
COMP 790.139 (Spring 2017)
Adv. Topics in NLP:

Language Grounding for Robotics

Mohit Bansal

Class Info/Logistics

!   COMP 790.139 ‘Language Grounding for Robotics’

!   **3 UNITS**

!   Instructor: Mohit Bansal (SN258, http://www.cs.unc.edu/~mbansal/)

!   Time: Tuesdays 9.30am-12.00pm

!   Room: FB008

!   Office Hours: Tue 12.00-1.00pm (by appointment), SN258

!   Course Webpage: http://www.cs.unc.edu/~mbansal/teaching/robonlp-seminar-spring17.html

!   **Course Email**: nlpcomp790unc@gmail.com

About Me

!   Asst. Professor, CS, UNC (joined Fall 2016)
!   Res. Asst. Professor, TTI-Chicago/UChicago, 2013-2016
!   PhD, UC Berkeley, 2008-2013

!   Research Interests:
!   Past: Syntactic parsing, coreference resolution, taxonomy

induction, world knowledge and commonsense induction

!   Current: Multimodal and embodied semantics (i.e., language with
vision and speech, for robotics); human-like language generation
and Q&A/dialogue; interpretable and structured deep learning

!   Office SN258

!   Webpage: http://www.cs.unc.edu/~mbansal/, Email: mbansal@cs.unc.edu

Your Introductions

!   Please say your:

!   Name

!   Department/degree/major

!   Research interests (ML/AI/NLP/CV experience?
Coding?)

!   Fun fact ☺

(send me a few lines of intro at nlpcomp790unc@gmail.com)

About the Course (and its Goals)

!   Research-oriented seminar course! We will read lots of
interesting papers, brainstorm, and do fun novel projects!

!   Basic NLP and machine learning (some deep learning)
experience expected – check fall2016 NLP intro slides!

!   We’ll cover several latest research topics in NLP+robotics

!   You will read papers in advance and write summaries

!   You will present papers in class

!   Brainstorm regularly and code + write up fun/novel projects!

!   Some lecture(s) on academic/research quality paper writing

Prerequisites

!   Graduate research-level class

!   Some machine learning and coding experience is
definitely expected!

!   Moreover, some NLP and RL background is highly
recommended

!   Projects will require research and coding skills;
summaries and paper presentation will require solid ML
clarity

Expectations/Grading

!   Paper presentation (15%)

!   Paper written summaries (25%)

!   Class participation, discussion and brainstorming (20%)

!   Project reports and presentations (40%)
(midterm = 15% and final = 25%)

Lateness Policy

!   Written summaries are due *before class* by email to
nlpcomp790unc@gmail.com

!   First paper summary submission will have no late penalties.

!   After that, for every week's summary submission, there will be a 25%
value reduction per late day.

!   Other lateness policies (for projects, etc.) will be sent via email during
the semester

Collaboration Policy

!   Paper summaries have to be written and submitted individually.

!   Projects are encouraged to be done in pairs, with clearly outlined
contributions from each team member

!   But individual projects are fine too (e.g., if it relates to your current
research)

Paper Presentation

!   Lead discussion for 1-2 papers on a topic some week
(may be done in pairs/groups depending on class size)

!   Read related papers and present background to audience

!   Present task and model details of given paper

!   Present demo’s of related code, etc.

!   Ask interesting questions to initiate brainstorming

!   Mention some next steps, future work, extension ideas!

Paper Written Summaries

!   0.5-1 page (per paper) write-up for every week’s paper(s)

!   Describe the task

!   Summarize the method

!   Explain the novelty

!   Discuss the next steps or potential improvements

Class Participation and Brainstorming

!   Audience students expected to take part in lively discussion
every paper reading!

!   After every topic gets completed (i.e., several papers in 2-3
weeks), we will have a brainstorming and ‘idea-generation’
session!

!   Exact details to be announced soon but students expected to
submit and discuss novel idea(s) on the whole general topic,
e.g., new related task or dataset, new approach to existing task,
combinations of tasks/approaches, etc.

!   Don’t hesitate to propose fancy ideas ☺, but try to keep them
grounded/feasible and think of how to approach them
realistically (in terms of datasets, models, speed, memory, etc.)

Project

!   This is a ‘Reading, Coding, and Writing’ class!

!   Students will pick (early) their favorite topic among latest cutting-edge
research topics covered in class

!   And will try a novel idea (implementing + extending or original) -- I am
happy to discuss details!

!   Midterm and final report + presentation (and possibly some updates)

!   Might be in pairs/groups depending on final class size

!   Use conference style files and aim for conference-quality papers

!   Will have some lecture(s) on research-quality paper writing

Reference Books
!   SLP2: D. Jurafsky & James H. Martin. “Speech and Language Processing:

An Introduction to Natural Language Processing, Computational Linguistics
and Speech Recognition”. Prentice Hall, Second Edition, 2009.

!   SLP3: Some draft chapters of the third edition are available online at
https://web.stanford.edu/~jurafsky/slp3/

!   FSNLP: Chris Manning and Hinrich Schütze, Foundations of Statistical
Natural Language Processing, MIT Press. Cambridge, MA: May 1999.
http://nlp.stanford.edu/fsnlp/

!   ML Background: Andrew Ng’s Coursera Machine Learning course
https://www.coursera.org/learn/machine-learning

!   Reinforcement Learning: Sutton & Barto Book: Reinforcement Learning: An
Introduction. https://webdocs.cs.ualberta.ca/~sutton/book/the-book.html

Course Syllabus/Topics (tentative)

!   interpreting and executing verbal instructions for navigation, articulation,
manipulation, assembly, skill learning, etc.

!   human-robot collaboration and dialogue for learning new subactions,
mediating shared perceptual basis, referring expression generation, etc.

!   grounding and language learning via dialogue-based and interactive
games.

!   automatic language generation for embodied tasks.

!   grounded reinforcement learning.

!   grounded knowledge representations (mapping language to world).

!   machine learning models (structured and deep), datasets, and metrics for
embodied language.

What is NLP?

!   Question answering

What is NLP?

!   Question answering

What is NLP?

!   Question answering

What is NLP?

!   Machine Translation

What is NLP?

!   Sentiment Analysis

What is NLP?

!   Natural Language Generation: Summarization

-	Lohan	charged	
with	the0	of	
$2,500	necklace	
	

-	Pleaded	not	
guilty	
	

-	Judge	set	bail	at	
$40,000	
	

-	To	reappear	in	
court	on	Feb	23	

What is NLP?

!   Natural Language Generation: Conversation/Dialogue

A Neural Network Approach to
Context-Sensitive Generation of Conversational Responses⇤

Alessandro Sordoni1†‡ Michel Galley2‡ Michael Auli3† Chris Brockett2
Yangfeng Ji4† Margaret Mitchell2 Jian-Yun Nie1† Jianfeng Gao2 Bill Dolan2

1DIRO, Université de Montréal, Montréal, QC, Canada
2Microsoft Research, Redmond, WA, USA

3Facebook AI Research, Menlo Park, CA, USA
4Georgia Institute of Technology, Atlanta, GA, USA

Abstract

We present a novel response generation sys-
tem that can be trained end to end on large
quantities of unstructured Twitter conversa-
tions. A neural network architecture is used
to address sparsity issues that arise when in-
tegrating contextual information into classic
statistical models, allowing the system to take
into account previous dialog utterances. Our
dynamic-context generative models show con-
sistent gains over both context-sensitive and
non-context-sensitive Machine Translation and
Information Retrieval baselines.

1 Introduction

Until recently, the goal of training open-domain con-
versational systems that emulate human conversation
has seemed elusive. However, the vast quantities
of conversational exchanges now available on so-
cial media websites such as Twitter and Reddit raise
the prospect of building data-driven models that can
begin to communicate conversationally. The work
of Ritter et al. (2011), for example, demonstrates that
a response generation system can be constructed from
Twitter conversations using statistical machine trans-
lation techniques, where a status post by a Twitter
user is “translated” into a plausible looking response.

⇤This paper appeared in the proceedings of NAACL-HLT
2015 (submitted December 4, 2014, accepted February 20, 2015,
and presented June 1, 2015).

†The entirety of this work was conducted while at Microsoft
Research.

‡Corresponding authors: Alessandro Sordoni (sor-
donia@iro.umontreal.ca) and Michel Galley (mgal-
ley@microsoft.com).

context
because of your game ?

message
yeah i’m on my

way nowresponse
ok good luck !

Figure 1: Example of three consecutive utterances occur-
ring between two Twitter users A and B.

