
684 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 6, JUNE 2007

MOUSETRAP: High-Speed Transition-Signaling
Asynchronous Pipelines

Montek Singh and Steven M. Nowick

Abstract—An asynchronous pipeline style is introduced for high-
speed applications, called MOUSETRAP. The pipeline uses stan-
dard transparent latches and static logic in its datapath, and small
latch controllers consisting of only a single gate per pipeline stage.
This simple structure is combined with an efficient and highly-con-
current event-driven protocol between adjacent stages. Post-layout
SPICE simulations of a ten-stage pipeline with a 4-bit wide data-
path indicate throughputs of 2.1–2.4 GHz in a 0.18- m TSMC
CMOS process. Similar results were obtained when the datapath
width was extended to 16 bits. This performance is competitive
even with that of wave pipelines [40], [19], without the accompa-
nying problems of complex timing and much design effort. Addi-
tionally, the new pipeline gracefully and robustly adapts to variable
speed environments. The pipeline stages are extended to fork and
join structures, to handle more complex system architectures.

Index Terms—Asynchronous, clocked CMOS, gate-level
pipelines, latch controllers, micropipelines, pipeline processing,
transition signaling, wave pipelining.

I. INTRODUCTION

ANEW asynchronous pipeline style, called MOUSETRAP,
is introduced for high-speed applications. The pipeline

uses standard blocks of static logic for processing data and
simple level-sensitive D-latches to separate data items.

An asynchronous, or clockless, circuit style [38] was chosen
for several reasons. First, while synchronous designers are cur-
rently capable of achieving multi-gigahertz clock distributions,
the task involves the ever-increasing challenges of design time,
verification effort, clock skew, and power management, and in-
terfacing with different timing domains. Second, since an asyn-
chronous pipeline has no global clock, it has a natural elasticity
[35]: the number of data items in the pipeline, and the speeds
of the external interfaces, can vary dynamically. As a result, the
pipeline can gracefully interface with environments operating
at different rates, including those subject to dynamic voltage
scaling, thus facilitating modular and reusable design. Finally,

Manuscript received June 18, 2004; revised June 22, 2006. This work was
supported by the National Science Foundation (NSF) under Award CCR-97-
34803, by the NSF ITR under Award CCR-00-86036, by the NSF ITR under
Award CCR-00-86007, by a grant from the New York State Microelectronics
Design Center (MDC), by a gift from Sun Microsystems, Inc., by a UNC Ju-
nior Faculty Development Award, by a grant from UNC University Research
Council, and by an IBM Faculty Development Award.

M. Singh is with the Department of Computer Science, University of North
Carolina, Chapel Hill, NC 27599 USA (e-mail: montek@cs.unc.edu).

S. Nowick is with the Department of Computer Science, Columbia Univer-
sity, New York, NY 10027 USA (e-mail: nowick@cs.columbia.edu).

Digital Object Identifier 10.1109/TVLSI.2007.898732

the localized control of asynchronous pipelines is an excellent
match for very high throughput fine-grain datapaths.

The new pipeline is characterized by the simplicity of its
structure and operation, as well as by ease of design. The
datapath uses standard transparent latches which are small and
fast, and, for a basic linear pipeline, the asynchronous control
consists of only a single gate per pipeline stage. Pipeline stages
communicate only with immediate neighbor stages, and the
timing constraints are all local, simple, and one-sided.

While the proposed pipeline style has general applica-
bility, a special focus of this paper is to target extremely high
throughput. In particular, fine-grain, or “gate-level,” pipelines
are proposed, where the function logic in each stage is only
one gate deep. At this granularity, very short cycle times are
obtained: e.g., the critical cycle consists of a path through
a single level of function logic plus two latch delays and a
small amount of control logic. As an additional optimization,
this critical cycle can be further shortened by merging to-
gether logic and storage elements, using a circuit style called
clocked-logic, or clocked-CMOS (C MOS) [2]. In each case,
a new, highly-concurrent protocol is used; as a result, a basic
MOUSETRAP pipeline without logic has a cycle time of only
5–6 CMOS gate delays (three components).

The pipeline builds on, and extends, the more conservative
approaches proposed in [7], [22], and [35]. In comparison, the
MOUSETRAP pipeline generates an earlier completion signal,
and new templates are proposed to handle complex pipelining
(forks/joins). In addition, several novel optimizations are pro-
posed: a “waveform shaping” strategy to speed up the critical
path; an inverter elimination strategy using dual-rail control
logic; and the use of a clocked-CMOS logic style.

The name MOUSETRAP stands for minimal-overhead ultra-
high-speed transition-signaling asynchronous pipeline. There is
another reason why our pipelines are so called: the latching
action is somewhat analgous to that of a mousetrap. When a
pipeline stage is waiting for data, its latch remains transparent;
as soon as data enters the stage, it is captured by closing the latch
behind it. While there have been other asynchronous pipelines
that have used this kind of latching action [7], [35], each has its
own limitations. In effect, our goal in this paper has been to build
a “better mousetrap.” Post-layout simulations using SPICE are
quite encouraging: a 2.10–2.38 GHz1 throughput in a TSMC
0.18- m process.

The paper is organized as follows. Section II introduces the
new pipeline, including its structure and operation, some perfor-
mance-oriented optimizations, and extensions to handle forks
and joins. Section III presents previous work on synchronous

1Strictly speaking, when referring to the throughput of asynchronous designs,
the unit “gigahertz” should actually be interpreted as “giga items per second.”

1063-8210/$25.00 © 2007 IEEE

SINGH AND NOWICK: MOUSETRAP: HIGH-SPEED TRANSITION-SIGNALING ASYNCHRONOUS PIPELINES 685

Fig. 1. Basic MOUSETRAP pipeline without logic processing.

and asynchronous pipelines, and then Section IV provides an
in-depth comparison of MOUSETRAP with relevant previous
approaches. Simulation results are presented in Section V and
Section VI gives conclusions.

