 m/s and the acceleration is 9.8 m/s2)?

Student: Is it 19.6 m/s?
Tutor: Good. A second later, its velocity will be 9.8m/s + 9/8 m/s = 19.6 m/s This is

because its acceleration tells us that every second, its velocity increases by 9.8
m/s. So what’ll its velocity be, a second after that?

Student: Um. I’m thinking. 29.4 m/s
Tutor: Right. Now back to the man and his keys. We’ve shown that they both have an

acceleration of 9.8 m/ss. So, how do their velocities compare with each other, at
every second during the fall?

Figure 29.3 The tutoring domain: An excerpt from a tutorial interaction between a physics
student and the ITSPOKE system of Forbes-Riley and Litman (2011) based on the Why2-
Atlas text-based tutoring system (VanLehn et al., 2002).

of conversations shown in Fig. 29.4.

User: Do you like Doctor Who?
Cleverbot: Yes, so funny.
User: What’s your favorite show?
Cleverbot: I don’t have one.
User: What’s your name?
Cleverbot: Jason I already told you.
User: No your real name.
Cleverbot: Stephanie IS my real name.
User: I thought it was Jason?
Cleverbot: How did you come to that conclusion.
User: Because you said so.
Cleverbot: I have to do my homework.
Figure 29.4 Chatbots: A conversation between a user and Cleverbot, an IR-based chatbot
(Carpenter, 2017).

We begin in the next section with chatbots, introducing the three major chatbot
architectures: rule-based systems, information retrieval systems, and transduction
models. We then turn to task-oriented dialog, introducing the frame-based architec-
ture (the GUS architecture) that underlies most modern task-based dialog systems,
the VoiceXML system that is a simple industrial instantiation of the architecture,

Examples

3

(a) (b)

Figure 29.2 The same follow-up questions that Siri couldn’t answer in 2014 receive appropriate responses
when posed to Siri in 2017.

Tutor: What will the velocity of the object be a second after that (where the initial
velocity is 9.8 m/s and the acceleration is 9.8 m/s2)?

Student: Is it 19.6 m/s?
Tutor: Good. A second later, its velocity will be 9.8m/s + 9/8 m/s = 19.6 m/s This is

because its acceleration tells us that every second, its velocity increases by 9.8
m/s. So what’ll its velocity be, a second after that?

Student: Um. I’m thinking. 29.4 m/s
Tutor: Right. Now back to the man and his keys. We’ve shown that they both have an

acceleration of 9.8 m/ss. So, how do their velocities compare with each other, at
every second during the fall?

Figure 29.3 The tutoring domain: An excerpt from a tutorial interaction between a physics
student and the ITSPOKE system of Forbes-Riley and Litman (2011) based on the Why2-
Atlas text-based tutoring system (VanLehn et al., 2002).

of conversations shown in Fig. 29.4.

User: Do you like Doctor Who?
Cleverbot: Yes, so funny.
User: What’s your favorite show?
Cleverbot: I don’t have one.
User: What’s your name?
Cleverbot: Jason I already told you.
User: No your real name.
Cleverbot: Stephanie IS my real name.
User: I thought it was Jason?
Cleverbot: How did you come to that conclusion.
User: Because you said so.
Cleverbot: I have to do my homework.
Figure 29.4 Chatbots: A conversation between a user and Cleverbot, an IR-based chatbot
(Carpenter, 2017).

We begin in the next section with chatbots, introducing the three major chatbot
architectures: rule-based systems, information retrieval systems, and transduction
models. We then turn to task-oriented dialog, introducing the frame-based architec-
ture (the GUS architecture) that underlies most modern task-based dialog systems,
the VoiceXML system that is a simple industrial instantiation of the architecture,

Examples

3

(a) (b)

Figure 29.2 The same follow-up questions that Siri couldn’t answer in 2014 receive appropriate responses
when posed to Siri in 2017.

Tutor: What will the velocity of the object be a second after that (where the initial
velocity is 9.8 m/s and the acceleration is 9.8 m/s2)?

Student: Is it 19.6 m/s?
Tutor: Good. A second later, its velocity will be 9.8m/s + 9/8 m/s = 19.6 m/s This is

because its acceleration tells us that every second, its velocity increases by 9.8
m/s. So what’ll its velocity be, a second after that?

Student: Um. I’m thinking. 29.4 m/s
Tutor: Right. Now back to the man and his keys. We’ve shown that they both have an

acceleration of 9.8 m/ss. So, how do their velocities compare with each other, at
every second during the fall?

Figure 29.3 The tutoring domain: An excerpt from a tutorial interaction between a physics
student and the ITSPOKE system of Forbes-Riley and Litman (2011) based on the Why2-
Atlas text-based tutoring system (VanLehn et al., 2002).

of conversations shown in Fig. 29.4.

User: Do you like Doctor Who?
Cleverbot: Yes, so funny.
User: What’s your favorite show?
Cleverbot: I don’t have one.
User: What’s your name?
Cleverbot: Jason I already told you.
User: No your real name.
Cleverbot: Stephanie IS my real name.
User: I thought it was Jason?
Cleverbot: How did you come to that conclusion.
User: Because you said so.
Cleverbot: I have to do my homework.
Figure 29.4 Chatbots: A conversation between a user and Cleverbot, an IR-based chatbot
(Carpenter, 2017).

We begin in the next section with chatbots, introducing the three major chatbot
architectures: rule-based systems, information retrieval systems, and transduction
models. We then turn to task-oriented dialog, introducing the frame-based architec-
ture (the GUS architecture) that underlies most modern task-based dialog systems,
the VoiceXML system that is a simple industrial instantiation of the architecture,

Rule-based Chatbots (e.g., ELIZA)

4 CHAPTER 29 • DIALOG SYSTEMS AND CHATBOTS

and information on designing and evaluating these systems.

29.1 Chatbots

Chatbots are systems that can carry on extended conversations with the goal ofchatbot

mimicking the unstructured conversational or ‘chats’ characteristic of human-human
interaction,

These systems often have an entertainment value, such as Microsoft’s ’XioaIce’
(Little Bing ✏∞) system, which chats with people on text messaging platforms.
Yet starting from the very first system, ELIZA (Weizenbaum, 1966), chatbots have
also been used for practical purposes, such as testing theories of psychological coun-
seling.

Like practically everything else in language processing, chatbot architectures
fall into two classes: rule-based systems and corpus-based systems. Rule-based
systems include the early influential ELIZA and PARRY systems. Corpus-based
systems mine large datasets of human-human conversations, which can be done by
using information retrieval (IR-based systems simply copy a human’s response from
a previous conversation) or by using a machine translation paradigm such as neural
network sequence-to-sequence systems, to learn to map from a user utterance to a
system response.

29.1.1 Rule-based chatbots: ELIZA and PARRY
ELIZA (Weizenbaum, 1966) is the most important chatbot dialog system in the his-
tory of the field, and so we take some time here to describe its algorithm in detail.
ELIZA was designed to simulate a Rogerian psychologist, based on a branch of
clinical psychology whose methods involve drawing the patient out by reflecting pa-
tient’s statements back at them. Rogerian psychology is the rare type of conversation
in which, as Weizenbaum points out, one can “assume the pose of knowing almost
nothing of the real world”. If a patient says “I went for a long boat ride” and the
psychiatrist says “Tell me about boats”, you don’t assume she didn’t know what a
boat is, but rather assume she had some conversational goal. Most chatbots trying to
pass Turing test choose a domain with similar properties.