However, an approach such as that presented in Rit-
ter et al. (2011) does not address the challenge of
generating responses that are sensitive to the context
of the conversation. Broadly speaking, context may
be linguistic or involve grounding in the physical or
virtual world, but we here focus on linguistic context.
The ability to take into account previous utterances
is key to building dialog systems that can keep con-
versations active and engaging. Figure 1 illustrates
a typical Twitter dialog where the contextual infor-
mation is crucial: the phrase “good luck” is plainly
motivated by the reference to “your game” in the first
utterance. In the MT model, such contextual sensitiv-
ity is difficult to capture; moreover, naive injection
of context information would entail unmanageable
growth of the phrase table at the cost of increased
sparsity, and skew towards rarely-seen context pairs.
In most statistical approaches to machine translation,
phrase pairs do not share statistical weights regard-
less of their intrinsic semantic commonality.

We propose to address the challenge of context-
sensitive response generation by using continuous
representations or embeddings of words and phrases

ar
X

iv
:1

50
6.

06
71

4v
1

 [c
s.C

L]
 2

2
Ju

n
20

15

[Sordoni et al., 2015]	

What is NLP?

!   Natural Language Generation: Image Captioning

[UToronto]	

What is NLP?

!   Natural Language Generation: Visual Question Answering

1

VQA: Visual Question Answering

www.visualqa.org

Aishwarya Agrawal

⇤
, Jiasen Lu

⇤
, Stanislaw Antol

⇤
,

Margaret Mitchell, C. Lawrence Zitnick, Dhruv Batra, Devi Parikh

Abstract—We propose the task of free-form and open-ended Visual Question Answering (VQA). Given an image and a natural

language question about the image, the task is to provide an accurate natural language answer. Mirroring real-world scenarios, such

as helping the visually impaired, both the questions and answers are open-ended. Visual questions selectively target different areas

of an image, including background details and underlying context. As a result, a system that succeeds at VQA typically needs a

more detailed understanding of the image and complex reasoning than a system producing generic image captions. Moreover, VQA

is amenable to automatic evaluation, since many open-ended answers contain only a few words or a closed set of answers that can

be provided in a multiple-choice format. We provide a dataset containing ⇠0.25M images, ⇠0.76M questions, and ⇠10M answers

(www.visualqa.org), and discuss the information it provides. Numerous baselines and methods for VQA are provided and compared

with human performance.

F

1 INTRODUCTION

We are witnessing a renewed excitement in multi-discipline
Artificial Intelligence (AI) research problems. In particular,
research in image and video captioning that combines Com-
puter Vision (CV), Natural Language Processing (NLP), and
Knowledge Representation & Reasoning (KR) has dramati-
cally increased in the past year [14], [7], [10], [36], [24],
[22], [51]. Part of this excitement stems from a belief that
multi-discipline tasks like image captioning are a step towards
solving AI. However, the current state of the art demonstrates
that a coarse scene-level understanding of an image paired
with word n-gram statistics suffices to generate reasonable
image captions, which suggests image captioning may not be
as “AI-complete” as desired.
What makes for a compelling “AI-complete” task? We believe
that in order to spawn the next generation of AI algorithms, an
ideal task should (i) require multi-modal knowledge beyond a
single sub-domain (such as CV) and (ii) have a well-defined
quantitative evaluation metric to track progress. For some
tasks, such as image captioning, automatic evaluation is still
a difficult and open research problem [49], [11], [20].
In this paper, we introduce the task of free-form and open-
ended Visual Question Answering (VQA). A VQA system
takes as input an image and a free-form, open-ended, natural-
language question about the image and produces a natural-
language answer as the output. This goal-driven task is
applicable to scenarios encountered when visually-impaired
users [2] or intelligence analysts actively elicit visual infor-
mation. Example questions are shown in Fig. 1.
Open-ended questions require a potentially vast set of AI
capabilities to answer – fine-grained recognition (e.g., “What
kind of cheese is on the pizza?”), object detection (e.g., “How
many bikes are there?”), activity recognition (e.g., “Is this man

• ⇤The first three authors contributed equally.
• A. Agrawal, J. Lu, S. Antol, D. Batra and D. Parikh are with Virginia Tech.
• M. Mitchell is with Microsoft Research, Redmond.
• C. L. Zitnick is with Facebook AI Research.

Does it appear to be rainy?
Does this person have 20/20 vision?

Is this person expecting company?
What is just under the tree?

How many slices of pizza are there?
Is this a vegetarian pizza?

What color are her eyes?
What is the mustache made of?

Fig. 1: Examples of free-form, open-ended questions collected for
images via Amazon Mechanical Turk. Note that commonsense
knowledge is needed along with a visual understanding of the scene
to answer many questions.

crying?”), knowledge base reasoning (e.g., “Is this a vegetarian
pizza?”), and commonsense reasoning (e.g., “Does this person
have 20/20 vision?”, “Is this person expecting company?”).
VQA [17], [34], [48], [2] is also amenable to automatic
quantitative evaluation, making it possible to effectively track
progress on this task. While the answer to many questions is
simply “yes” or “no”, the process for determining a correct
answer is typically far from trivial (e.g. in Fig. 1, “Does this
person have 20/20 vision?”). Moreover, since questions about
images often tend to seek specific information, simple one-
to-three word answers are sufficient for many questions. In
such scenarios, we can easily evaluate a proposed algorithm
by the number of questions it answers correctly. In this paper,
we present both an open-ended answering task and a multiple-
choice task [43], [31]. Unlike the open-ended task that requires
a free-form response, the multiple-choice task only requires an
algorithm to pick from a predefined list of possible answers.

ar
X

iv
:1

50
5.

00
46

8v
6

 [c
s.C

L]
 2

0
A

pr
 2

01
6

[Antol et al., 2015]	

What is NLP?

!   Automatic Speech Recognition

What is NLP?

Turn right at the
butterfly painting, then
go to the end of the hall	

!   Task-based instructions, e.g., navigation, grasping,
manipulation, skill learning

What is NLP?

Cut some onions, and
add to broth, stir it	

!   Task-based instructions, e.g., navigation, grasping,
manipulation, skill learning

Some Sample NLP+Robotics Papers

!   Navigation Instruction Following

Learning to interpret natural language navigation instructions from observations. Chen and Mooney. AAAI 2011.
Weakly supervised learning of semantic parsers for mapping instructions to actions. Artzi and Zettlemoyer. TACL 2013.

Listen, Attend, and Walk: Neural Mapping of Navigational Instructions to Action Sequences. Mei, Bansal, and Walter. AAAI 2016

Some Sample NLP+Robotics Papers

!   Navigation + Manipulation Instructions

Understanding Natural Language Commands
for Robotic Navigation and Mobile Manipulation

Stefanie Tellex1 and Thomas Kollar1 and Steven Dickerson1 and
Matthew R. Walter and Ashis Gopal Banerjee and Seth Teller and Nicholas Roy

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 02139

In Proceedings of the National Conference on Artificial Intelligence (AAAI 2011).

Abstract

This paper describes a new model for understanding natural
language commands given to autonomous systems that per-
form navigation and mobile manipulation in semi-structured
environments. Previous approaches have used models with
fixed structure to infer the likelihood of a sequence of ac-
tions given the environment and the command. In contrast,
our framework, called Generalized Grounding Graphs (G3),
dynamically instantiates a probabilistic graphical model for a
particular natural language command according to the com-
mand’s hierarchical and compositional semantic structure.
Our system performs inference in the model to successfully
find and execute plans corresponding to natural language
commands such as “Put the tire pallet on the truck.” The
model is trained using a corpus of commands collected us-
ing crowdsourcing. We pair each command with robot ac-
tions and use the corpus to learn the parameters of the model.
We evaluate the robot’s performance by inferring plans from
natural language commands, executing each plan in a realistic
robot simulator, and asking users to evaluate the system’s per-
formance. We demonstrate that our system can successfully
follow many natural language commands from the corpus.

1 Introduction

To be useful teammates to human partners, robots must be
able to robustly follow spoken instructions. For example,
a human supervisor might tell an autonomous forklift, “Put
the tire pallet on the truck,” or the occupant of a wheelchair
equipped with a robotic arm might say, “Get me the book
from the coffee table.” Such commands are challenging be-
cause they involve events (“Put”), objects (“the tire pallet”),
and places (“on the truck”), each of which must be grounded
to aspects of the world and which may be composed in many
different ways. Figure 1 shows some of the wide variety of
human-generated commands that our system is able to fol-
low for the robotic forklift domain.
We frame the problem of following instructions as infer-

ring the most likely robot state sequence from a natural lan-
guage command. Previous approaches (Kollar et al., 2010;
Shimizu and Haas, 2009) assume that natural language com-
mands have a fixed and flat structure that can be exploited
when inferring actions for the robot. However, this kind of
fixed and flat sequential structure does not allow for variable

1The first three authors contributed equally to this paper.

(a) Robotic forklift

Commands from the corpus

- Go to the first crate on the left
and pick it up.

- Pick up the pallet of boxes in the
middle and place them on the
trailer to the left.

- Go forward and drop the pallets to
the right of the first set of
tires.