II. THE MOUSETRAP PIPELINE

This section first introduces the basic structure and operation
of the MOUSETRAP pipeline (Sections II-A and II-B). Then,
several implementation issues are discussed in detail and perfor-
mance and timing constraints are derived (Sections II-C–II-E).
In addition, an optimization is introduced that improves
pipeline performance under steady-state operation by carefully
“shaping” the controller output so as to reduce critical pipeline
delays (Section II-F). Finally, the basic linear pipelines are
extended to handle forks and joins (Section II-G).

Initially, to simplify discussion, Sections II-A and II-B focus
on a basic pipeline without logic processing, i.e., a simple first-
input, first-output (FIFO) queue. Later, Section II-C shows how
logic processing is easily added.

A. Basic Pipeline Structure: A Simple FIFO

Fig. 1 shows the structure of the basic pipeline without logic
processing. Three pipeline stages are shown. Each stage consists
of a data latch and a latch controller. Adjacent stages commu-
nicate with each other using “requests” (req’s) and “acknowl-
edgments” (ack’s).

The data latch is a standard level-sensitive D-type transparent
latch. The latch is normally transparent (i.e., enabled), allowing
new data to pass through quickly.

A commonly-used asynchronous scheme, called bundled
data [26], is used to encode the datapath: a control signal,

indicates arrival of new data at stage ’s inputs. This
approach, which has been successfully used in commercial
chips by Philips [12], allows existing synchronous-style blocks
to be reused in an asynchronous system without concerns for
hazards, as long as the associated request signal is generated
with appropriate timing. In particular, a simple one-sided timing
requirement must be satisfied for correct operation: must
arrive after the data inputs to stage have stabilized. (When
logic processing is added to the pipeline, the request signal
in each stage is typically delayed by an amount that matches
the latency of the associated function block, i.e., by a matched
delay. This is discussed in more detail in Section II-C.) Once

Fig. 2. Aternate view of a basic MOUSETRAP pipeline stage.

new data has passed through stage ’s latch, is pro-
duced, which is sent to its latch controller, as well as to stages

and .
The latch controller enables and disables the data latch. It

consists of only a single XNOR gate with two inputs: the done
from the current stage, stage , and the ack from stage .

An alternate view of the basic pipeline is shown in Fig. 2. The
latch inside a stage is shown separated into two parts: 1) a single
bit latch that receives the incoming request and produces

and the outgoing request and 2) the remainder
of the latch which captures the data bits. In this representation,
the bit latch and the XNOR together form the entire control cir-
cuit that generates and receives the handshake signals from the
neighboring pipeline stages on the left and the right, and also
produces the latch enable signal , which is internal to the
stage, for controlling the latching action on the datapath.

B. Pipeline Operation

1) Overview: The operation of the pipeline of Fig. 1 is quite
simple. Initially, when the pipeline is empty, all its latches
are transparent and all the done, req and ack signals are low.
When the first data item flows through successive stages of
the pipeline, it flips the values of all these signals exactly once
(high). Subsequently, the second data item flips all these signals
once again (low). This method of signaling is called transition
signaling [35]. Each transition, whether up or down, represents
a distinct event: the arrival of a new data item.

Once a data item passes through stage ’s latch, three ac-
tions take place in parallel: 1) the data is passed forward to the
next stage for further processing, along with the corresponding
request, ; 2) an acknowledgment, , is sent to the
previous stage, freeing it up to process the next data item; and, fi-
nally, 3) stage ’s latch itself is quickly made opaque to protect
the current data from being overwritten by new data produced
by stage . Subsequently, when an acknowledgment,
is received from stage the latch in stage is reenabled
(i.e., made transparent).

686 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 6, JUNE 2007

Note that while transition signaling is used to signal the flow
of data (one transition on each req/done/ack per data item) the
latches themselves require two transitions per data item: one to
capture (make opaque), and one to release (make transparent).
The first transition takes place when data passes through stage

’s latch (changes value); the second when the same
data passes through stage ’s latch (changes value).
Thus, the XNOR gate acts like a phase converter: it converts the
transition signaling done’s and ack’s into level control for the
transparent latches.

There is another interpretation of the behavior of the latch
controller, which is useful for understanding the pipeline opera-
tion: the XNOR gate is simply an “equality tester.” When stages

and have the same data item, stage is effectively
“empty,” and its latch is enabled (made transparent). When the
stages have distinct data items, stage is effectively “full,” and
its latch is disabled (made opaque).

The latching action by a pipeline stage is analogous to the
operation of a household mousetrap: latches remain transparent
before data arrives; they are closed (i.e., made opaque) as soon
as data passes through. It is important to note that this behavior
is very different from that of most synchronous, and many asyn-
chronous, pipelines in which latches are opened only after new
data arrives.

2) Detailed Operation: A key local timing constraint must
be satisfied for correct operation. Since a transition on
is also a transition on , there is a race condition between
the disabling of stage ’s latch and the reception of new data
from . To ensure that the contents of stage are not cor-
rupted, stage ’s latch must be disabled fast enough, i.e., before
the stage can provide new data. This is a simple one-sided
timing constraint that can easily be satisfied in practice. (For a
more detailed analysis, see Section II-D2.)

Note that the choice of a hybrid protocol—transition sig-
naling for the handshake signals, and level signaling for the
latch enable signal—combines the advantages of both signaling
schemes: 1) much less handshaking overhead, using transition
signaling, since there is no wasteful “return-to-zero” phase and
2) use of small and fast transparent latches, since they are level
controlled. The benefit of a single round-trip handshake per
communication (two signaling events), compared to the more
common two round-trip handshakes with four-phase commu-
nication (four signaling events), is especially important when
function blocks communicate over long-latency interconnects,
such as long-haul on-chip wires or off-chip buses. While several
transition signaling schemes have been proposed—some with
phase conversion [7], [35] and others without [42]—the pipeline
presented here has much less overhead. (Refer to Section IV for
a detailed comparison.)