Let’s look at the most famous ELIZA conversation, excerpted (deleting some
material with ...) from a full interaction given in the original paper:
Men are all alike.

IN WHAT WAY

They’re always bugging us about something or other.

CAN YOU THINK OF A SPECIFIC EXAMPLE

Well my boyfriend made me come here.

YOUR BOYFRIEND MADE YOU COME HERE

He says I’m depressed much of the time.

I AM SORRY TO HEAR YOU ARE DEPRESSED

..

..

WHO ELSE IN YOUR FAMILY TAKES CARE OF YOU?

My father

YOUR FATHER

You are like my father in some ways.

29.1 • CHATBOTS 5

WHAT RESEMBLANCE DO YOU SEE

You are not very aggressive but I think you don’t want me to notice that.

WHAT MAKES YOU THINK I AM NOT AGGRESSIVE

You don’t argue with me.

WHY DO YOU THINK I DON’T ARGUE WITH YOU

You are afraid of me.

DOES IT PLEASE YOU TO BELIEVE I’M AFRAID OF YOU

My father is afraid of everybody.

WHAT ELSE COMES TO MIND WHEN YOU THINK OF YOUR FATHER

Bullies.

DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR BOYFRIEND MADE YOU COME HERE

As we summarized briefly in Chapter 1, ELIZA worked by pattern/transform
rules like the following one:
(0 YOU 0 ME) [pattern]
->
(WHAT MAKES YOU THINK I 3 YOU) [transform]

In the ELIZA pattern, 0 means Kleene*, and in the transform rules the numbers
are the index of the constituent in the pattern. Thus the number 3 refers to the second
0 in the first pattern. This rule would transfer
You hate me

into:
WHAT MAKES YOU THINK I HATE YOU

Each ELIZA pattern/rule is linked to a keyword that might occur in a user sen-
tence.

The architecture is summarized in Fig. 29.5.

function ELIZA GENERATOR(user sentence) returns response

Find the word w in sentence that has the highest keyword rank
if w exists

Choose the highest ranked rule r for w that matches sentence
response Apply the transform in r to sentence
if w = ’my’

future Apply a transformation from the ‘memory’ rule list to sentence
Push future onto memory stack

else (no keyword applies)
either

response Apply the transform for the NONE keyword to sentence
or

response Pop the top response from the memory stack
return(response)

Figure 29.5 A simplified sketch of the ELIZA algorithm. The power of the algorithm come
from the particular transforms associated with each keyword.

Keywords are associated with a rank, with specific words being more highly
ranked, and more general words ranking lower. Consider the following user sen-
tence:

I know everybody laughed at me

Rule-based Chatbots (e.g., ELIZA)

29.1 • CHATBOTS 5

WHAT RESEMBLANCE DO YOU SEE

You are not very aggressive but I think you don’t want me to notice that.

WHAT MAKES YOU THINK I AM NOT AGGRESSIVE

You don’t argue with me.

WHY DO YOU THINK I DON’T ARGUE WITH YOU

You are afraid of me.

DOES IT PLEASE YOU TO BELIEVE I’M AFRAID OF YOU

My father is afraid of everybody.

WHAT ELSE COMES TO MIND WHEN YOU THINK OF YOUR FATHER

Bullies.

DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR BOYFRIEND MADE YOU COME HERE

As we summarized briefly in Chapter 1, ELIZA worked by pattern/transform
rules like the following one:
(0 YOU 0 ME) [pattern]
->
(WHAT MAKES YOU THINK I 3 YOU) [transform]

In the ELIZA pattern, 0 means Kleene*, and in the transform rules the numbers
are the index of the constituent in the pattern. Thus the number 3 refers to the second
0 in the first pattern. This rule would transfer
You hate me

into:
WHAT MAKES YOU THINK I HATE YOU

Each ELIZA pattern/rule is linked to a keyword that might occur in a user sen-
tence.

The architecture is summarized in Fig. 29.5.

function ELIZA GENERATOR(user sentence) returns response

Find the word w in sentence that has the highest keyword rank
if w exists

Choose the highest ranked rule r for w that matches sentence
response Apply the transform in r to sentence
if w = ’my’

future Apply a transformation from the ‘memory’ rule list to sentence
Push future onto memory stack

else (no keyword applies)
either

response Apply the transform for the NONE keyword to sentence
or

response Pop the top response from the memory stack
return(response)

Figure 29.5 A simplified sketch of the ELIZA algorithm. The power of the algorithm come
from the particular transforms associated with each keyword.

Keywords are associated with a rank, with specific words being more highly
ranked, and more general words ranking lower. Consider the following user sen-
tence:

I know everybody laughed at me

29.1 • CHATBOTS 5

WHAT RESEMBLANCE DO YOU SEE

You are not very aggressive but I think you don’t want me to notice that.

WHAT MAKES YOU THINK I AM NOT AGGRESSIVE

You don’t argue with me.

WHY DO YOU THINK I DON’T ARGUE WITH YOU

You are afraid of me.

DOES IT PLEASE YOU TO BELIEVE I’M AFRAID OF YOU

My father is afraid of everybody.

WHAT ELSE COMES TO MIND WHEN YOU THINK OF YOUR FATHER

Bullies.

DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR BOYFRIEND MADE YOU COME HERE

As we summarized briefly in Chapter 1, ELIZA worked by pattern/transform
rules like the following one:
(0 YOU 0 ME) [pattern]
->
(WHAT MAKES YOU THINK I 3 YOU) [transform]

In the ELIZA pattern, 0 means Kleene*, and in the transform rules the numbers
are the index of the constituent in the pattern. Thus the number 3 refers to the second
0 in the first pattern. This rule would transfer
You hate me

into:
WHAT MAKES YOU THINK I HATE YOU

Each ELIZA pattern/rule is linked to a keyword that might occur in a user sen-
tence.

The architecture is summarized in Fig. 29.5.

function ELIZA GENERATOR(user sentence) returns response

Find the word w in sentence that has the highest keyword rank
if w exists

Choose the highest ranked rule r for w that matches sentence
response Apply the transform in r to sentence
if w = ’my’

future Apply a transformation from the ‘memory’ rule list to sentence
Push future onto memory stack

else (no keyword applies)
either

response Apply the transform for the NONE keyword to sentence
or

response Pop the top response from the memory stack
return(response)

Figure 29.5 A simplified sketch of the ELIZA algorithm. The power of the algorithm come
from the particular transforms associated with each keyword.

Keywords are associated with a rank, with specific words being more highly
ranked, and more general words ranking lower. Consider the following user sen-
tence:

I know everybody laughed at me

IR-based Chatbots

29.1 • CHATBOTS 7

29.1.2 Corpus-based chatbots
Corpus-based chatbots, instead of using hand-built rules, mine conversations of
human-human conversations, or sometimes mine the human responses from human-
machine conversations. Serban et al. (2017) summarizes some such available cor-
pora, such as conversations on chat platforms, on Twitter, or in movie dialog, which
is available in great quantities and has been shown to resemble natural conversation
(Forchini, 2013). Chatbot responses can even be extracted from sentences in corpora
of non-dialog text.

There are two types of corpus-based chatbots: systems based on information re-
trieval, and systems based on supervised machine learning based on sequence trans-
duction.