- Pick up the tire pallet off the
truck and set it down

(b) Sample commands

Figure 1: A target robotic platform for mobile manipulation
and navigation (Teller et al., 2010), and sample commands
from the domain, created by untrained human annotators.
Our system can successfully follow these commands.

arguments or nested clauses. At training time, when using
a flat structure, the system sees the entire phrase “the pallet
beside the truck” and has no way to separate the meanings of
relations like “beside” from objects such as “the truck.” Fur-
thermore, a flat structure ignores the argument structure of
verbs. For example, the command “put the box on the pallet
beside the truck,” has two arguments (“the box” and “on the
pallet beside the truck”), both of which are necessary to learn
an accurate meaning for the verb “put.” In order to infer the
meaning of unconstrained natural language commands, it is
critical for the model to exploit these compositional and hi-
erarchical linguistic structures at both learning and inference
time.

To address these issues, we introduce a new model called
Generalized Grounding Graphs (G3). A grounding graph is
a probabilistic graphical model that is instantiated dynami-
cally according to the compositional and hierarchical struc-
ture of a natural language command. Given a natural lan-
guage command, the structure of the grounding graphmodel
is induced using Spatial Description Clauses (SDCs), a se-
mantic structure introduced by Kollar et al. (2010). Each
SDC represents a linguistic constituent from the command
that can be mapped to an aspect of the world or grounding,
such as an object, place, path or event. In the G3 frame-

✖✕
✗✔

Grounding for γ4

❤Grounding for γ3

♠
Grounding for γ2

(a) Object groundings (b) Pick up the pallet

Grounding for γ1

(c) Put it on the truck

Figure 4: A sequence of the actions that the forklift takes in response to the command, “Put the tire pallet on the truck.” (a) The
search grounds objects and places in the world based on their initial positions. (b) The forklift executes the first action, picking
up the pallet. (c) The forklift puts the pallet on the trailer.

of low-scoring examples were due to words that did not ap-
pear many times in the corpus.
For PLACE SDCs, the system often correctly classifies

examples involving the relation “on,” such as “on the trailer.”
However, the model often misclassifies PLACE SDCs that
involve frame-of-reference. For example, “just to the right
of the furthest skid of tires” requires the model to have fea-
tures for “furthest” and the principal orientation of the “skid
of tires” to reason about which location should be grounded
to the language “to the right,” or “between the pallets on the
ground and the other trailer” requires reasoning about mul-
tiple objects and a PLACE SDC that has two arguments.
For EVENT SDCs, the model generally performs well on

“pick up,” “move,” and “take” commands. The model cor-
rectly predicts commands such as “Lift pallet box,” “Pick up
the pallets of tires,” and “Take the pallet of tires on the left
side of the trailer.” We incorrectly predict plans for com-
mands like, “move back to your original spot,” or “pull par-
allel to the skid next to it.” The word “parallel” appeared
in the corpus only twice, which was probably insufficient
to learn a good model. “Move” had few good negative ex-
amples, since we did not have in the training set, to use as
contrast, paths in which the forklift did not move.

4.3 End-to-end Evaluation

The fact that the model performswell at predicting the corre-
spondence variable from annotated SDCs and groundings is
promising but does not necessarily translate to good end-to-
end performance when inferring groundings associated with
a natural language command (as in Equation 1).
To evaluate end-to-end performance, we inferred plans

given only commands from the test set and a starting lo-
cation for the robot. We segmented commands containing
multiple top-level SDCs into separate clauses, and utilized
the system to infer a plan and a set of groundings for each
clause. Plans were then simulated on a realistic, high-fidelity
robot simulator fromwhich we created a video of the robot’s
actions. We uploaded these videos to AMT, where subjects
viewed the video paired with a command and reported their

agreement with the statement, “The forklift in the video is
executing the above spoken command” on a five-point Likert
scale. We report command-video pairs as correct if the sub-
jects agreed or strongly agreed with the statement, and in-
correct if they were neutral, disagreed or strongly disagreed.
We collected five annotator judgments for each command-
video pair.
To validate our evaluation strategy, we conducted the eval-

uation using known correct and incorrect command-video
pairs. In the first condition, subjects saw a command paired
with the original video that a different subject watched when
creating the command. In the second condition, the subject
saw the command paired with random video that was not
used to generate the original command. As expected, there
was a large difference in performance in the two conditions,
shown in Table 2. Despite the diverse and challenging lan-
guage in our corpus, new annotators agree that commands
in the corpus are consistent with the original video. These
results show that language in the corpus is understandable
by a different annotator.

Precision

Command with original video 0.91 (±0.01)
Command with random video 0.11 (±0.02)

Table 2: The fraction of end-to-end commands considered
correct by our annotators for known correct and incorrect
videos. We show the 95% confidence intervals in parenthe-
ses.

We then evaluated our system by considering three differ-
ent configurations. Serving as a baseline, the first consisted
of ground truth SDCs and a random probability distribution,
resulting in a constrained search over a random cost func-
tion. The second configuration involved ground truth SDCs
and our learned distribution, and the third consisted of auto-
matically extracted SDCs with our learned distribution.
Due to the overhead of the end-to-end evaluation, we con-

Understanding Natural Language Commands for Robotic Navigation and Mobile Manipulation. Tellex, Kollar, Dickerson, Walter, Banerjee, Teller, and Roy. AAAI 2011.

Some Sample NLP+Robotics Papers

!   Navigation Dialogue

Information-Theoretic Dialog to
Improve Spatial-Semantic Representations

Sachithra Hemachandra Matthew R. Walter

Abstract— We propose an algorithm that enables robots to
improve their spatial-semantic representation of an environ-
ment by engaging users in dialog during a guided tour. The
algorithm selects the best information gathering actions in the
form of targeted questions that reduce the ambiguity over the
grounding of user-provided natural language descriptions (e.g.,
“The kitchen is down the hallway”). These questions include
those that query the robot’s local surround (e.g., “Are we in
front of the kitchen?”) as well as areas distant from the robot
(e.g., “Is the lounge near the conference room?”). Our algorithm
treats dialog as an optimization problem that seeks to balance
the information-theoretic value of candidate questions with a
measure of cost associated with dialog. In this manner, the
algorithm determines the best questions to ask based upon the
expected entropy reduction, while accounting for the burden on
the user. We evaluate entropy reduction for a joint distribution
over a hybrid metric, topological, and semantic representation
of the environment learned from user-provided descriptions and
the robot’s sensor data during the guided tour. We demonstrate
that, by asking deliberate questions of the user, the method
significantly improves the accuracy of the learned map.

I. INTRODUCTION

Robots are increasingly being deployed in human-
occupied environments. In order to be effective partners,
robots need to reason over representations of these envi-
ronments that model the spatial, topological, and semantic
properties (e.g., room types and names) that people associate
with their environment. An efficient means of learning these
representations is through a guided tour in which a human
provides natural language descriptions of the environment [1,
2, 3, 4, 5]. With these approaches, the robot takes a passive
role, whereby it infers information from the descriptions that
it fuses with its onboard sensor stream.

The challenge to learning is largely one of resolving
the high-level knowledge that language conveys with the
low-level observations from the robot’s sensors. Human
descriptions tend to be ambiguous, with several possible
interpretations (groundings) for a particular environment. For
example, the user may describe the location of the kitchen
as being “down the hallway,” yet there may be several
hallways nearby, each leading to a number of different
rooms. Furthermore, grounding language typically requires a
complete map, however, the robot may not yet have visited
the regions that the user is referring to. The user may be
describing a location known to the robot or a new location
outside the field-of-view of its sensors.

S. Hemachandra is with the Computer Science and Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, Cambridge, MA USA
sachih@csail.mit.edu

M.R. Walter is with the Toyota Technological Institute at Chicago,
Chicago, IL USA mwalter@ttic.edu

The kitchen is
down the
hallway

Is the kitchen
in front of me?

Yes

Fig. 1. A user gives a tour to a robotic wheelchair designed to assist resi-
dents in a long-term care facility. (Left) The guide provides an ambiguous
description of the kitchen’s location. (Right) When the robot is near one of
the likely locations, it asks the guide a question to resolve the ambiguity.

In this paper, we propose an active approach whereby
the robot asks targeted questions of the user as a means of
gathering information (Fig. 1). Engaging the user in dialog
requires choosing which question to ask and when to ask
it, while balancing the benefits of asking questions with the
cost that comes from interrupting the tour and burdening the
guide. There are three primary challenges to using dialog
as an information gathering action. First, the robot needs to
ask questions that provide enough context to the guide to be
understood. Second, the questions should be structured such
that the answers are as informative as possible. Third, the
decision of if and when to ask questions should account for
the social cost incurred by engaging the user in dialog.

We address these challenges by modeling human-robot
dialog during the tour as a decision process. During the
tour, the robot maintains a distribution over a semantic
graph [3, 4], a metric, topological, and semantic representa-
tion of the environment, using a Rao-Blackwellized particle
filter. Taking an information-theoretic approach, the algo-
rithm decides whether to follow the guide or ask questions
at each timestep in order to update the distribution. The
algorithm reasons over the natural language descriptions and
the current learned map to identify potential questions that
best reduce ambiguity in the map. The algorithm considers
egocentric (situated) and allocentric (non-situated) binary
(yes/no) questions that express spatial relations between pairs
of regions. These regions may be local to the robot in the
case of egocentric dialog (e.g., “Is the lab on my right?”)