The operation of a pipeline stage can be formally specified
in the form of a signal transition graph (STG) [6], as shown in
Fig. 3. Transitions and represent the enabling and
disabling of the latch. The remaining STG transitions—

, and —represent transitions (i.e., tog-
gling) of the respective handshake signals. The directed arcs rep-
resent the dependencies between pairs of transitions. Thus, for
example, must be asserted high and the incoming request
must transition before the outgoing request transitions. One arc,

Fig. 3. Formal specification of stage controller.

from to , is shown dotted; it represents a dependence
that is not directly implemented by the controller, but instead
must be satisfied by timing.

In summary, the new pipeline protocol is very simple and the
operation quite fast. The forward latency of an empty pipeline
is low because all the latches are initially transparent. The cycle
time of the pipeline is short because the pipeline is highly con-
current: as soon as data enters stage stage is freed up
for its entire next cycle.

C. Pipeline Implementation: Adding Logic Processing

So far, only pipelines without logic processing, i.e., simple
FIFOs, have been considered. It is now shown how logic pro-
cessing can easily be added to the pipeline.

1) General Pipeline Implementation: Fig. 4 shows how basic
logic processing can be added to the pipeline. Blocks of combi-
national logic and matching delay elements (“matched delays”)
are simply inserted between pipeline stages. The standard asyn-
chronous bundled data scheme is again used: must ar-
rive at stage after the data inputs to that stage have stabi-
lized. Therefore, the latency of the delay element must match
the worst-case delay through the combinational block. A ben-
efit of this approach is that the datapath itself can use standard
single-rail (synchronous style) blocks, which are allowed to be
hazardous, as long as the req arrives after data has stabilized.
Moreover, even when worst-case matched delays are used, this
approach has two advantages over synchronous design: 1) dif-
ferent pipeline stages are allowed to have different delays and
2) variations in a stage’s latency are required to be tracked only
by its local delay element, not by a global clock.

There are several common ways to implement a matched
delay. One technique is to simply use an inverter chain, or a
chain of transmission gates; the number of gates and their tran-
sistor sizing determines the total delay. A more accurate tech-
nique duplicates the worst-case critical path of the logic block,
and uses that as a delay line [10]. If the duplicated critical path
is placed in close proximity to the logic block, it can provide
good delay tracking even for a wide variation in environmental
and process variations. However, this technique is more area ex-
pensive than using a chain of inverters or other standard gates.
Bundled data has been widely used, including in a commer-
cial Philips 80C51 asynchronous microcontroller, several tens
of millions of which have been sold commercially by Philips
for use in pagers and smartcards [12]. Moreover, bundled data
is also currently used in the commercial tool flow of Handshake

SINGH AND NOWICK: MOUSETRAP: HIGH-SPEED TRANSITION-SIGNALING ASYNCHRONOUS PIPELINES 687

Fig. 4. MOUSETRAP pipeline with logic processing.

Fig. 5. C MOS logic.

Solutions [13], a Philips-incubated asynchronous startup com-
pany that, in partnership with ARM, has very recently developed
a fully asynchronous bundled-data ARM family processor [1].

2) Special Case: Gate-Level Pipelines Using C MOS: To
target extremely high throughput, as a special case, gate-level
pipelines can be used: the datapath is sectioned into the finest-
grained stages, each containing function logic that is only a
single logic level deep, with no explicit latches. As an additional
benefit, the absence of latches also translates into savings of chip
area and power consumption.

Clocked-logic, also known as C MOS, is a particularly attrac-
tive approach to gate-level pipelining [2]. In this scheme, the
latches are eliminated altogether; instead, a clock is applied di-
rectly to the logic gate, to which latching functionality is added.

Fig. 5 shows the structure of a general C MOS gate. The
clock input directly controls the gate through two transis-
tors, one each in the pull-up and the pull-down network. When

is asserted, the gate is enabled and a new output is produced.
When is deasserted, the gate holds its output value. Typ-
ically, an inverter pair providing weak feedback is attached at
the gate output to provide a more robust hold operation. While
C MOS has been proposed as a synchronous technique [2],
it can be naturally adapted to very high-speed asynchronous
pipelines using local handshake signals to replace the clock.

Fig. 6 shows a C MOS implementation of the MOUSETRAP
pipeline. The explicit data latches of Fig. 4 have been elim-
inated; instead, C MOS gates provide both logic as well as

Fig. 6. C MOS implementation of gate-level MOUSETRAP pipeline stage.

latching functionality. Note that the “clock” input to the C MOS
logic is actually the asynchronous signal that is locally gen-
erated by the XNOR gate in the stage’s latch controller. Both
and are needed for the control of C MOS gates. This sug-
gests the use of a dual-rail XNOR gate, which is discussed next.

3) XNOR Optimization: Dual-Rail Implementation: An alter-
native design of the pipeline control is now proposed, to elim-
inate two gate delays from the critical path. Since many trans-
parent latches as well as C MOS gates require both true and
complemented enables, a useful optimization for both of the
proposed pipeline schemes (Figs. 4 and 6) is to implement the
XNOR as a dual-rail gate, providing both XOR and XNOR outputs.
As highlighted in Fig. 6, the XNOR now has two dual-rail in-
puts—(done,) and (ack,)—and a dual-rail output (,

). Accordingly, the “bit latch”—which receives the incoming
req, and generates done as well as the outgoing req and ack sig-
nals—is now replaced by a pair of C MOS identity gates. While
this approach increases the overall control area, it directly im-
proves the performance: two inverters are eliminated from the
critical cycle (from XNOR inputs and its output).