Like rule-based chatbots (but unlike frame-based dialog systems), most corpus-
based chatbots tend to do very little modeling of the conversational context. Instead
they tend to focus on generating a single response turn that is appropriate given the
user’s immediately previous utterance. For this reason they are often called response
generation systems. Corpus-based chatbots thus have some similarity to questionresponse

generation
answering systems, which focus on single responses while ignoring context or larger
conversational goals.

IR-based chatbots

The principle behind information retrieval based chatbots is to respond to a user’s
turn X by repeating some appropriate turn Y from a corpus of natural (human) text.
The differences across such systems lie in how they choose the corpus, and how they
decide what counts as an human appropriate turn to copy.

A common choice of corpus is to collect databases of human conversations.
These can come from microblogging platforms like Twitter or Sina Weibo (ÆZ).
Another approach is to use corpora of movie dialog. Once a chatbot has been put
into practice, the turns that humans use to respond to the chatbot can be used as
additional conversational data for training.

Given the corpus and the user’s sentence, IR-based systems can use any retrieval
algorithm to choose an appropriate response from the corpus. The two simplest
methods are the following:
1. Return the response to the most similar turn: Given user query q and a con-
versational corpus C, find the turn t in C that is most similar to (q) (for example has
the highest cosine with q) and return the following turn, i.e. the human response to t
in C:

r = response
✓

argmax
t2C

qT t
||q||t||

◆
(29.1)

The idea is that we should look for a turn that most resembles the user’s turn, and
return the human response to that turn (Jafarpour et al. 2009, Leuski and Traum 2011).
2. Return the most similar turn: Given user query q and a conversational corpus
C, return the turn t in C that is most similar to (q) (for example has the highest cosine
with q):

r = argmax
t2C

qT t
||q||t|| (29.2)

The idea here is to directly match the users query q with turns from C, since a
good response will often share words or semantics with the prior turn.

29.1 • CHATBOTS 7

29.1.2 Corpus-based chatbots
Corpus-based chatbots, instead of using hand-built rules, mine conversations of
human-human conversations, or sometimes mine the human responses from human-
machine conversations. Serban et al. (2017) summarizes some such available cor-
pora, such as conversations on chat platforms, on Twitter, or in movie dialog, which
is available in great quantities and has been shown to resemble natural conversation
(Forchini, 2013). Chatbot responses can even be extracted from sentences in corpora
of non-dialog text.

There are two types of corpus-based chatbots: systems based on information re-
trieval, and systems based on supervised machine learning based on sequence trans-
duction.

Like rule-based chatbots (but unlike frame-based dialog systems), most corpus-
based chatbots tend to do very little modeling of the conversational context. Instead
they tend to focus on generating a single response turn that is appropriate given the
user’s immediately previous utterance. For this reason they are often called response
generation systems. Corpus-based chatbots thus have some similarity to questionresponse

generation
answering systems, which focus on single responses while ignoring context or larger
conversational goals.

IR-based chatbots

The principle behind information retrieval based chatbots is to respond to a user’s
turn X by repeating some appropriate turn Y from a corpus of natural (human) text.
The differences across such systems lie in how they choose the corpus, and how they
decide what counts as an human appropriate turn to copy.

A common choice of corpus is to collect databases of human conversations.
These can come from microblogging platforms like Twitter or Sina Weibo (ÆZ).
Another approach is to use corpora of movie dialog. Once a chatbot has been put
into practice, the turns that humans use to respond to the chatbot can be used as
additional conversational data for training.

Given the corpus and the user’s sentence, IR-based systems can use any retrieval
algorithm to choose an appropriate response from the corpus. The two simplest
methods are the following:
1. Return the response to the most similar turn: Given user query q and a con-
versational corpus C, find the turn t in C that is most similar to (q) (for example has
the highest cosine with q) and return the following turn, i.e. the human response to t
in C:

r = response
✓

argmax
t2C

qT t
||q||t||

◆
(29.1)

The idea is that we should look for a turn that most resembles the user’s turn, and
return the human response to that turn (Jafarpour et al. 2009, Leuski and Traum 2011).
2. Return the most similar turn: Given user query q and a conversational corpus
C, return the turn t in C that is most similar to (q) (for example has the highest cosine
with q):

r = argmax
t2C

qT t
||q||t|| (29.2)

The idea here is to directly match the users query q with turns from C, since a
good response will often share words or semantics with the prior turn.

!   Retrieval systems use two major approaches to “extract” the best response
from a dialogue corpus, given the new, test-time user utterance:

!   1) Return Response of Most Similar Turn: Find conversation turn t (in
corpus C) which is most similar to the given user utterance/query q, and
return the following turn/response r of that most-similar utterance:

!   2) Return Most Similar Turn: Instead of returning the following turn of the
most similar utterance, we return this most similar utterance itself, with the
intuition that a good response often shared words/semantics with the prior
turn:

Seq-to-Seq Chatbots

8 CHAPTER 29 • DIALOG SYSTEMS AND CHATBOTS

In each case, any similarity function can be used, most commonly cosines com-
puted either over words (using tf-idf) or over embeddings.

Although returning the response to the most similar turn seems like a more in-
tuitive algorithm, returning the most similar turn seems to work better in practice,
perhaps because selecting the response adds another layer of indirection that can
allow for more noise (Ritter et al. 2011, Wang et al. 2013).

The IR-based approach can be extended by using more features than just the
words in the q (such as words in prior turns, or information about the user), and
using any full IR ranking approach. Commercial implementations of the IR-based
approach include Cleverbot (Carpenter, 2017) and Microsoft’s ’XioaIce’ (Little Bing
✏∞) system (Microsoft,).

Instead of just using corpora of conversation, the IR-based approach can be used
to draw responses from narrative (non-dialog) text. For example, the pioneering
COBOT chatbot (Isbell et al., 2000) generated responses by selecting sentences from
a corpus that combined the Unabomber Manifesto by Theodore Kaczynski, articles
on alien abduction, the scripts of “The Big Lebowski” and “Planet of the Apes”.
Chatbots that want to generate informative turns such as answers to user questions
can use texts like Wikipedia to draw on sentences that might contain those answers
(Yan et al., 2016).

Sequence to sequence chatbots

An alternate way to use a corpus to generate dialog is to think of response generation
as a task of transducing from the user’s prior turn to the system’s turn. basically the
machine learning version of Eliza; machine learning from a corpus to transduce a
question to an answer.

This idea was first developed by using phrase-based machine translation (Ritter
et al., 2011) to translate a user turn to a system response. It quickly became clear,
however, that the task of response generation was too different from machine transla-
tion. In machine translation words or phrases in the source and target sentences tend
to align well with each other; but a user utterance may share no words or phrases
with a coherent response.

Instead, (roughly contemporaneously by Shang et al. 2015, Vinyals and Le 2015,
and Sordoni et al. 2015) transduction models for response generation were modeled
instead using sequence to sequence (seq2seq) models (Chapter 25).

How are you ?

I’m fine . EOS

Encoding Decoding

EOS I’m fine .

Figure 29.6 A sequence to sequence model for neural response generation in dialog.