Information-Theoretic Dialog to Improve Spatial-Semantic Representations. Hemachandra and Walter. IROS 2015.

Some Sample NLP+Robotics Papers

!   Navigation Instruction Generation
(a) Q1: “How do you define the amount of information provided?”

(b) Q2: “How would you evaluate the task in terms of difficulty?”

(c) Q3: “How confident are you that you followed the desired path?”

(d) Q4: “How many times did you have to backtrack?”

(e) Q5: “Who do you think generated the instructions?”

Fig. 7. Participants’ survey response statistics.

and were rated as providing too little information 15% less
frequently than the human-generated baseline (Fig. 7(a)).
Meanwhile, participants felt that our instructions were easier
to follow (Fig. 7(b)) than the human-generated baselines (72%
vs. 52% rated as “easy” or “very easy” for our method vs. the
baseline). Participants were more confident in their ability to
follow our method’s instructions (Fig. 7(c)) and felt that they
had to backtrack less often (Fig. 7(d)). Meanwhile, both types
of instructions were confused equally often as being machine-
generated (Fig. 7(e)), however participants were less sure of
who generated our instructions relative to the human baseline.

Figure 8 compares the paths that participants took when
following our instructions with those that they took given
the reference human-generated directions. In the case of the
map on the left (Fig. 8(a)), none of the five participants
reached the correct destination (indicated by a “G”) when

Map and Paths

C H

B

L

2

1

S H

L

H

G

S

Legend:
H
B
C
S
L

- Hatrack
- Barstool
- Chair
- Sofa
- Lamp

Fish
Eiffel
Butterfly

1
S - Initial position

- Goal position
- Final position

G
#

2 3

S

G

(a)

(b)

Instructions

(a)

Human

“with your back to the wall turn left. walk
along the flowers to the hatrack. turn left.
walk along the brick two alleys past the lamp.
turn left. move along the wooden floor to the
chair. in the next block is a hatrack”

Ours
“you should have the olive hallway on your
right now. walk forward twice. turn left. move
until you see wooden floor to your left. face
the bench. move to the bench”

(b)

Human

“head toward the blue floored hallway. make
a right on it. go down till you see the fish
walled areas. make a left in the fish walled
hallway and go to the very end”

Ours
“turn to face the white hallway. walk forward
once. turn right. walk forward twice. turn left.
move to the wall”

Fig. 8. Examples of paths from the SAIL corpus that ten participants (five
for each map) followed according to instructions generated by humans and
by our method. Paths in red are those traversed according to human-generated
instructions, while paths in green were executed according to our instructions.
Circles with an “S” and “G” denote the start and goal locations, respectively.

following the human-generated instruction. One participant
reached location 2, three participants stopped at location 3

(one of whom backtracked after reaching the end of the
hallway above the goal), and one participant went in the
wrong direction at the outset. In contrast, all five participants
reached the goal directly (i.e., without backtracking) when
following our instruction. For the scenario depicted on the
right (Fig. 8(b)), five participants failed to reach the destination
when provided with the human-generated instruction. Two of
the participants went directly to location 1, two participants
navigated to location 2, and one participant went to location
2 before backtracking and taking a right to location 1. We
attribute the failures to the ambiguity in the human-generated
instruction that references “fish walled areas,” which could
correspond to most of the hallways in this portion of the map

our framework through experiments with human instruction
followers.

1) Data Augmentation: The SAIL dataset is significantly
smaller than those typically used to train neural sequence-
to-sequence models. In order to overcome this scarcity, we
augmented the original dataset using a set of rules. In
particular, for each command-instruction (c

(i)
,⇤

(i)
) pair in

the original dataset we generate a number of new demon-
strations iterating over the set of possible values for each
attribute in the command and updating the relative in-
struction accordingly. For example, given the original pair
(Turn(direction=Left), “turn left”), we augment the dataset
with 2 new pairs, namely (Turn(direction=Right), “turn
right”) and (Turn(direction=Back), “turn back”). Our aug-
mented dataset consists of about 750k and 190k demonstra-
tions for training and validation, respectively.

B. Implementation Details

We implemented and tested the proposed model using
the following values for the system parameters: kc = 100,
Pt = 0.99, ke = 128, and Lt = 95.0. The encoder-aligner-
decoder consisted of 2 layers for the encoder and decoder
with 128 LSTM units per layer. The language model similarly
included a 2-layer recurrent neural network with 128 LSTM
units per layer. The size of the CAS and natural (English)
language vocabularies was 88 and 435, respectively, based
upon the SAIL dataset. All parameters were chosen based on
the performance on the validation set. We train our model
using Adam [30] for optimization. At test time, we perform
approximate inference using a beam width of two. Our method
requires an average of 33 s (16 s without beam search) to
generate instructions for a path consisting of 9 movements
when run on a laptop with a 2.0GHz CPU and 8GB of RAM.
As with other neural models, performance would improve
significantly using a GPU.

C. Automatic Evaluation

To the best of our knowledge, we are the first to use the
SAIL dataset for the purposes of generating route instructions.
Consequently, we evaluate our method by comparing our
generated instructions with a reference set of human-generated
commands from the SAIL dataset using the BLEU score (a
4-gram matching-based precision) [45]. For this purpose, for
each command-instruction pair (c(i),⇤(i)) in the validation
set, we first feed the command c

(i)
, into our model to obtain

the generated instruction ⇤

⇤, and secondly use ⇤

(i)
, and ⇤

⇤

respectively as the reference and hypothesis for computing
the 4-gram BLEU score. We consider both the average of the
BLEU scores at the individual sentence level (macro-average
precision) as well as at the full-corpus level (micro-average
precision).

D. Human Evaluation

The use of BLEU score indicates the similarity between
instructions generated via our method and those produced
by humans, but it does not provide a complete measure

Fig. 4. Participants’ field of view in the virtual world used for the human
navigation experiments.

of the quality of the instructions (e.g., instructions that are
correct but different in prose will receive a low BLEU score).
In an effort to further evaluate the accuracy and usability
of our method, we conducted a set of human evaluation
experiments in which we asked 42 novice participants on
Amazon Mechanical Turk (21 females and 21 males, ages
18–64, all native English speakers) to follow natural language
route instructions, randomly chosen from two equal-sized sets
of instructions generated by our method and by humans for 50
distinct paths of various lengths. The paths and corresponding
human-generated instructions were randomly sampled from
the SAIL test set. Given a route instruction, human participants
were asked to navigate to the best of their ability using their
keyboard within a first-person, three-dimensional virtual world
representative of the three environments from the SAIL corpus.
Fig. 4 provides an example of the participants’ field of view
while following route instructions. After attempting to follow
each instruction, each participant was given a survey composed
of eight questions, three requesting demographic information
and five requesting feedback on their experience and the
quality of the instructions that they followed. We collected data
for a total of 441 experiments (227 using human annotated
instructions and 214 using machine generated instructions).
The system randomly assigned the experiments to discourage
the participants from learning the environments or becoming
familiar with the style of a particular instructor. No participants
experienced the same scenario with both human annotated and
machine generated instructions. Appendix B provides further
details regarding the experimental procedure.

VI. RESULTS

We evaluate the performance of our architecture by scoring
the generated instructions using the 4-gram BLEU score com-
monly used as an automatic evaluation mechanism for machine
translation. Comparing to the human-generated instructions,
our method achieves sentence- and corpus-level BLEU scores
of 74.67% and 60.10%, respectively, on the validation set.
On the test set, the method achieves sentence- and corpus
level BLEU scores of 72.18% and 45.39%, respectively. Fig. 1

Navigational Instruction Generation as Inverse Reinforcement Learning with Neural Machine Translation. Daniele, Bansal, and Walter. HRI 2017.

Some Sample NLP+Robotics Papers

!   Assembly Instruction Execution

Error Type Count Example

Multi-Relation Actions 20 Place block 20 parallel with the 8 block and slightly to the right of the 6 block.
Place block 15 on the same vertical column as blocks 16 and 17, and two rows

above blocks 11 and 3.

Geometric Understanding 10 Continue the diagonal row of 20, 19 and 15 downward with 13.
Put block 12 in the column between the columns with blocks 4 and 13, and on

the same row as the lowest block on the board.

Grammatical Ambiguity 10 19 moved from behind the 8 to under the 18th block.
Burger King tile should be directly above the Coca Cola tile. Move Coca Cola.

Grounding Names 5 Put the block that looks like a taurus symbol just above the bird.