D. Pipeline Performance and Timing Constraints

This section presents an analytical evaluation of both pipeline
performance and timing constraints.

1) Performance: Two key measures of the performance of
the pipeline are discussed: forward latency and cycle time [39].

688 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 6, JUNE 2007

Forward latency is the time it takes a data item to pass through
an initially empty pipeline. Since, in an empty pipeline, all the
latches are transparent, the pipeline latency per stage is simply
the stage’s latch delay plus logic delay

(1)

Cycle time is the time interval between successive data items
emerging from the pipeline when the pipeline is operating at
maximum speed. A cycle of stage from one enabling of its
latch to the next, consists of three events: 1) new data passes
through the latch and the stage’s logic block, 2) the data passes
through stage ’s latch, producing and 3)
causes stage ’s latch controller to reenable stage ’s latch.
Therefore, the analytical cycle time is

(2)

(3)

where is the delay through the logic block, and is
the time it takes the XNOR gate to enable the latch.

For the special case of C MOS pipelines, there are no ex-
plicit latches. If the delay through a C MOS gate is denoted by

, the latency and cycle time are given by

(4)

(5)

The cycle times of (3) and (5) are quite fast, and would be diffi-
cult to surpass with synchronous schemes. For example, a stan-
dard synchronous pipeline, with alternating latches controlled
by complementary clocks, and with logic between every ad-
jacent latch pair, will typically have a cycle time of at least

, plus adequate margins to compensate for
clock skew and jitter.

2) Timing Constraints: There are two simple one-sided
timing constraints which must be satisfied for the correct op-
eration of the pipeline: setup time and data overrun. (A third
one-sided constraint, which is standard in such asynchronous
design styles, is the “bundling constraint” (Section II-A), which
requires that the latency through the matched delay in each
stage is greater than the worst-case logic delay.)

Setup Time. Once a latch is enabled and receives new data at
its inputs (along with a req signal), it must remain transparent
long enough for data to pass through. Thus, the path from
to deasserted (XNOR switching low) must be longer than the
setup time

(6)

This constraint is usually easily satisfied because the delay from
to typically exceeds the setup time.

Data Overrun (Hold Time): Once data enters a stage, it
should be securely captured before new data is produced by
the previous stage. If this condition is violated, stage ’s data
will be overwritten by new data. Therefore, since and

are generated in parallel, the path from to stage

Fig. 7. Handling wide datapaths in MOUSETRAP pipelines.

’s data inputs must be longer than the time to close ’s latch,
plus a hold time

(7)

The left terms represent the shortest path through the XNOR to
the arrival of new input from stage . The right terms rep-
resent the path to disabling stage ’s latch. The equation can
be rewritten to simplify the constraint

(8)

Assuming the right expression in
parentheses is canceled. The result is a simple hold time con-
straint, which is usually easily satisfied because the latch and
logic delays through stage typically exceed the hold time.

E. Handling Wide Datapaths

An important practical issue in designing asynchronous
pipelines is the handling of very wide datapaths, where a
single control signal for a pipeline stage must be broadcast
across many latches. In principle, such control distribution may
introduce sizable delays in the critical path, slowing down the
operation of the pipeline. There are two practical solutions
proposed for efficient pipelining of wide datapaths: 1) datapath
partitioning and 2) control kiting.

In the first approach, datapath partitioning, a wide datapath is
divided into several smaller independent streams. The pipeline
control is replicated for each stream, and each stream has its
own sequence of completion generators and matched delays. As
a result, the requirement of buffering is significantly reduced: in
each stage, the latch controller generates a latch enable signal
which is broadcast to only a small number of bits, i.e., to only
those bits that lie inside that partition. This approach is typically
applicable to bit-slice datapaths, such as plain FIFOs and logic
function units (e.g., bitwise AND, OR, etc.).

The second approach to handling wide datapaths, called con-
trol kiting, allows the datapath to be skewed with respect to the
control [21], [42]. No partitioning is used; instead, buffers are
inserted to adequately amplify the latch enable signals which
drive the datapath latches. However, the latch enables for the
completion generators do not need this amplification; they are
simply tapped off from before the buffers, i.e., the control path

SINGH AND NOWICK: MOUSETRAP: HIGH-SPEED TRANSITION-SIGNALING ASYNCHRONOUS PIPELINES 689

Fig. 8. Waveform shaping optimization. (a) No waveform shaping: symmetric rise and full times. (b) Waveform shaping: asymmetric rise and fall times.
(c) Limiting case: little timing margin. (d) Extreme case: reduced voltage swing.

does not incur the buffering delays used in the datapath, and is
therefore skewed with respect to the datapath. As a result, much
of the overhead of broadcasting the latch enable to the datapath
is hidden, occurring in parallel with other pipeline operations.

Fig. 7 shows an example of how control kiting can be imple-
mented in a MOUSETRAP FIFO. There are two key differences
with respect to the basic implementation of Fig. 1. First, the “bit
latch,” which receives the incoming req and generates the out-
going req and ack signals, is now pulled apart from the rest of the
latch which handles the data bits. Second, buffers are added in
each stage to amplify the enable signal that controls the lower
part of the latch; the “bit latch” still receives the unamplified
enable. Since the insertion of buffers only delays the latching
(and unlatching) of the datapath, the completion signal of each
stage, req, is actually produced a buffer delay earlier than the
data outputs.