A number of modifications are required to the basic seq2seq model to adapt it for
the task of response generation. For example basic seq2seq models have a tendency
to produce predictable but repetitive and therefore dull responses like “I’m OK” or
“I don’t know” that shut down the conversation. This can be addressed by changing
the objective function for seq2seq model training to a mutual information objective,
or by modifying a beam decoder to keep more diverse responses in the beam (Li

[Shang et al. 2015; Vinyals and Le, 2015; Sordoni et al., 2015]	

Evaluating Chatbots

!   Automatic metrics based on word/phrase overlap not very useful
because so many responses might be correct/appropriate for
chitchat

!   Human evaluation most meaningful/common (but time-consuming)

!   Can’t do slot-filling techniques because this is not task-oriented
dialogue with a specific goal or success metric

!   Engagement or length of conversation in real human-based setup?

!   Some new automatic classification approaches like ADEM [Lowe et
al., 2017] to classify appropriateness of response, and Adversarial
evaluation [Bowman et al., 2016; Kannan and Vinyals, 2016; Li et
al., 2017] to fool a classifier that distinguishes between human and
machine generated responses

Some Advanced Seq-to-Seq Models

!   Hierarchical Recurrent Encoder-Decoder

Figure 1: The computational graph of the HRED architecture for a dialogue composed of three turns. Each utterance is
encoded into a dense vector and then mapped into the dialogue context, which is used to decode (generate) the tokens in the
next utterance. The encoder RNN encodes the tokens appearing within the utterance, and the context RNN encodes the temporal
structure of the utterances appearing so far in the dialogue, allowing information and gradients to flow over longer time spans.
The decoder predicts one token at a time using a RNN. Adapted from Sordoni et al. (2015a).

the advantage that the embedding matrix E may separately
be bootstrapped (e.g. learned) from larger corpora. Analo-
gously, the matrix O 2 Rdh⇥|V | represents the output word
embeddings, where each possible next token is projected
into another dense vector and compared to the hidden state
hn. The probability of seeing token v at position n + 1 in-
creases if its corresponding embedding vector Ov is “near”
the context vector hn. The parameter H is called a recurrent
parameter, because it links hn�1 to hn. All parameters are
learned by maximizing the log-likelihood of the parameters
on a training set using stochastic gradient descent.

Hierarchical Recurrent Encoder-Decoder
Our work extends the hierarchical recurrent encoder-
decoder architecture (HRED) proposed by Sordoni et
al. (2015a) for web query suggestion. In the original frame-
work, HRED predicts the next web query given the queries
already submitted by the user. The history of past submitted
queries is considered as a sequence at two levels: a sequence
of words for each web query and a sequence of queries.
HRED models this hierarchy of sequences with two RNNs:
one at the word level and one at the query level. We make
a similar assumption, namely, that a dialogue can be seen
as a sequence of utterances which, in turn, are sequences of
tokens. A representation of HRED is given in Figure 1.

In dialogue, the encoder RNN maps each utterance to an
utterance vector. The utterance vector is the hidden state
obtained after the last token of the utterance has been pro-
cessed. The higher-level context RNN keeps track of past ut-
terances by processing iteratively each utterance vector. Af-
ter processing utterance Um, the hidden state of the context
RNN represents a summary of the dialogue up to and includ-

ing turn m, which is used to predict the next utterance Um+1.
This hidden state can be interpreted as the continuous-valued
state of the dialogue system. The next utterance prediction is
performed by means of a decoder RNN, which takes the hid-
den state of the context RNN and produces a probability dis-
tribution over the tokens in the next utterance. The decoder
RNN is similar to the RNN language model (Mikolov et al.
2010), but with the important difference that the prediction
is conditioned on the hidden state of the context RNN. It can
be interpreted as the response generation module of the di-
alogue system. The encoder, context and decoder RNNs all
make use of the GRU hidden unit (Cho et al. 2014). Every-
where else we use the hyperbolic tangent as activation func-
tion. It is also possible to use the maxout activation func-
tion between the hidden state and the projected word em-
beddings of the decoder RNN (Goodfellow et al. 2013). The
same encoder RNN and decoder RNN parameters are used
for every utterance in a dialogue. This helps the model gen-
eralize across utterances. Further details of the architecture
are described by Sordoni et al. (2015a).

For modeling dialogues, we expect the HRED model to be
superior to the standard RNN model for two reasons. First,
because the context RNN allows the model to represent a
form of common ground between speakers, e.g. to represent
topics and concepts shared between the speakers using a dis-
tributed vector representation, which we hypothesize to be
important for building an effective dialogue system (Clark
and Brennan 1991). Second, because the number of com-
putational steps between utterances is reduced. This makes
the objective function more stable w.r.t. the model parame-
ters, and helps propagate the training signal for first-order
optimization methods (Sordoni et al. 2015a).

[Serban et al., 2015]	

Some Advanced Seq-to-Seq Models

!   Attention-RNN Language Model

[Mei et al., 2016]	

Output

(a) RNN seq2seq (encoder-decoder) model (b) RNN language model

Attention

RNN

(c) Attention seq2seq (encoder-decoder) model (d) Attention language model

Figure 1: Comparing RNN language models to RNN sequence-to-sequence model, with and without attention.

conversational corpora that are becoming increasingly avail-
able, or fail to produce novel natural language responses.

Ritter, Cherry, and Dolan (2011) formulate dialogue re-
sponse generation as a statistical phrase-based machine
translation problem, which requires no explicit hand-crafted
rules. The recent success of RNNs in statistical machine
translation (Sutskever, Vinyals, and Lee 2014; Bahdanau,
Cho, and Bengio 2015) has inspired the application of such
models to the field of dialogue modeling. Vinyals and Le
(2015) and Shang, Lu, and Li (2015) employ an RNN to gen-
erate responses in human-to-human conversations by treat-
ing the conversation history as one single temporally ordered
sequence. In such models, the distant relevant context in the
history is difficult to recall. Some efforts have been made
to overcome this limitation. Sordoni et al. (2015) separately
encode the most recent message and all the previous context
using a bag-of-words representation, which is decoded using
an RNN. This approach equates the distance of each word
in the generated output to all the words in the conversation
history, but loses the temporal information of the history.
Serban et al. (2016) design a hierarchical model that stacks
an utterance-level RNN on a token-level RNN, where the
utterance-level RNN reduces the number of computational
steps between utterances. Wen et al. (2015) and Wen et al.
(2016) improve spoken dialog systems via multi-domain and
semantically conditioned neural networks on dialog act rep-
resentations and explicit slot-value formulations.

Our work explores the ability of recurrent neural network
language models (Bengio et al. 2003; Mikolov 2010) to in-
terpret and generate natural language conversations while

still maintaining a relatively simple architecture. We show
that a language model approach outperforms the sequence-
to-sequence model at dialogue modeling. Recently, Tran,
Bisazza, and Monz (2016) demonstrated that the neural at-
tention mechanism can improve the effectiveness of a neural
language model. We propose an attention-based neural lan-
guage model for dialogue modeling that learns how a con-
versation evolves as a whole, rather than only how the most
recent response is generated, and that also reduces the num-
ber of computations between the current recurrence step and
the distant relevant context in the conversation history.