Understanding Distance 5 move the texaco block 5 block lengths above the BMW block

Table 5: We performed a subjective error analysis of the results of our Fixed Semantics model using the RNN encoder. Example
sentences and the frequency of each type of error are reported above from the worst 50 errors on the development data.

Scene Utterance

Move the block that is cur-
rently located closest to the
top left corner to the bottom
left of the table, slightly
higher than the block in the
bottom right corner.

Error: 7.29 Block lengths

Move the block closest to
the top left corner so it is
above half a block length to
the right of the blocks near
the lower left corner of the
table.

Error: 0.94 Block lengths

Table 6: Above are two commands and the worlds they apply
to. Below we see the prediction error of our best model.

erence, Direction) paradigm, but automatically ex-
tracting that semantics is now more difficult and the
purview for future work with scene understanding.

To remove the possibility that this performance
difference is due to sparsity, we down-sampled the
training data from the decorated blocks to match that
of the blank ones. We found the development errors
grew (Average 0.27 and 1.35 on source and target,
respectively) but were still substantially lower than
those observed with blank block data.

Because extracting the semantics for training is so
difficult, a particularly nice result is that while the
End-to-End model was slightly weaker than the oth-
ers on the MNIST based data, it actually performs
best in this domain, where we cannot provide an ex-

plicit training signal for the representation.
The nature of the language in the blank blocks dif-

fers quite dramatically due to this grounding diffi-
culty. Table 6 shows the two sentences we perform
best (and worst) on in the development data and that
make use of a reference and direction.

9 Conclusion

We showed how human-robot communication can
be attacked within an empirical framework that
supports alternative models to be evaluated and
compared using objective metrics. We intro-
duced a set of simple algorithms for human-robot,
in-context command/instruction understanding that
should serve as strong baselines for future research
in this field. The datasets present unique and impor-
tant challenges for NLU, in which the interpretation
of the language has varying amounts of dependence
on the world in which it is uttered. The datasets we
created in support of this work are made publicly
available and should support the development of in-
creasingly sophisticated models and algorithms for
solving the problem defined in this paper, as well as
additional problems that concern human-robot com-
munication.

Acknowledgments

This work was supported by Contract W911NF-15-
1-0543 with the US Defense Advanced Research
Projects Agency (DARPA) and the Army Research
Office (ARO).

Natural Language Communication with Robots. Bisk, Yuret, and Marcu. NAACL 2016.

Some Sample NLP+Robotics Papers

!   Recipes: Bakebot (http://projects.csail.mit.edu/video/research/robo/bakebot_final.mp4)

4 Mario Bollini, Stefanie Tellex, Tyler Thompson, Nicholas Roy, and Daniela Rus

to these approaches because of the richer space of actions inherent to the cooking
domain. BakeBot uses the low-level manipulation and perception system described
in Rusu et al. [11]. Beetz et al. [2] have demonstrated dispensing pancake batter
from a premixed container and flipping the pancakes on a skillet. In this paper we
demonstrate an end-to-end robot cooking system capable of implementing any bak-
ing recipe that requires pouring, mixing, and oven operations on premeasured in-
gredients provided to the system. Our system is able to follow recipes downloaded
from the internet; we demonstrate it by following two different recipes in the real
world and by further evaluating its performance on a larger test set in simulation.

Fig. 3 Architecture of the BakeBot system. The NL system processes the plain text recipe, pro-
ducing a high-level plan which is sent to the robot. For each instruction in the high-level plan, the
motion planner assembles a motion plan and executes it on the PR2 robot.

4 Technical Approach

The robot’s goal is to read the text of a natural language recipe, and use it to infer
an action sequence in the environment that corresponds to preparing the dish de-
scribed in the recipe. The robot first segments the recipe into sentences based on
punctuation. Then for each sentence, it infers an action sequence in the environment

Interpreting and Executing Recipes with a Cooking Robot. Bollini, Tellex, Thompson, Roy, Rus. ISER 2012.

Some Sample NLP+Robotics Papers

!   Recipes: Tell Me Dave (http://tellmedave.cs.cornell.edu/)

Fig. 1. Natural Language Instructions to sequence of instructions for a given new environment. Our approach takes description in natural language and
sequences together robotic instructions that are appropriate for a given environment and task. Note that the NL instructions are often ambiguous, and are
incomplete, and need to be grounded into the environment.

form natural language data and robotic instruction logs, col-
lected from several users. The tasks comprise performing
several steps in sequence, and there are often different ways
of performing the task in different environments. We compare
our method against our implementation of [18] and [7], and
show significant improvements. More importantly, we find
that our method handles generalization to new environments
and variations in language well, and is also able to handle
incomplete NL instructions in many cases. Finally, we use our
predicted sequences on a PR2 robot to create a dish following
NL instructions given by a user.

In summary, the key contributions of this paper are:
• We encode the environment and task context into an

energy function over a CRF which allows grounding of
the NL instructions into environment for tasks.

• Our model is able to handle missing NL instructions and
free-form variations in the language.

• Our method can handle mobile manipulation tasks with
long sequences of instructions. Our setting has a large
state space of the objects, and a large robotic action space.

• We contribute an online data collecting method, and
the resulting VEIL dataset comprising free-form natural
language instructions and corresponding robot instruction
logs. Our experiments show good results on the dataset
and our model outperforms the related work.

II. RELATED WORK

Mobile Manipulation Tasks. In the past decade, there has
been significant work on different manipulation and naviga-
tional skills such as grasping [32, 28], mixing [7], pushing
[43], placing [3, 20], constructing semantic maps [48], and
high degree of freedom arm planners (e.g., [40, 1]). These
works form the building blocks for executing the output
instructions for our model.

Traditionally, sequencing complicated controller instruc-
tions have been accomplished using symbolic planners

[41]. Since real environments have uncertainty and non-
determinism, Kaelbling and Lozano-Pérez [22] start with an
abstract plan and recursively generate plans as needed. Or, the
tasks are defined through expert designed state machines [35],
which does not generalize well when the environment or the
task changes. Rather than relying on symbolic representation
of the environment, Sung et al. [44] rely on a set of visual
attributes to represent each object in the environment and
dynamically choose the controller sequence from a list of
possible sequences that minimizes the score function based
on the current environment and the potential candidate for
the next instruction. Others use demonstrations for learning
different behaviors (e.g. [36]). These approaches solve only
parts of the problems that we address in this work—of creating
valid plans and using a score function for data-driven retrieval
of sequences of instructions. Our work addresses not only the
validity of sequences and data-driven retrieval of low-level
instructions, but it also models the ambiguity and grounding
of natural language instructions in the environment context.
Furthermore, the tasks considered by our work are complex
manipulation tasks requiring several sequences of steps.
Grounding Natural Language. The use of language has
gained recent attention in robotics. Other than the works
discussed in the introduction [33, 7, 4, 18], the problem of
navigation has been addressed by using learned models for
verbs like follow, meet, go as well as the conditions such
as walk close to the wall [24, 16]. In detail, Kollar et al.
[24] use maximum-likelihood approach to infer the path taken
by the robot. Translation of such weakly specified actions
into robotic behaviors is very important; these ideas form our
robotic instruction set in Table I. We go beyond navigational
instructions and present a model which can ground natural
language to a sequence of pre-defined set of manipulation and
navigation instructions that can be executed by robots.

Several works [16, 18] have looked at the problem of
grounding intricate noun-phrases in the language to the ob-

Tell Me Dave: Context-Sensitive Grounding of Natural Language to Mobile Manipulation Instructions, Misra, Sung, Lee, and Saxena. RSS 2014.

Some Sample NLP+Robotics Papers

!   Recipes: Tell Me Dave (http://tellmedave.cs.cornell.edu/)

Fig. 4. Robot Experiment. Given the language instruction for making the dessert ‘Affogato’: ‘Take some coffee in a cup. Add icecream of your choice.
Finally, add raspberry syrup to the mixture.’, our algorithm outputs a sequence that the PR2 executes to make the dessert. (Please see the video.)

Predefined Templates [18] focused on disambiguating spatial
relations but was extremely brittle to ambiguity in grounding,
therefore giving low performance.

Method Instruction-Tree [7] was able to give reasonable re-
sults on some sequences. However this approach has problem
working with large search tree. Furthermore, the bag-of-word
feature do not take into account the environment context, the
language might say that keep the cup in microwave but the cup
might already be inside the microwave (unless such constraints
are hard-coded). This approach thus fails when the language
is vague, for example, for the following sentence, heat the
water and add ramen., However, our approach takes this vague
sentence and grounds it in the environment using our model.
Our energy function incorporates several features and thus is
able to often give reasonable output sequences for such natural
language instructions. Also on an additional created data-set
for different tasks in a living room, we received similar results
with our full model outperforming the others.