Interestingly, if the buffer delays are assumed to be uniform,
the pipeline of Fig. 7 not only operates correctly, but also has
exactly the same analytical cycle time and timing constraints as
those derived for narrower datapaths. In particular, the timing
analysis of Section II-D still applies to the controller circuits;
the only difference is that the datapath is now operating at a
constant skew with respect to the controllers. However, if buffer
delays are unequal, the analysis needs to be modified to account
for this difference. Assuming that the difference between buffer
delays in neighboring stages is bounded by - , the timing
constraints of (6) and (8) are rewritten as

- (9)

- (10)

Each of the two approaches to handling wide datapaths has ac-
ceptable overheads. In particular, the first approach, datapath
partitioning, may sometimes introduce forks and joins into the
datapath if the individual data streams are not entirely indepen-
dent. These forks and joins can be handled through a slight mod-
ification to pipeline control, as shown in Section II-G, incurring
only a modest overhead to pipeline performance. The second
approach, control kiting, also has an overhead: it requires the
buffering delays to be fairly uniform across pipeline stages; oth-
erwise, the timing margins available to satisfy the constraints of
Section II-D2 are effectively reduced. The practicality of con-
trol kiting, however, has been demonstrated through a fabricated

FIR filter chip developed jointly with IBM, although using a dif-
ferent pipeline style [32], [36]. The filter exhibits a highly-varied
datapath, ranging from 30 to 216 wires in width at different
stages in the pipeline, yet was successfully handled using con-
trol kiting.

F. Pipeline Speedup: Optimized Control Generation by
“Shaping” XNOR Output

This subsection presents a circuit-level optimization that can
further improve the pipeline’s performance under steady-state
operation. The key idea is to shape the output of the latch con-
trollers through transistor sizing, such that the critical cycle is
further shortened at the expense of some loss of timing margins.
By varying the aggressiveness of this optimization, the designer
can generate a whole set of implementations, ranging from a ro-
bust unoptimized implementation to an aggressive implementa-
tion partially similar to a wave pipeline, but with greater robust-
ness [15], [19], [40].

In particular, in wave pipelining, multiple waves of data
are propagated between two clocked latches; to ensure data
integrity, all path delays between the latches are required to
be extremely accurately balanced, and both left and right
environments must operate in perfect synchronism. However,
unlike wave pipelining, all MOUSETRAP implementations
even with the proposed optimization exhibit full asynchronous
handshaking, thereby allowing variable environment rates as
well as stalls to be gracefully handled. That is, all the MOUSE-
TRAP variants allow back pressure through synchronization
to enforce stalling when there is congestion; in contrast, wave
pipelining typically allows no backwards pressure and will
malfunction if there is congestion.

This wave-shaping optimization is implemented by making
the rising and falling transitions of the latch controller asym-
metric, such that the speed-critical up-transition is made faster
at the expense of the down-transition. In particular, the rising
transition of the controller is sped up by appropriately sizing
the transistors of the XNOR gate; the shorter implies im-
proved cycle times [cf. (3) and (5)]. However, to maintain the
same amount of loading in the controller circuit, the down-tran-
sition is slowed down; the longer implies somewhat
tighter timing [cf. (8)].

1) Waveform Shaping Scenarios: Fig. 8 shows four different
scenarios, which result when the waveform shaping optimiza-
tion is applied increasingly aggressively from left to right. Each

690 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 6, JUNE 2007

graph represents one complete cycle of operation, from one
latch enable to the next latch enable. Moving left to right, the
cycle time is shortened, thereby improving throughput, but at
the cost of reduced timing margins. Each of the four scenarios
is now discussed in detail.

Scenario I (No Waveform Shaping): Fig. 8(a) shows the
controller output (i.e., latch enable) when no waveform shaping
is applied. The deassertion and the subsequent assertion of the
latch enable—i.e., the fall and rise times, respectively—are sim-
ilar. The throughput obtained is used as a baseline for compar-
ison with the remaining scenarios. The timing margin available
to satisfy the data overrun timing constraint (8) is, in practice,
quite adequate: .

Scenario II (Moderate Waveform Shaping): Fig. 8(b)
shows the controller output when a moderate amount of wave-
form shaping is applied. The (re)enabling of the latch (i.e.,
the up transition) is sped up through transistor sizing. At the
same time, the disabling of the latch is slowed down, in order
to keep the total load represented by the latch controller (i.e.,
the XNOR’s input capacitance) constant; thus, the delays in
the rest of the critical path remain largely unchanged. The net
impact is that the cycle time is reduced because the critical
up-transition happens faster [see (3) and (5)]. However, the
timing margin available to satisfy the data overrun constraint of
(8) is somewhat reduced, i.e., by the amount of the asymmetry
in the fall and rise times . In practice,
though, experiments indicate that this constraint can still be
usually satisfied easily (see Section V).

Scenario III (Limiting Case): Fig. 8(c) represents the lim-
iting case in which waveform shaping is applied more aggres-
sively, while still barely ensuring both of the following: 1) the
controller output has a full voltage swing and 2) the data overrun
timing constraint is satisfied, possibly with little margin. This
scenario represents the lower bound on the cycle time that can
be achieved using waveform shaping, while still barely main-
taining correct operation.

Scenario IV (Extreme Case): If waveform shaping is ap-
plied beyond the limiting case, the controller output no longer
exhibits a full voltage swing, as shown in Fig. 8(d). In this
scenario, under steady-state operation, the pipeline latches are
never fully disabled. As a result, the reenabling of the latches oc-
curs even faster, thereby further shortening the cycle time and
improving the throughput. However, the timing constraint of (8)
may no longer be satisfied, thereby potentially allowing for the
possibility of data overrun unless careful management of data-
path delays is undertaken.

The reduced voltage swing scenario has some similarities
with wave pipelining, but also some fundamental differences.
In particular, if the voltage swing is reduced to the extent
that the latches are always substantially transparent, then the
entire pipeline operates in a manner similar to flow-through
combinational logic. As a result, the throughput obtained
will be competitive to that of a wave pipeline. However, re-
duced-swing MOUSETRAP pipelines are fundamentally more
robust because they require much simpler timing assumptions,
and can robustly interface with variable-speed environments.
In particular, even though their latches do not close fully under
steady-state operation, they are still fully functional. In the

event of a slowing down of the receiving environment, or due
to stalls in the pipeline, the latches will fully close to secure the
data they are holding, thereby gracefully handling situations
that wave pipeline cannot handle. An in-depth comparison with
wave pipelines is provided in Section IV-C.