The attention mechanism in our model has the additional
benefit of favoring words that have semantic association
with salient words in the conversation history, which pro-
motes the coherence of the topics in the continued dialogue.
This is important when conversation participants inherently
want to maintain the topic of the discussion. Some past
studies have equated coherence with propositional consis-
tency (Goldberg 1983), while others see it as a summary
impression (Sanders 1983). Our work falls in the cate-
gory of viewing coherence as topic continuity (Crow 1983;
Sigman 1983). Similar objectives, i.e., generating dia-
logue responses with certain properties, have been addressed
recently, such as promoting response diversity (Li et al.
2016a), enhancing personal consistency (Li et al. 2016b),
and improving specificity (Yao et al. 2016). Concurrent with
this work, Luan, Ji, and Ostendorf (2016) improve topic
consistency by feeding into the model the learned LDA-
based topic representations. We show that the simple atten-
tion neural language model significantly outperforms such

Some Advanced Seq-to-Seq Models

!   Persona-based Language Models

[Li et al., 2016]	

EOS Rob

W
or

d
em

be
dd

in
gs

(5
0k

)

england
londonu.s.

great
good

stay

live okaymonday
tuesday

Sp
ea

ke
r e

m
be

dd
in

gs
(7

0k
)

Rob_712

where do you live

in

in Rob england Rob

england

. Rob

. EOS
Source Target

skinnyoflynny2

Tomcoatez
Kush_322

D_Gomes25

Dreamswalls

kierongillen5

TheCharlieZ

The_Football_Bar
This_Is_Artful

DigitalDan285

Jinnmeow3

Bob_Kelly2

Figure 1: Illustrative example of the Speaker Model introduced in this work. Speaker IDs close in embedding space tend to
respond in the same manner. These speaker embeddings are learned jointly with word embeddings and all other parameters of
the neural model via backpropagation. In this example, say Rob is a speaker clustered with people who often mention England
in the training data, then the generation of the token ‘england’ at time t = 2 would be much more likely than that of ‘u.s.’. A
non-persona model would prefer generating in the u.s. if ‘u.s.’ is more represented in the training data across all speakers.

4.3 Speaker-Addressee Model

A natural extension of the Speaker Model is a
model that is sensitive to speaker-addressee inter-
action patterns within the conversation. Indeed,
speaking style, register, and content does not vary
only with the identity of the speaker, but also with
that of the addressee. For example, in scripts for
the TV series Friends used in some of our exper-
iments, the character Ross often talks differently
to his sister Monica than to Rachel, with whom
he is engaged in an on-again off-again relationship
throughout the series.

The proposed Speaker-Addressee Model oper-
ates as follows: We wish to predict how speaker i
would respond to a message produced by speaker j.
Similarly to the Speaker model, we associate each
speaker with a K dimensional speaker-level repre-
sentation, namely v

i

for user i and v

j

for user j. We
obtain an interactive representation V

i,j

2 RK⇥1

by linearly combining user vectors v

i

and v

j

in
an attempt to model the interactive style of user i
towards user j,

V

i,j

= tanh(W1 · vi +W2 · v2) (7)

where W1,W2 2 RK⇥K . V

i,j

is then linearly in-
corporated into LSTM models at each step in the
target:

2

664

i

t

f

t

o

t

l

t

3

775 =

2

664

�

�

�

tanh

3

775W ·

2

4
h

t�1

e

s

t

V

i,j

3

5 (8)

c

t

= f

t

· c
t�1 + i

t

· l
t

(9)

h

s

t

= o

t

· tanh(c
t

) (10)

V

i,j

depends on both speaker and addressee and
the same speaker will thus respond differently to
a message from different interlocutors. One po-
tential issue with Speaker-Addressee modelling is
the difficulty involved in collecting a large-scale
training dataset in which each speaker is involved
in conversation with a wide variety of people.
Like the Speaker Model, however, the Speaker-
Addressee Model derives generalization capabil-
ities from speaker embeddings. Even if the two
speakers at test time (i and j) were never involved
in the same conversation in the training data, two
speakers i

0 and j

0 who are respectively close in
embeddings may have been, and this can help mod-
elling how i should respond to j.

4.4 Decoding and Reranking
For decoding, the N-best lists are generated us-
ing the decoder with beam size B = 200. We set a
maximum length of 20 for the generated candidates.
Decoding operates as follows: At each time step,
we first examine all B ⇥B possible next-word can-
didates, and add all hypothesis ending with an EOS
token to the N-best list. We then preserve the top-B
unfinished hypotheses and move to the next word
position.

To deal with the issue that SEQ2SEQ models
tend to generate generic and commonplace re-
sponses such as I don’t know, we follow Li et al.
(2016) by reranking the generated N-best list using

Frame-based & KB-based Dialog Agents

[Jurafsky SLP3]	

10 CHAPTER 29 • DIALOG SYSTEMS AND CHATBOTS

structure representing the kinds of intentions the system can extract from user sen-
tences. The ontology defines one or more frames, each a collection of slots, andframe

slot defines the values that each slot can take. This frame-based architecture was first
introduced in 1977 in the influential GUS system for travel planning (Bobrow et al.,
1977), and has been astonishingly long-lived, underlying most modern commercial
digital assistants. Figure 29.8 shows a conversation with the original GUS system.

GUS: Hello. My name is GUS. I can help you plan a simple trip by air. Where do you
want to go ?

Client: I want to go to San Diego on May 28
GUS: What time do you want to leave?
Client: I must be in San Diego before 10 am
GUS: Would you like P.S.A. flight 102 that arrives at 9.15 am ?
Client: What is the next flight ?
GUS: Air California flight 310 that leaves at 8.30am and arrives at 10.00am
Client: I’ll take the first one
GUS: In what name should I make a reservation, please?
Client: Dan Bobrow
GUS: I have confirmed the following flight:
Client: P.S.A. flight 102 on Wednesday May 28 from San Jose to San Diego that leaves

at 7.30 am and arrives at 9.15 am.
GUS: What date do you want to return on ?
Client: On Friday in the evening.
GUS: Would you like the flight that leaves at 7.45 pm ?
Client: That’s fine.
GUS: I have confirmed the following flight: P.S.A. flight 307 on Friday May 30 from

San Diego to San Jose that leaves at 7.45 pm and arrives at 9.30 pm Thank you
for calling. Goodbye

Figure 29.8 The travel domain: A transcript of an actual dialog with the GUS system of
Bobrow et al. (1977). P.S.A. and Air California were airlines of that period.

The set of slots in a GUS-style frame specifies what the system needs to know,
and the filler of each slot is constrained to values of a particular semantic type. In
the travel domain, for example, a slot might be of type city (hence take on values
like San Francisco, or Hong Kong) or of type date, airline, or time:

Slot Type
ORIGIN CITY city
DESTINATION CITY city
DEPARTURE TIME time
DEPARTURE DATE date
ARRIVAL TIME time
ARRIVAL DATE date

Types in GUS, as in modern frame-based dialog agents, may have hierarchical
structure; for example the date type in GUS is itself a frame with slots with types
like integer or members of sets of weekday names:

DATE
MONTH NAME
DAY (BOUNDED-INTEGER 1 31)
YEAR INTEGER
WEEKDAY (MEMBER (SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY)]

Frame-based & KB-based Dialog Agents

10 CHAPTER 29 • DIALOG SYSTEMS AND CHATBOTS

structure representing the kinds of intentions the system can extract from user sen-
tences. The ontology defines one or more frames, each a collection of slots, andframe

slot defines the values that each slot can take. This frame-based architecture was first
introduced in 1977 in the influential GUS system for travel planning (Bobrow et al.,
1977), and has been astonishingly long-lived, underlying most modern commercial
digital assistants. Figure 29.8 shows a conversation with the original GUS system.