We analyze the results in light of the following questions:
Is Language important? If we enforce all the constraints of
the task and provide the end-state of the environment, one may
argue that just using a symbolic planner may give reasonable
programs. However, the success of a task depends on the way
things are done. Natural language gives an approximate guide
that our model tries to follow. We see that Our Model - No
NLP gives 18.8% on average as compared to 63.0% for our full
model. In fact, we see evidence of such behavior in our results
also. While our model can handle ambiguous and incomplete
NL instructions, e.g., ‘heat up the water and then cook the
ramen’ that resulted in success, in some of the test cases the
NL instructions were quite ambiguous, e.g., ‘Microwave for
12 minutes and place it on the table’ on which our model
failed.
How important is the latent node? Overall, Table II shows
the results improve by about 2% on EED metric. We found that
it was especially helpful in scenarios where instructions were
partially missing. For example, for the instruction in Fig. 1 -

‘place the pot on the tap and turn the tap on...Turn the tap
off and heat the pot.’

there is no template that can fit in for the first clause
(place, [pot, tap], on : pot ! tap). One such template after
initialization has the form -

moveTo(sink); keep(pot , sink , on)

However this will make the sequence unexecutable as robot
cannot execute this sequence since it is not already grasping
the pot. In such cases, interpolation models these constraints
and we get the output using latent nodes as -
moveTo(pot); grasp(pot); moveTo(sink); keep(pot, sink, on)

How well does our model generalize to new environments
and tasks? In this test, we wanted to examine how well our
model can make use of examples from different environment
and tasks. Its not obvious whether the templates learned for
one task, such as making affogato will be useful for another
task such as making ramen. For studying the effect of a differ-
ent task, we performed another experiment in which we trained
and tested the model on making ramen task only (instead of
training together for {making ramen,making affogato}). We
found that because the VEIL library from the making affogato
task was not available for training, the performance dropped
to 64.9 on the IED metric as compared to 67.3 in Table II.
This indicates data examples from other tasks are helpful.
What if the robot does not know the result of its action?
The algorithm implicitly assumes that the robot knows the
result of its interaction with the environment. (It is being used
to compute certain features, doing the interpolation and in
inference) In order to test how crucial it is, we ran the Our
Model - No Domain Knowledge and as the results in Table II,
show the accuracy falls only by only 2-3 %.
Robot Experiment. We show that our grounded manip-
ulation instructions can be executed on PR2 robot given
the natural language instruction, ‘Take some coffee in a
cup. Add ice cream of your choice. Finally, add rasp-
berry syrup to the mixture.’ Figure 4 shows few snapshots
of PR2 making Affogato and the video is available at:
http://tellmedave.cs.cornell.edu

VIII. CONCLUSION

In this work, we presented a model that grounds the free-
form natural language instructions into a given environment
for a given task, in order to output a sequence of instructions
that the robot can execute to perform the task. We presented
a learning model that encodes certain desired properties into
an energy function—expressed as a model isomorphic to
conditional random field with edges representing the relations
between verb clauses, environment state and instructions. We
showed that our model handles missing or incomplete lan-
guage instructions, variations in language, as well as ambiguity
in grounding well. We also show that we outperform related
work in this area.

ACKNOWLEDGEMENT

We thank Claire Cardie for useful discussions and Kejia Tao
for her help with the simulator. This work was supported in
part by ONR Grant N00014-14-1-0156, and Microsoft Faculty
Fellowship and NSF Career award to Saxena.

Tell Me Dave: Context-Sensitive Grounding of Natural Language to Mobile Manipulation Instructions, Misra, Sung, Lee, and Saxena. RSS 2014.

Some Sample NLP+Robotics Papers

!   Recipes: RoboBarista (http://robobarista.cs.cornell.edu/)

Fig. 5. Screen-shot of Robobarista, the crowd-sourcing platform running on Chrome browser. We have built Robobarista platform for collecting a large
number of crowd demonstrations for teaching the robot.

to the cumulative sum, |D(m

A

,m

B

)|
path

⇤ (i.e. the length of
the optimal warping path), giving the final form:

distance(⌧

A

, ⌧

B

) =

D(m

A

,m

B

)

|D(m

A

,m

B

)|
path

⇤

This distance function is used for noise-handling in our
model and as the final evaluation metric.

VII. ROBOBARISTA: CROWD-SOURCING PLATFORM

In order to collect a large number of manipulation demon-
strations from the crowd, we built a crowd-sourcing web
platform that we call Robobarista (see Fig. 5). It provides a
virtual environment where non-expert users can teach robots
via a web browser, without expert guidance or physical
presence with a robot and a target object.

The system simulates a situation where the user encounters
a previously unseen target object and a natural language
instruction manual for its manipulation. Within the web
browser, users are shown a point-cloud in the 3-D viewer on
the left and a manual on the right. A manual may involve
several instructions, such as “Push down and pull the handle
to open the door”. The user’s goal is to demonstrate how to
manipulate the object in the scene for each instruction.

The user starts by selecting one of the instructions on the
right to demonstrate (Fig. 5). Once selected, the target object
part is highlighted and the trajectory edit bar appears below
the 3-D viewer. Using the edit bar, which works like a video
editor, the user can playback and edit the demonstration. The
trajectory representation, as a set of waypoints (Sec. III-A),
is directly shown on the edit bar. The bar shows not only
the set of waypoints (red/green) but also the interpolated
waypoints (gray). The user can click the ‘play’ button or
hover the cursor over the edit bar to examine the current
demonstration. The blurred trail of the current trajectory
(ghosted) demonstration is also shown in the 3-D viewer
to show its full expected path.

Generating a full trajectory from scratch can be difficult
for non-experts. Thus, similar to Forbes et al. [17], we
provide a trajectory that the system has already seen for
another object as the initial starting trajectory to edit.3

In order to simulate a realistic experience of manipulation,
instead of simply showing a static point-cloud, we have
overlaid CAD models for parts such as ‘handle’ so that
functional parts actually move as the user tries to manipulate
the object.

A demonstration can be edited by: 1) modifying the po-
sition/orientation of a waypoint, 2) adding/removing a way-
point, and 3) opening/closing the gripper. Once a waypoint
is selected, the PR2 gripper is shown with six directional
arrows and three rings, used to modify the gripper’s position
and orientation, respectively. To add extra waypoints, the user
can hover the cursor over an interpolated (gray) waypoint
on the edit bar and click the plus(+) button. To remove an
existing waypoint, the user can hover over it on the edit bar
and click minus(-) to remove. As modification occurs, the
edit bar and ghosted demonstration are updated with a new
interpolation. Finally, for editing the status (open/close) of
the gripper, the user can simply click on the gripper.

For broader accessibility, all functionality of Robobarista,
including 3-D viewer, is built using Javascript and WebGL.
We have made the platform available online (http://
robobarista.cs.cornell.edu)

VIII. EXPERIMENTS

A. Robobarista Dataset
In order to test our model, we have collected a dataset of

116 point-clouds of objects with 249 object parts (examples
shown in Figure 6). Objects range from kitchen appliances
such as stoves and rice cookers to bathroom hardware such
as sinks and toilets. Figure 14 shows a sample of 70 such

3We have made sure that it does not initialize with trajectories from other
folds to keep 5-fold cross-validation in experiment section valid.

Robobarista: Object Part based Transfer of Manipulation Trajectories from Crowd-sourcing in 3D Pointclouds. Sung, Jin, and Saxena. ISRR 2015.

Some Sample NLP+Robotics Papers

! RoboBarista: http://robobarista.cs.cornell.edu/

Fig. 10. Examples of transferred trajectories being executed on PR2. On the left, PR2 is able to rotate the ‘knob’ to turn the lamp on. In the third
snapshot, using two transferred trajectories, PR2 is able to hold the cup below the ‘nozzle’ and press the ‘lever’ of ‘coffee dispenser’. In the last example,
PR2 is frothing milk by pulling down on the lever, and is able to prepare a cup of latte with many transferred trajectories.

Fig. 9. Comparisons of transfers between our model and the base-
line (deep multimodal network without embedding [61]). In these three
examples, our model successfully finds correct manipulation trajectory from
these objects while the other one does not. Given the lever of the toaster,
our algorithm finds similarly slanted part from the rice cooker while the
other model finds completely irrelevant trajectory. For the opening action
of waffle maker, trajectory for paper cutter is correctly identified while the
other model transfers from a handle that has incompatible motion.

cloud is by itself a challenging problem [35]. Thus, we
rely on human experts to pre-label parts of the object to be
manipulated. The point-cloud of the scene is over-segmented
into thousands of supervoxels, from which the expert chooses
the part of the object to be manipulated. Even with expert
input, such segmented point-clouds are still extremely noisy
because of sensor failures, e.g. on glossy surfaces.
Is intermediate object part labeling necessary? A multi-
class SVM trained on object part labels was able to obtain

over 70% recognition accuracy in classifying five major
classes of object parts (‘button’, ‘knob’, ‘handle’, ‘nozzle’,
‘lever’.) However, the Object Part Classifier baseline, based
on this classification, performed at only 23.3% accuracy for
actual trajectory transfer, outperforming chance by merely
12.1%, and significantly underperforming our model’s result
of 65.1%. This shows that object part labels alone are not
sufficient to enable manipulation motion transfer, while our
model, which makes use of richer information, does a much
better job.
Can features be hand-coded? What does learned deep
embedding space represent? Even though we carefully
designed state-of-the-art task-specific features for the SSVM
and LSSVM models, these models only gave at most 40.8%
accuracy. The task similarity method gave a better result
of 53.7%, but it requires access to all of the raw training
data (point-clouds, language, and trajectories) at test time,
which leads to heavy computation at test time and requires a
large amount of storage as the size of training data increases.
Our approach, by contrast, requires only the trajectory data,
and a low-dimensional representation of the point-cloud and
language data, which is much less expensive to store than
the raw data.