2) Revisiting Timing Constraints: Handling Waveform
Shaping Optimization: Since the proposed waveform shaping
optimization somewhat worsens the timing margin available to
satisfy the data overrun timing constraint, that constraint is now
revisited and analyzed in greater detail. This constraint must
be satisfied in order for the latches to retain their full capture
funtionality.

In particular, the timing constraint of (8) is further refined
by substituting each term, as appropriate, with its minimum or
maximum value. Thus, the slowest time to disable the latch of
stage must be shorter than the fastest time for stage
to react to an acknowledgment from and produce a new data
item at the inputs to stage

(11)

In the absence of processing logic, this timing constraint re-
quires latch delays to be greater than the amount of asymmetry
introduced in the rise and fall times of the latch enables by the
waveform shaping strategy, plus a hold time. In practice, this
constraint is typically satisfied fairly easily, as indicated by the
simulation results in Section V. However, in the event that the
timing margin available to satisfy this constraint is insufficient,
additional processing logic can be inserted in pipeline stages,
which makes the constraint more easily satisfiable.

3) Summary: In summary, the new waveform shaping opti-
mization can help increase throughput at a modest cost in the
timing margins. The cost can be negligible if processing logic
is added to the pipeline, but is often reasonable even for plain
FIFOs. With the optimization, the performance of the pipeline
approaches that of wave pipelining, but without the accompa-
nying challenge of aggressively balancing path delays. Further,
the designer can choose the aggressiveness of this optimiza-
tion, and accordingly generate a continuum of implementations
ranging from robust unoptimized versions to those that are sim-
ilar to wave pipelines.

G. Nonlinear Pipelining

The paper has so far focused on linear pipelines, which have
many practical applications. However, in complex system ar-
chitectures, nonlinear pipelining is often needed (Fig. 9). Two
simple primitives—fork and join—are now introduced to extend
the applicability of MOUSETRAP pipelines.

Figs. 10 and 11 show simple structures for fork and join com-
ponents, respectively. In a fork stage, the data output and corre-
sponding “req” (matched done output) are both simply forked
to the two or more destination stages. In turn, the two or more
“ack” signals are combined through a Müller C-element. A C-el-
ement is an “event ANDer”: its output makes a transition when
all of its inputs change exactly once [35].

Analogously, in a join stage, the “ack” is simply a forked wire
communicating with all sender stages, but there are multiple

SINGH AND NOWICK: MOUSETRAP: HIGH-SPEED TRANSITION-SIGNALING ASYNCHRONOUS PIPELINES 691

Fig. 9. Nonlinear pipelining.

Fig. 10. MOUSETRAP fork stage.

Fig. 11. MOUSETRAP join stage.

“req’s” that must be combined. Once again a C-element can
simply be used to combine the multiple requests, and the result
treated as a unified request that is fed into the latch.

However, an alternative join implementation merges this
C-element (that combines multiple requests into one) with
the latch itself, thereby producing a single component for
greater area efficiency and better latency. This combination of
a C-element and a latch is actually an “asymmetric” C-element
[11]. Whenever the “latch enable” is asserted, the component’s
output is 1 when all of the merged “req’s” are 1, and is 0 when
all of the merged “req’s” are 0. At all other times (when the
“latch enable” is deasserted, or if the req’s are not all equal), the
component simply holds its value. At the transistor level, the
pull-down network is a single series stack with one transistor for
each req, as well as a transistor for the “latch enable.” Similarly,
the pull-up network is a single series stack with one transistor
for each req, and with a transistor for the complemented “latch
enable.” Finally, the multiple data input streams are simply
merged into one stream and latched together.

The analytical cycle time of fork and join structures will
be slightly higher than that of linear pipelines, because of the
introduction of the C-elements. In particular, for a fork stage
(Fig. 10), the cycle time increases from that in (3) by an amount
equal to the latency of the C-element

(12)

(13)

For a join stage (Fig. 11), however, the cycle time does not
change much, since the new asymmetric C-element replaces the
bit latch and has a similar latency ()

(14)

In summary, in practical terms, only forks increase the analyt-
ical cycle time, and that too only by the amount , which typi-
cally represents a small overhead. As an example, if ,
and are all assumed to be two gate delays, and if the
logic in the stage is also two gates deep, then the cycle time in
the presence of a fork (13) will be ten gate delays, instead of
eight gate delays for a linear pipeline (3), representing an over-
head that is usually quite acceptable. However, we are currently
developing optimized versions which reduce this overhead fur-
ther through careful use of logic decomposition.

H. Pipeline Initialization

Initialization is an important aspect of any design. For sim-
plicity of discussion, this issue has been ignored so far, but is
now briefly addressed.

Initialization is achieved very simply by adding a global
“reset” input to the latch of every pipeline stage, thereby
making it resettable. In particular, an extra pull-up transistor
controlled by reset is added to the latch, which pulls the latch’s
internal node high during initialization, thereby causing the
latch output to reset low. Therefore, all the done, req, and
ack signals are forced low during initialization, which in turn
asserts all the latch enables . As a result, all pipeline
stages are initialized to be empty, and all latches are initialized
to be transparent while they await the first data item. Once the
pipeline is thus initialized, reset is deasserted. The pipeline is
then ready for operation.

The initialization capability is implemented with a low over-
head. In practice, only that one bit of the latch which produces
the done signal requires this reset capability. For the dual-rail
implementation of Section II-C3, the pair of identity C MOS
gates that produce the dual-rail done output are initialized so
that the true rail is low and the complement rail is high. The
pipeline circuits designed and simulated for this paper all in-
clude full initialization capability.