GUS: Hello. My name is GUS. I can help you plan a simple trip by air. Where do you
want to go ?

Client: I want to go to San Diego on May 28
GUS: What time do you want to leave?
Client: I must be in San Diego before 10 am
GUS: Would you like P.S.A. flight 102 that arrives at 9.15 am ?
Client: What is the next flight ?
GUS: Air California flight 310 that leaves at 8.30am and arrives at 10.00am
Client: I’ll take the first one
GUS: In what name should I make a reservation, please?
Client: Dan Bobrow
GUS: I have confirmed the following flight:
Client: P.S.A. flight 102 on Wednesday May 28 from San Jose to San Diego that leaves

at 7.30 am and arrives at 9.15 am.
GUS: What date do you want to return on ?
Client: On Friday in the evening.
GUS: Would you like the flight that leaves at 7.45 pm ?
Client: That’s fine.
GUS: I have confirmed the following flight: P.S.A. flight 307 on Friday May 30 from

San Diego to San Jose that leaves at 7.45 pm and arrives at 9.30 pm Thank you
for calling. Goodbye

Figure 29.8 The travel domain: A transcript of an actual dialog with the GUS system of
Bobrow et al. (1977). P.S.A. and Air California were airlines of that period.

The set of slots in a GUS-style frame specifies what the system needs to know,
and the filler of each slot is constrained to values of a particular semantic type. In
the travel domain, for example, a slot might be of type city (hence take on values
like San Francisco, or Hong Kong) or of type date, airline, or time:

Slot Type
ORIGIN CITY city
DESTINATION CITY city
DEPARTURE TIME time
DEPARTURE DATE date
ARRIVAL TIME time
ARRIVAL DATE date

Types in GUS, as in modern frame-based dialog agents, may have hierarchical
structure; for example the date type in GUS is itself a frame with slots with types
like integer or members of sets of weekday names:

DATE
MONTH NAME
DAY (BOUNDED-INTEGER 1 31)
YEAR INTEGER
WEEKDAY (MEMBER (SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY)]

10 CHAPTER 29 • DIALOG SYSTEMS AND CHATBOTS

structure representing the kinds of intentions the system can extract from user sen-
tences. The ontology defines one or more frames, each a collection of slots, andframe

slot defines the values that each slot can take. This frame-based architecture was first
introduced in 1977 in the influential GUS system for travel planning (Bobrow et al.,
1977), and has been astonishingly long-lived, underlying most modern commercial
digital assistants. Figure 29.8 shows a conversation with the original GUS system.

GUS: Hello. My name is GUS. I can help you plan a simple trip by air. Where do you
want to go ?

Client: I want to go to San Diego on May 28
GUS: What time do you want to leave?
Client: I must be in San Diego before 10 am
GUS: Would you like P.S.A. flight 102 that arrives at 9.15 am ?
Client: What is the next flight ?
GUS: Air California flight 310 that leaves at 8.30am and arrives at 10.00am
Client: I’ll take the first one
GUS: In what name should I make a reservation, please?
Client: Dan Bobrow
GUS: I have confirmed the following flight:
Client: P.S.A. flight 102 on Wednesday May 28 from San Jose to San Diego that leaves

at 7.30 am and arrives at 9.15 am.
GUS: What date do you want to return on ?
Client: On Friday in the evening.
GUS: Would you like the flight that leaves at 7.45 pm ?
Client: That’s fine.
GUS: I have confirmed the following flight: P.S.A. flight 307 on Friday May 30 from

San Diego to San Jose that leaves at 7.45 pm and arrives at 9.30 pm Thank you
for calling. Goodbye

Figure 29.8 The travel domain: A transcript of an actual dialog with the GUS system of
Bobrow et al. (1977). P.S.A. and Air California were airlines of that period.

The set of slots in a GUS-style frame specifies what the system needs to know,
and the filler of each slot is constrained to values of a particular semantic type. In
the travel domain, for example, a slot might be of type city (hence take on values
like San Francisco, or Hong Kong) or of type date, airline, or time:

Slot Type
ORIGIN CITY city
DESTINATION CITY city
DEPARTURE TIME time
DEPARTURE DATE date
ARRIVAL TIME time
ARRIVAL DATE date

Types in GUS, as in modern frame-based dialog agents, may have hierarchical
structure; for example the date type in GUS is itself a frame with slots with types
like integer or members of sets of weekday names:

DATE
MONTH NAME
DAY (BOUNDED-INTEGER 1 31)
YEAR INTEGER
WEEKDAY (MEMBER (SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY)]

29.2 • FRAME BASED DIALOG AGENTS 11

29.2.1 Control structure for frame-based dialog
The control architecture of frame-based dialog systems is designed around the frame.
The goal is to fill the slots in the frame with the fillers the user intends, and then per-
form the relevant action for the user (answering a question, or booking a flight).
Most frame-based dialog systems are based on finite-state automata that are hand-
designed for the task by a dialog designer.

What city are you leaving from?

Do you want to go from
 <FROM> to <TO> on <DATE>?

Yes

Where are you going?

What date do you want to leave?

Is it a one-way trip?

What date do you want to return?

Do you want to go from <FROM> to <TO>
on <DATE> returning on <RETURN>?

No

No Yes

Yes No

Book the flight

Figure 29.9 A simple finite-state automaton architecture for frame-based dialog.

Consider the very simple finite-state control architecture shown in Fig. 29.9,
implementing a trivial airline travel system whose job is to ask the user for the
information for 4 slots: departure city, a destination city, a time, and whether the trip
is one-way or round-trip. Let’s first associate with each slot a question to ask the
user:

Slot Question
ORIGIN CITY “From what city are you leaving?”
DESTINATION CITY “Where are you going?”
DEPARTURE TIME “When would you like to leave?”
ARRIVAL TIME “When do you want to arrive?”

Figure 29.9 shows a sample dialog manager for such a system. The states of
the FSA correspond to the slot questions, user, and the arcs correspond to actions
to take depending on what the user responds. This system completely controls the
conversation with the user. It asks the user a series of questions, ignoring (or misin-
terpreting) anything that is not a direct answer to the question and then going on to
the next question.

The speaker in control of any conversation is said to have the initiative in theinitiative

conversation. Systems that completely control the conversation in this way are thus
called system-initiative. By contrast, in normal human-human dialog, initiativesystem-

initiative
shifts back and forth between the participants (Bobrow et al. 1977, Walker and Whit-
taker 1990).

The single-initiative finite-state dialog architecture has the advantage that the
system always knows what question the user is answering. This means the system
can prepare the speech recognizer with a language model tuned to answers for this

Frame-based & KB-based Dialog Agents

29.2 • FRAME BASED DIALOG AGENTS 11

29.2.1 Control structure for frame-based dialog
The control architecture of frame-based dialog systems is designed around the frame.
The goal is to fill the slots in the frame with the fillers the user intends, and then per-
form the relevant action for the user (answering a question, or booking a flight).
Most frame-based dialog systems are based on finite-state automata that are hand-
designed for the task by a dialog designer.

What city are you leaving from?

Do you want to go from
 <FROM> to <TO> on <DATE>?

Yes

Where are you going?

What date do you want to leave?

Is it a one-way trip?

What date do you want to return?