This shows that it is extremely difficult to find a good set
of features which properly combines these three modalities.
Our multimodal embedding model does not require hand-
designing such features, instead learning a joint embedding
space as shown by our visualization of the top layer h

3

in Figure 12. This visualization is created by projecting all
training data (point-cloud/language pairs and trajectories) of
one of the cross-validation folds to h

3, then embedding them
to 2-dimensional space using t-SNE [69]. Although previous
work [61] was able to visualize several nodes in the top
layer, most were difficult to interpret. With our model, we can
embed all our data and visualize all the layers (see Figs. 12
and 13).

One interesting result is that our system was able to
naturally learn that “nozzle” and “spout” are effectively
synonyms for purposes of manipulation. It clustered these
together in the lower-right of Fig. 12 based solely on the fact
that both are associated with similar point-cloud shapes and
manipulation trajectories. At the same time, it also identified
one exception, a small cluster of “nozzles” in the center of
Fig. 12 which require different manipulation motions.

Robobarista: Object Part based Transfer of Manipulation Trajectories from Crowd-sourcing in 3D Pointclouds. Sung, Jin, and Saxena. ISRR 2015.

Some Sample NLP+Robotics Papers

!   Learning New Actions by Situated Human-Robot Dialogue

Figure 1: An example setup and dialogue. Objects
are marked with labels only for the illustration pur-
pose.

based on the step-by-step instructions (i.e., one
step at a time and wait for the robot’s response
at each step before going to the next step) with
the one-shot instructions (i.e., give the instruction
with all steps at once). Our empirical results have
shown that the three-tier knowledge representation
can capture the learned new action and apply it
to novel situations. Although the step-by-step in-
structions resulted in a lengthier teaching process
compared to the one-shot instructions, they led to
better learning performance for the robot.

2 Related Work

Over forty years ago, Terry Winograd developed
SHRDLU (Winograd, 1972) to demonstrate nat-
ural language understanding using a simulated
block-moving arm. One aspect he did not address,
but mentioned in his thesis (Winograd, 1972) as
an important aspect, was learning new actions
through natural language. Motivated by Wino-
grad’s early work, we start our initial investigation
on action learning in a physical blocks world and
with a physical robotic arm. The blocks world is
the most famous domain used for planning in ar-
tificial intelligence. Thus it allows us to focus on
mechanisms that, on one hand, connect symbolic
representations of language with lower-level con-
tinuous sensorimotor representations of the robot;
and on the other hand, support the use of the plan-
ning algorithms to address novel situations.

Most previous work on following human in-
structions are based on supervised learning (Kol-
lar et al., 2010; Tellex et al., 2011; Chen et al.,
2010) or reinforcement learning (Branavan et al.,
2012; Branavan et al., 2010). These types of learn-

ing may not be adequate in time-critical situations
where only resources available to the robot is its
human partners. Thus it is desirable that humans
can engage in a natural language dialogue to teach
robots new skills. Using natural language dialogue
to learn new skills have been explored previously
by (Allen et al., 2007) where an artificial agent was
developed to acquire skills through natural lan-
guage instructions (i.e., find restaurant). But this
work only grounds language to symbolic interface
widgets on web pages.

In the robotics community, previous work has
applied learning by demonstration to teach robots
new skills (Cakmak et al., 2010). To potentially
allow natural language instructions, previous work
has also explored connecting language with lower-
level control systems (Kress-Gazit et al., 2008;
Siskind, 1999; Matuszek et al., 2012). Different
from these previous works, here we investigate the
use of natural language dialogue for learning ac-
tions. Previous work described in (Cantrell et al.,
2012; Mohan et al., 2013) is most similar to our
work. Here we focus on both grounded learning
and the use of planning for action learning.

3 Dialogue System

Figure 2: System Architecture

We developed a dialogue system to support
learning new actions. An example setup is shown
in Figure 1, in which a SCHUNK arm is used to
manipulate blocks placed on a surface. In H1,
the human starts to ask the robot to stack the blue
block (i.e., B1) on top of the red block (i.e., R1).
The robot does not understand the action “stack”,
so it asks the human for instructions. Then the hu-

90

Back to the Blocks World: Learning New Actions through Situated Human-Robot Dialogue. She, Yang, Cheng, Jia, Chai, Xi. SigDial 2014.

Some Sample NLP+Robotics Papers

!   Learning To Interpret Language Commands via Dialogue

Figure 3: The Mechanical Turk interface for the delivery task. This abridged conversation is from a Turker in training batch
0, when the system had access to only the seed lexicon. Because of this conversation, the agent learned that “calender” and
“planner” mean “calendar” during retraining.

Figure 4: Left: Average Mechanical Turk survey responses across the four test batches. Right: Mean user turns in Mechanical
Turk dialogs where the correct goal was reached. Means in underlined bold differ significantly (p < 0.05) from the batch 0
mean.

dition to learning misspelling corrections and new referring
expressions, the agent learned to parse things like “item in
slot n” by matching n to the corresponding item and collaps-
ing the whole phrase to this meaning.

6 Segbot Experiments
The agent was integrated into a Segway-based robot platform
(Segbot) as shown in Figure 5 (Left) using the Robot Operat-
ing System (ROS) [Quigley et al., 2009].

6.1 Implementation
The robot architecture is shown in Figure 5 (Right). Users in-
teracted with the agent through a graphical user interface by
typing in natural language. The agent generated queries to a
symbolic planner formalized using action language BC [Lee
et al., 2013] from user goals. Action languages are used for
representing and reasoning with the preconditions, effects,
and executability of actions, and BC is good at reasoning with

domain knowledge. The sensor readings were converted to
logical facts provided to the symbolic planner. For instance,
we used laser sensors to detect whether office doors were
open. The Segbot learned action costs from experience us-
ing an existing approach [Khandelwal et al., 2014], and the
symbolic planner generated lowest-cost plans. The action
executor used a manually-created semantic map to translate
symbolic actions into path-planner executions. We used ex-
isting ROS packages for path planning (e.g. A* search for
global path planning and Elastic Band for local path plan-
ning). The sensor readings from the RGB-D camera (Kinect),
laser, and sonar array were projected onto a 2D costmap so
that the robot could safely avoid obstacles such as high tables
and glass windows.

6.2 Methodology
For testing, users were given one goal from the navigation and
delivery tasks, then filled out the survey. The task prompts

Figure 5: Left: Robot platform (Segbot) used in experi-
ments. Right: Segbot architecture, implemented using Robot
Operating System (ROS).

included the directory panels used in the Mechanical Turk
experiments pairing names and office numbers and showing
items available to the robot for delivery (Figure 3).

We evaluated our agent’s initial performance by giving 10
users one of each of these goals (so each delivery test goal was
seen once and each navigation test goal was seen 5 times).
Users were allowed to skip goals they felt they could not con-
vey. We refer to this group as Init Test.

We then allowed the agent to perform incremental learning
for four days in our office space. Students working here were
encouraged to chat with it, but were not instructed on how to
do so beyond a panel displaying the directory information and
a brief prompt saying the robot could only perform “naviga-
tion and delivery tasks”. Users in test conditions did not in-
teract with the robot during training. After understanding and
carrying out a goal, the robot prompted the user for whether
the actions taken were correct. If they answered “yes” and the
goal was not in the test set, the agent retrained its semantic
parser with new training examples aligned from the conver-
sation. View a video demonstrating the learning process on
the Segbot at: https://youtu.be/FL9IhJQOzb8.

We evaluated the retrained agent as before. The same test-
ing goal pairs were used with 10 new users. We refer to this
latter set as Trained Test.

6.3 Results
During training, the robot understood and carried out 35
goals, learning incrementally from these conversations. Ta-
ble 2 compares the survey responses of users and the num-
ber of goals users completed of each task type in the Init
Test and Trained Test groups. Because only two users
completed delivery goals in Init Test, we use the pro-
portion of users having completed goals in each task, rather
than conversation length, as a metric for dialog efficiency. For
navigation goals, Init Test had an average dialog length
of 3.89, slightly longer than the 3.33 for Train Test.