III. OVERVIEW OF RELATED WORK

A. Synchronous Pipelines

Several synchronous pipelines have been proposed for
high-throughput applications. In wave pipelining, multiple
waves of data are propagated between two latches [19], [40].
However, this approach requires much design effort, from
the architectural level down to the layout level, for accurate

692 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 6, JUNE 2007

balancing of path delays (including data-dependent delays),
and remains highly vulnerable to process, temperature, and
voltage variations. Section IV-C provides a detailed comparison
between wave pipelining and MOUSETRAP.

Other aggressive synchronous approaches include clock-de-
layed domino [41], skew-tolerant domino [14], and self-resetting
circuits [23], [8]. These all require complex timing constraints
which are difficult to verify; they also lack elasticity and still
require high-speed global clock distribution.

Several recent approaches combine clocking with the benefits
of handshaking, and thereby obtain elasticity or latency insensi-
tivity within a synchronous system. Carloni et al. [3] introduced
a formal approach for latency-insensitive design of single-clock
systems. Synchronous IP blocks are encapsulated inside custom
wrapper circuits, which employ clock gating when necessary to
accommodate arbitrary communication latencies. The approach
of Jacobson et al. [16] pushes latency-insensitive design to the
granularity of individual latches. Recently, Singh and Theobald
[31] have introduced several extensions to the notion of latency
insensitivity, including generalization from single-clock to mul-
ticlock systems, and from point-to-point communication to ar-
bitrary network topologies.

Finally, several approaches have been proposed recently for
implementing communication across clock boundaries in multi-
clock systems. Chelcea and Nowick [5] introduced low-latency
asynchronous FIFOs that can glue together different timing do-
mains. An alternative approach by Chakraborty and Greenstreet
[4] features a novel technique for handling metastability, which
practically eliminates the performance overheads of other ap-
proaches (e.g., a double-latch approach). Finally, Kessels et al.
[17] build upon the pipeline design of this paper and introduce
a clocked version of MOUSETRAP for bridging together dif-
ferent clock domains. MOUSETRAP was chosen because its
two-phase protocol had the advantage of fewer round-trip delays
(compared with four-phase styles), and because this pipeline
could be easily implemented using any standard cell library.

B. Asynchronous Pipelines

There has been much work recently on asynchronous
pipelines. This subsection presents a survey of recent asyn-
chronous pipeline styles, first single-rail and then dual-rail.

1) Single—Rail: The classic single-rail asynchronous
pipelines introduced by Sutherland are called micropipelines
[35]. This style uses elegant control, but has slow and complex
capture-pass latches which can significantly hinder perfor-
mance. A number of variants using alternative control and
latch structures have been proposed [7], [21], [42] but in each
case the performance is limited due either to excessive control
delays or to sizable latch delays. Recently, a new style, GasP,
has been proposed which obtains even higher throughputs [33].
However, this approach requires fine-grain transistor sizing
to achieve near-exact delay equalization for all gates in the
control circuitry, and the protocol has more complex two-sided
timing constraints. In contrast, MOUSETRAP pipelines do not
require delay equalization and have simpler one-sided timing
constraints.

The fastest designs reported so far are the IPCMOS pipeline
from IBM [25] and the GasP pipeline from Sun. Both of these
approaches are targeted to bundled datapaths [26] that use static
logic, i.e., datapath blocks with an attached worst-case delay
line (discussed in Section II-A). Each style provides very high
throughputs through use of novel complex control structures
and aggressive circuit techniques. Throughputs of 3.3 GHz in
0.18 m were reported for IPCMOS in an IBM proprietary sil-
icon-on-insulator technology, at the normal process corner.2 In
contrast, the experimental results for MOUSETRAP are for a
standard bulk-CMOS process, which is very likely significantly
more conservative than the proprietary IBM process used for
IPCMOS. For GasP, a throughput of 1.5 GHz has been reported
in 0.35- m technology.

While a definitive quantitative comparison of MOUSETRAP
with IPCMOS and GasP is not possible due to the significant
differences in the fabrication technology, a reasonable tech-
nology-independent comparison can be made by evaluating the
cycle times of these approaches in terms of a number of CMOS
logic levels on the critical path. In particular, a MOUSETRAP
FIFO has only 5–6 levels of CMOS gates plus one pass gate
(two latches and one XNOR) on its critical cycle. While GasP
also has a similar critical cycle (6 levels of CMOS logic), the
IPCMOS cycle is much longer: 12 levels of CMOS logic plus
one pass gate. Thus, if implemented in the same technology,
MOUSETRAP is expected to outperform IPCMOS and have a
performance similar to that of GasP. Arguably, the gates used
to implement GasP may have a somewhat lower logical effort
[34] compared with MOUSETRAP, but there are other features
of GasP (e.g., significantly more complex timing requirements
and transistor sizing) which make MOUSETRAP an attractive
alternative.

In summary, while IPCMOS and GasP are very fast,
they are much more complex and designer-intensive styles.
MOUSETRAP provides a different point in the design space:
much greater simplicity, with nearly comparable (or better)
performance. Section IV-B provides a detailed technology-in-
dependent comparison.

2) Dual-Rail: The classic dual-rail asynchronous pipeline
approach is the PS0 pipeline by Williams and Horowitz [39].
This pipeline style uses dynamic logic for the datapath and
uses dual-rail encoding with completion detection to generate
control information. A key contribution of this approach is
elimination of explicit latches or storage elements from the
datapath; latching functionality is achieved instead by a careful
sequencing of control of the dynamic function blocks.

There have been a number of recent approaches that build
upon the PS0 pipeline and achieve significantly higher perfor-
mance [27]–[29], [32]. In particular, throughputs up to 2.4 GHz
in 0.18- m technology have been reported for FIFOs, and up to
1.3 GHz in the same technology for a complex real-world dig-
ital FIR filter chip [32].