Do you want to go from <FROM> to <TO>
on <DATE> returning on <RETURN>?

No

No Yes

Yes No

Book the flight

Figure 29.9 A simple finite-state automaton architecture for frame-based dialog.

Consider the very simple finite-state control architecture shown in Fig. 29.9,
implementing a trivial airline travel system whose job is to ask the user for the
information for 4 slots: departure city, a destination city, a time, and whether the trip
is one-way or round-trip. Let’s first associate with each slot a question to ask the
user:

Slot Question
ORIGIN CITY “From what city are you leaving?”
DESTINATION CITY “Where are you going?”
DEPARTURE TIME “When would you like to leave?”
ARRIVAL TIME “When do you want to arrive?”

Figure 29.9 shows a sample dialog manager for such a system. The states of
the FSA correspond to the slot questions, user, and the arcs correspond to actions
to take depending on what the user responds. This system completely controls the
conversation with the user. It asks the user a series of questions, ignoring (or misin-
terpreting) anything that is not a direct answer to the question and then going on to
the next question.

The speaker in control of any conversation is said to have the initiative in theinitiative

conversation. Systems that completely control the conversation in this way are thus
called system-initiative. By contrast, in normal human-human dialog, initiativesystem-

initiative
shifts back and forth between the participants (Bobrow et al. 1977, Walker and Whit-
taker 1990).

The single-initiative finite-state dialog architecture has the advantage that the
system always knows what question the user is answering. This means the system
can prepare the speech recognizer with a language model tuned to answers for this

Frame-based & KB-based Dialog Agents

29.2 • FRAME BASED DIALOG AGENTS 13

29.2.2 Natural language understanding for filling slots
The goal of the natural language understanding component is to extract three things
from the user’s utterance. The first task is domain classification: is this user fordomain

classification
example talking about airlines, programming an alarm clocks, or dealing with their
calendar? Of course this 1-of-n classification tasks is unnecessary for single-domain
systems that are focused on, say, only calendar management, but multi-domain di-
alog systems are the modern standard. The second is user intent determination:intent

determination
what general task or goal is the user trying to accomplish? For example the task
could be to Find a Movie, or Show a Flight, or Remove a Calendar Appointment.
Finally, we need to do slot filling: extract the particular slots and fillers that the userslot filling

intends the system to understand from their utterance with respect to their intent.
From a user utterance like this one:

Show me morning flights from Boston to San Francisco on Tuesday

a system might want to build a representation like:

DOMAIN: AIR-TRAVEL
INTENT: SHOW-FLIGHTS
ORIGIN-CITY: Boston
ORIGIN-DATE: Tuesday
ORIGIN-TIME: morning
DEST-CITY: San Francisco

while an utterance like

Wake me tomorrow at 6

should give an intent like this:

DOMAIN: ALARM-CLOCK
INTENT: SET-ALARM
TIME: 2017-07-01 0600-0800

The task of slot-filling, and the simpler tasks of domain and intent classification,
are special cases of the task of semantic parsing discussed in Chapter ??. Dialogue
agents can thus extract slots, domains, and intents from user utterances by applying
any of the semantic parsing approaches discussed in that chapter.

The method used in the original GUS system, and still quite common in indus-
trial applications, is to use hand-written rules, often as part of the condition-action
rules attached to slots or concepts.

For example we might just define a regular expression consisting of a set strings
that map to the SET-ALARM intent:

wake me (up) | set (the|an) alarm | get me up

We can build more complex automata that instantiate sets of rules like those
discussed in Chapter 20, for example extracting a slot filler by turning a string
like Monday at 2pm into an object of type date with parameters (DAY, MONTH,
YEAR, HOURS, MINUTES).

Rule-based systems can be even implemented with full grammars. Research sys-
tems like the Phoenix system (Ward and Issar, 1994) consists of large hand-designed
semantic grammars with thousands of rules. A semantic grammar is a context-freesemantic

grammar
grammar in which the left-hand side of each rule corresponds to the semantic entities
being expressed (i.e., the slot names) as in the following fragment:

Frame-based & KB-based Dialog Agents

14 CHAPTER 29 • DIALOG SYSTEMS AND CHATBOTS

SHOW ! show me | i want | can i see|...
DEPART TIME RANGE ! (after|around|before) HOUR |

morning | afternoon | evening
HOUR ! one|two|three|four...|twelve (AMPM)
FLIGHTS ! (a) flight | flights
AMPM ! am | pm
ORIGIN ! from CITY
DESTINATION ! to CITY
CITY ! Boston | San Francisco | Denver | Washington

Semantic grammars can be parsed by any CFG parsing algorithm (see Chap-
ter 12), resulting in a hierarchical labeling of the input string with semantic node
labels, as shown in Fig. 29.10.

S

DEPARTTIME

morning

DEPARTDATE

Tuesdayon

DESTINATION

FranciscoSanto

ORIGIN

Bostonfrom

FLIGHTS

flights

SHOW

meShow

Figure 29.10 A semantic grammar parse for a user sentence, using slot names as the internal parse tree nodes.

Whether regular expressions or parsers are used, it remains only to put the fillers
into some sort of canonical form, for example by normalizing dates as discussed in
Chapter 20.

A number of tricky issues have to be dealt with. One important issue is negation;
if a user specifies that they “can’t fly Tuesday morning”, or want a meeting ”any time
except Tuesday morning”, a simple system will often incorrectly extract “Tuesday
morning” as a user goal, rather than as a negative constraint.

Speech recognition errors must also be dealt with. One common trick is to make
use of the fact that speech recognizers often return a ranked N-best list of hypoth-N-best list

esized transcriptions rather than just a single candidate transcription. The regular
expressions or parsers can simply be run on every sentence in the N-best list, and
any patterns extracted from any hypothesis can be used.

As we saw earlier in discussing information extraction, the rule-based approach
is very common in industrial applications. It has the advantage of high precision,
and if the domain is narrow enough and experts are available, can provide sufficient
coverage as well. On the other hand, the hand-written rules or grammars can be both
expensive and slow to create, and hand-written rules can suffer from recall problems.

A common alternative is to use supervised machine learning. Assuming a train-
ing set is available which associates each sentence with the correct semantics, we
can train a classifier to map from sentences to intents and domains, and a sequence
model to map from sentences to slot fillers.

For example given the sentence:
I want to fly to San Francisco on Monday afternoon please

we might first apply a simple 1-of-N classifier (logistic regression, neural network,
etc.) that uses features of the sentence like word N-grams to determine that the
domain is AIRLINE and and the intent is SHOWFLIGHT.

Next to do slot filling we might first apply a classifier that uses similar features
of the sentence to predict which slot the user wants to fill. Here in addition to

Frame-based & KB-based Dialog Agents
16 CHAPTER 29 • DIALOG SYSTEMS AND CHATBOTS

h0 h1 h2 hn hn+1

w0 w1 w2 wn <EOS>

s0 s1 s2 sn d+i

Figure 29.11 An LSTM architecture for slot filling, mapping the words in the input (repre-
sented as 1-hot vectors or as embeddings) to a series of IOB tags plus a final state consisting
of a domain concatenated with an intent.