We note that there is significant improvement in user per-
ception of the robot’s understanding, and trends towards less
user frustration and higher delivery-goal correctness. Though
users did not significantly favor using the robot for tasks af-
ter training, several users in both groups commented that they
would not use guidance only because the Segbot moved too

Table 2: Average Segbot survey responses from the two test
groups and the proportion of task goals completed. Means in
bold differ significantly (p < 0.05). Means in italics trend
different (p < 0.1).

Init Test Trained Test

Survey Question Likert [0-4]
Tasks Easy 3.8 3.7
Robot Understood 1.6 2.9
Robot Frustrated 2.5 1.5
Use Navigation 2.8 2.5
Use Delivery 1.6 2.5
Goals Completed Percent
Navigation 90 90
Delivery 20 60

slowly.

7 Conclusions and Future Work
We implemented an agent that expands its natural language
understanding incrementally from conversations with users
by combining semantic parsing and dialog management. We
demonstrated that this learning yields significant improve-
ments in user experience and dialog efficiency through Me-
chanical Turk experiments with hundreds of users. A proof-
of-concept experiment on a Segbot platform showed similar
improvements when learning was restricted to natural conver-
sations the agent had over a few days’ time.

This work provides initial steps towards expanding natural-
language understanding for robot commands using natural
conversations with users as training data. Our agent improves
its language understanding without requiring a large corpus
of annotated data.

We intend to replace our static dialog policy with a
POMDP-based policy [Young et al., 2013] that considers the
continuous belief state about the user goal. Incremental learn-
ing will then involve updating the dialog policy through rein-
forcement learning based on parser confidence and conver-
sation success. We will also explore whether our approach
can automatically learn to correct consistent speech recogni-
tion errors. As the robot platform gains access to more tasks,
such as manipulation of items, doors, and light-switches via
an arm attachment, we will scale the agent to learn the lan-
guage users employ in that larger goal space. We also plan to
add agent perception, so that some predicates can be associ-
ated with perceptual classifiers [Matuszek et al., 2012], and
new predicates can be discovered for new words.

8 Acknowledgments
We thank the anonymous reviewers for their feedback. A por-
tion of this work has taken place in the Learning Agents Re-
search Group (LARG) at UT Austin. LARG research is sup-
ported in part by NSF (CNS-1330072, CNS-1305287), ONR
(21C184-01), and AFOSR (FA8750-14-1-0070, FA9550-14-
1-0087).

Learning to Interpret Natural Language Commands through Human-Robot Dialog. Thomason, Zhang, Mooney and Stone. IJCAI 2015.

Some Sample NLP+Robotics Papers

!   Learning Language Games Through Interaction

Learning Language Games through Interaction

Sida I. Wang Percy Liang Christopher D. Manning
Computer Science Department

Stanford University
{sidaw,pliang,manning}@cs.stanford.edu

Abstract

We introduce a new language learning
setting relevant to building adaptive nat-
ural language interfaces. It is inspired
by Wittgenstein’s language games: a hu-
man wishes to accomplish some task
(e.g., achieving a certain configuration of
blocks), but can only communicate with a
computer, who performs the actual actions
(e.g., removing all red blocks). The com-
puter initially knows nothing about lan-
guage and therefore must learn it from
scratch through interaction, while the hu-
man adapts to the computer’s capabilities.
We created a game called SHRDLURN in
a blocks world and collected interactions
from 100 people playing it. First, we an-
alyze the humans’ strategies, showing that
using compositionality and avoiding syn-
onyms correlates positively with task per-
formance. Second, we compare computer
strategies, showing that modeling prag-
matics on a semantic parsing model accel-
erates learning for more strategic players.

1 Introduction

Wittgenstein (1953) famously said that language
derives its meaning from use, and introduced the
concept of language games to illustrate the fluid-
ity and purpose-orientedness of language. He de-
scribed how a builder B and an assistant A can use
a primitive language consisting of four words—
‘block’, ‘pillar’, ‘slab’, ‘beam’—to successfully
communicate what block to pass from A to B. This
is only one such language; many others would also
work for accomplishing the cooperative goal.

This paper operationalizes and explores the idea
of language games in a learning setting, which we
call interactive learning through language games

Figure 1: The SHRDLURN game: the objective
is to transform the start state into the goal state.
The human types in an utterance, and the computer
(which does not know the goal state) tries to in-
terpret the utterance and perform the correspond-
ing action. The computer initially knows nothing
about the language, but through the human’s feed-
back, learns the human’s language while making
progress towards the game goal.

(ILLG). In the ILLG setting, the two parties do not
initially speak a common language, but nonethe-
less need to collaboratively accomplish a goal.
Specifically, we created a game called SHRD-
LURN,1 in homage to the seminal work of Wino-
grad (1972). As shown in Figure 1, the objective
is to transform a start state into a goal state, but
the only action the human can take is entering an
utterance. The computer parses the utterance and
produces a ranked list of possible interpretations
according to its current model. The human scrolls
through the list and chooses the intended one, si-
multaneously advancing the state of the blocks and
providing feedback to the computer. Both the hu-
man and the computer wish to reach the goal state

1Demo: http://shrdlurn.sidaw.xyz

ar
X

iv
:1

60
6.

02
44

7v
1

 [c
s.C

L]
 8

 Ju
n

20
16

Learning Language Games through Interaction. Wang, Liang, and Manning. ACL 2016.

Some Sample NLP+Robotics Papers

!   Collaborative Referring Expression Generation by Dialogue

(a) An example of situated setup.

(b) An example of the robot’s internal repre-
sentation of the shared environment.

(c) An example of collaborative referential process.

Figure 1: An example of situated setup for referen-
tial communication.

Since we are addressing referential communication to medi-
ate perceptual di↵erences between humans and robots, we
intentionally applied only a simple computer vision algo-
rithm [19]. Here, except for Object 4 which is correctly
recognized as a banana with a confidence of 0.65, the rest
of objects are mis-recognized. The numerical values related
to color, location, and the size of bounding boxes are also
captured by the internal representation. Figure 1(c) shows

an example of the embodied collaborative referential pro-
cess for the robot to gradually lead the human to the target
object (i.e., the red apple as shown by the arrow in Fig-
ure 1(a)). Note the robot takes the human’s perspective
when describing the objects in the scene.

Incorporation of robot’s gesture in referring acts.
Pointing gestures from a robot are combined with verbal
descriptions to generate referring expressions. Here, we treat
the cost of gesture generation as a feature and incorporate it
with other features into the collaborative models [7]. Since
it is expensive to conduct a large scale in-lab study to learn
feature weights from real-time human-robot interaction, we
directly adopt the features and their learned weights from
our web-based study [7] as shown in Table 1 (Feature 1-22).
We then explicitly add the cost of the gesture generation as
an additional feature and set its weight to 0.5 (Feature 23).
The cost of a pointing gesture depends on several factors:

the distance from the robot to the target object, the size of
the target object, adjacency of other objects to the target
object, etc. Inspired by previous work on the costs of point-
ing, [10] and [21], we define the cost of a pointing gesture to
an object as follows:

cost =

8
<

:

log2(
1.5⇥Distance

Size + 1) If the object to be
described is in a group

log2(
Distance

Size + 1) Otherwise

Given a situation s, the robot will apply the features and
their associated weights in Table 1 to calculate Q(s, a) and
then choose the generation action a

⇤ that maximizes Q(s, a).
Note that incorporating gesture does not necessitate that the
generated referring expressions will always include gestures.
Whether gesture is used or not depends on how it weighs
against other features extracted from the environment. For
example, in Figure 1(c), R1 includes the pointing gesture as
part of the referring expression, while R2 does not.

Incorporation of eye gaze as feedback.
Previous psycholinguistic studies have shown that human
eye gaze directly links with language comprehension [27].
Immediately after hearing a referring expression, the hearer’s
eyes move to the objects being referred to. Motivated by
this finding we incorporate the user’s real-time gaze and ver-
bal information as intermediate feedback in the installment
model.
To incorporate human gaze feedback, we must find how

the gaze is distributed among each of the objects in the
scene over the time immediately following an RE such as
in Figure 1(c). Specifically, starting from the onset of an
RE uttered by the robot, we capture at least 200 gaze read-
ings (taking on average 7.7 sec) from the participant and
calculate a distribution showing which objects the gaze is
drawn to most often (i.e., which objects draw the most gaze
readings). Based on this distribution, we applied a simple
criterion to identify the focused object: the object with the
highest number of readings where its reading number is at
least twice as high as the reading number of the second high-
est object.
The gaze feedback can be incorporated into the install-

ment model with or without verbal feedback.

• Gaze Only Feedback If a focused object can be iden-
tified based on the gaze, then the installment is con-
sidered successful and the focused object becomes the

Collaborative Models for Referring Expression Generation in Situated Dialogue. Fang, Doering, and Chai. AAAI 2014.

Next Week

!   Website will be updated with initial paper list very soon

!   Once paper list is up, start volunteering for paper
presentation!

!   We might do pairs/groups of students depending on
class size

!   Project details and dates will be announced soon