In industrial contexts, machine learning-based systems for slot-filling are often
bootstrapped from rule-based systems in a semi-supervised learning manner. A rule-
based system is first built for the domain, and a test-set is carefully labeled. As new
user utterances come in, they are paired with the labeling provided by the rule-based
system to create training tuples. A classifier can then be trained on these tuples, us-
ing the test-set to test the performance of the classifier against the rule-based system.
Some heuristics can be used to eliminate errorful training tuples, with the goal of in-
creasing precision. As sufficient training samples become available the resulting
classifier can often outperform the original rule-based system (Suendermann et al.,
2009), although rule-based systems may still remain higher-precision for dealing
with complex cases like negation.

29.2.3 Evaluating Slot Filling
An intrinsic error metric for natural language understanding systems for slot filling
is the Slot Error Rate for each sentence:

Slot Error Rate for a Sentence =
of inserted/deleted/subsituted slots
of total reference slots for sentence

(29.6)

Consider a system faced with the following sentence:

(29.7) Make an appointment with Chris at 10:30 in Gates 104

which extracted the following candidate slot structure:

Slot Filler
PERSON Chris
TIME 11:30 a.m.
ROOM Gates 104

Here the slot error rate is 1/3, since the TIME is wrong. Instead of error rate, slot
precision, recall, and F-score can also be used.

A perhaps more important, although less fine-grained, measure of success is an
extrinsic metric like task error rate. In this case, the task error rate would quantify
how often the correct meeting was added to the calendar at the end of the interaction.

Frame-based & KB-based Dialog Agents

B: anyone went to columbia?

columbia

google

KB + Dialogue history

Dynamic knowledge graph Graph
embedding

Generator

Name School Company
Jessica Columbia Google

Josh Columbia Google
Item 1
Item 2

2

1

josh

jessica

S

N

C

Message passing path of columbia

anyone went columbia

……

columbia

google

jessica

josh

… …

Yes and joshjessica

Attention + Copy

Figure 3: Overview of our approach. First, the KB and dialogue history (entities in bold) is mapped to
a graph. Here, an item node is labeled by the item ID and an attribute node is labeled by the attribute’s
first letter. Next, each node is embedded using relevant utterance embeddings through message passing.
Finally, an LSTM generates the next utterance based on attention over the node embeddings.

model consists of three components shown in Fig-
ure 3: (i) a dynamic knowledge graph, which rep-
resents the agent’s private KB and shared dialogue
history as a graph (Section 3.1), (ii) a graph em-
bedding over the nodes (Section 3.2), and (iii) an
utterance generator (Section 3.3).

The knowledge graph represents entities and re-
lations in the agent’s private KB, e.g., item-1’s
company is google. As the conversation unfolds,
utterances are embedded and incorporated into
node embeddings of mentioned entities. For in-
stance, in Figure 3, “anyone went to columbia”
updates the embedding of columbia. Next, each
node recursively passes its embedding to neigh-
boring nodes so that related entities (e.g., those
in the same row or column) also receive informa-
tion from the most recent utterance. In our exam-
ple, jessica and josh both receive new context
when columbia is mentioned. Finally, the utter-
ance generator, an LSTM, produces the next utter-
ance by attending to the node embeddings.

3.1 Knowledge Graph

Given a dialogue of T utterances, we construct
graphs (Gt)

T
t=1 over the KB and dialogue history

for agent A.6 There are three types of nodes: item
nodes, attribute nodes, and entity nodes. Edges
between nodes represent their relations. For ex-
ample, (item-1, hasSchool, columbia) means
that the first item has attribute school whose value

6 It is important to differentiate perspectives of the two
agents as they have different KBs. Thereafter we assume the
perspective of agent A, i.e., accessing KBA for A only, and
refer to B as the partner.

is columbia. An example graph is shown in Fig-
ure 3. The graph Gt is updated based on utterance
t by taking Gt�1 and adding a new node for any
entity mentioned in utterance t but not in KBA.7

3.2 Graph Embedding
Given a knowledge graph, we are interested in
computing a vector representation for each node
v that captures both its unstructured context from
the dialogue history and its structured context in
the KB. A node embedding Vt(v) for each node
v 2 Gt is built from three parts: structural prop-
erties of an entity defined by the KB, embeddings
of utterances in the dialogue history, and message
passing between neighboring nodes.

Node Features. Simple structural properties of
the KB often govern what is talked about; e.g.,
a high-frequency entity is usually interesting to
mention (consider “All my friends like dancing.”).
We represent this type of information as a fea-
ture vector Ft(v), which includes the degree and
type (item, attribute, or entity type) of node v, and
whether it has been mentioned in the current turn.
Each feature is encoded as a one-hot vector and
they are concatenated to form Ft(v).

Mention Vectors. A mention vector Mt(v) con-
tains unstructured context from utterances relevant
to node v up to turn t. To compute it, we first de-
fine the utterance representation ũt and the set of
relevant entities Et. Let ut be the embedding of
utterance t (Section 3.3). To differentiate between

7 We use a rule-based lexicon to link text spans to entities.
See details in Appendix D.

[He et al., 2017]	

Frame-based & KB-based Dialog Agents

[Eric et al., 2017]	

Figure 2: Key-value retrieval network. For each time-step of decoding, the cell state is used to compute
an attention over the encoder states and a separate attention over the key of each entry in the KB. The
attentions over the encoder are used to generate a context vector which is combined with the cell state to
get a distribution over the normal vocabulary. The attentions over the keys of the KB become the logits
for their associated values and are separate entries in a now augmented vocabulary that we argmax over.

dialogues in three distinct domains: calendar
scheduling, weather information retrieval, and
point-of-interest navigation. While these domains
are different, they are all relevant to the overar-
ching theme of tasks that users would expect of a
sophisticated in-car personal assistant.

3.1 Data Collection

The data for the multi-turn dialogues was collected
using a Wizard-of-Oz scheme inspired by that of
(Wen et al., 2016b). In our scheme, users had two
potential modes they could play: Driver and Car
Assistant. In the Driver mode, users were pre-
sented with a task that listed certain information
they were trying to extract from the Car Assistant
as well as the dialogue history exchanged between
Driver and Car Assistant up to that point. An ex-
ample task presented could be: You want to find
what the temperature is like in San Mateo over
the next two days. The Driver was then only re-
sponsible for contributing a single line of dialogue
that appropriately continued the discourse given
the prior dialogue history and the task definition.

Tasks were randomly specified by selecting val-
ues (5pm, Saturday, San Francisco, etc.) for three
to five slots (time, date, location, etc.), de-

pending on the domain type. Values specified for
the slots were chosen according to a uniform dis-
tribution from a per-domain candidate set.

In the Car Assistant mode, users were presented
with the dialogue history exchanged up to that
point in the running dialogue and a private knowl-
edge base known only to the Car Assistant with
information that could be useful for satisfying the
Driver query. Examples of knowledge bases could
include a calendar of event information, a collec-
tion of weekly forecasts for nearby cities, or a col-
lection of nearby points-of-interest with relevant
information. The Car Assistant was then respon-
sible for using this private information to provide
a single utterance that progressed the user-directed
dialogues. The Car Assistant was also asked to fill
in dialogue state information for mentioned slots
and values in the dialogue history up to that point.

Each private knowledge base had six to seven
distinct rows and five to seven attribute types. The
private knowledge bases used were generated by
uniformly selecting a value for a given attribute
type, where each attribute type had a variable
number of candidate values. Some knowledge
bases intentionally lacked attributes to encourage
diversity in discourse.

During data collection, some of the dialogues

40