In addition, dynamic pipelines have been proposed that aim
at improving the storage efficiency of the pipeline. In particular,
PS0 is limited to storing distinct data items only in alternating

2Throughputs of up to 4.5 GHz have been reported, but these are only for
extreme process cases (L = �2� and low V).

SINGH AND NOWICK: MOUSETRAP: HIGH-SPEED TRANSITION-SIGNALING ASYNCHRONOUS PIPELINES 693

pipeline stages, thus offering at most a 50% storage capacity. In
contrast, the high-capacity (HC) pipeline of [28] and [32] offers
100% storage capacity as well as higher throughput than PS0.

Martin et al. [20] and Lines [18] present the design of a com-
plete microprocessor using fine-grain pipelining techniques
similar to Williams’. The pipeline circuits are based on the
conservative and robust quasi-delay-insensitive (QDI) model,
yet have high performance. While several distinct pipeline
styles are introduced, the most commonly-used ones have
cycle times that are 18 gate delays or greater. Other QDI styles
include those by Ozdag and Beerel [24], which improve upon
the performance of [18] and [20] through use of concurrency
reduction to simplify the design of the dynamic function
blocks (i.e., reduced stack size). Finally, Ferretti and Beerel [9]
combine the robustness of delay-insensitive encoding with the
effiency of the single-track handshaking of [33] and introduce
single-track 1-of- pipelines.

While dual-rail asynchronous pipelines typically provide
greater robustness than single-rail pipelines, the former are
less compatible with current industry design methodologies.
In particular, many dual-rail approaches use dynamic logic,
which currently enjoys much less commercial tool support as
compared to static logic. Dynamic logic also has the inherent
problem of vulnerability to noise, thereby requiring careful
custom design to ensure reliable operation. Finally, dual-rail
design typically requires the creation of new function blocks,
since it cannot easily reuse preexisting designs which are pre-
dominantly single rail. As a result, single-rail bundled datapath
approaches have the attractiveness of greater compatibility with
industry practices.

IV. DETAILED COMPARISON WITH RELATED WORK

The proposed MOUSETRAP pipeline is now compared in
greater detail with several recent closely-related approaches.
First, Section IV-A provides a comparison with other classic
transition-signaling pipelines. Then, Section IV-B compares
MOUSETRAP with two of the fastest existing pipeline styles:
GasP pipelines from Sun and IPCMOS pipelines from IBM.
Finally, a detailed comparison with wave pipelining is provided
in Section IV-C.

A. Comparison With Other Transition-Signaling Asynchronous
Pipelines

Previous transition-signaling asynchronous pipelines fall into
two categories: those that use phase conversion [7], [22], [35],
and those that do not [11], [42].

The pipelines of ([35, Fig. 14]) and ([7, Fig. 10]), called mi-
cropipelines, both use phase conversion. Similar to MOUSE-
TRAP, a micropipeline stage uses transition signaling and trans-
parent latches (see Fig. 12). However, both of these approaches
have significantly more complex control than MOUSETRAP.
Each has two extra components per stage: a C-element and a
Toggle element. The Toggle element routes transitions received
on its input to one of two outputs alternately, starting with the
output labeled with a dot. The critical paths are also much longer
than MOUSETRAP: from to there are four com-
ponent delays (the C-element, XNOR, latch, and Toggle), and

Fig. 12. Sutherland’s and Day/Woods’ micropipeline stage.

from to the input of the C-element (to half-enable it) there
are three component delays (the XNOR, latch, and Toggle).

By comparison, MOUSETRAP pipelines have significantly
simpler structure than the micropipelines of Fig. 12. In partic-
ular, the critical paths are much shorter: there is only a single
latch delay from to , and only an XNOR delay from

to the reenabling of the stage for the next data item. In fact,
as seen in the alternate view of MOUSETRAP of Fig. 2, the top
bit of the latch (labeled “bit latch”) performs the combined role
of both the C-element and the Toggle element of Fig. 12, i.e.,
it receives the incoming request and generates the outgoing re-
quest and acknowledgment.

This difference in structure is critical: it allows not only
faster operation for MOUSETRAP, but also allows systems
built using MOUSETRAP pipelines to be implemented using
standard components (latches and XNORs). In contrast, the
micropipelines of Fig. 12 require C-elements and Toggle ele-
ments, which typically must be custom designed as they are
not supported by standard cell libraries or by automated design
and test tools.

Closer to MOUSETRAP, the Sun Laboratories’ “Charlie
boxes” [22] include simpler designs, such as the so-called
S-style. MOUSETRAP pipelines can be regarded as more opti-
mized—and less robust—versions of some Charlie boxes. For
instance, MOUSETRAP pipelines generate an earlier comple-
tion signal, thereby obtaining shorter cycle times at the modest
expense of a timing assumption that is in practice usually easy
to satisfy [cf. (8)]. In addition, MOUSETRAP provides new
templates for handling nonlinear datapaths (i.e., forks and
joins). Furthermore, several novel optimizations are introduced
for MOUSETRAP—a “waveform shaping” strategy to speed
up the critical path; an inverter elimination strategy using
dual-rail control logic; and the use of a C MOS-style—none of
which appeared in [22].

There are several alternative approaches to implementing
phase conversion, between transition-signaling and four-phase
protocols. However, each of these approaches has greater
complexity and analytical cycle time. In [11], Furber and Day
propose three distinct four-phase protocols for asynchronous
pipelines: fully decoupled, long hold and semidecoupled. In the

694 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 6, JUNE 2007

first two, pipeline control is significantly more complex than in
MOUSETRAP. The best of their designs, semidecoupled, in-
troduces a highly-concurrent protocol, but still has a minimum
of four components on the critical cycle. These components
are all C-elements, two of which have stack depth of 3, and
additional inverters are actually implied for correcting polarity.
In contrast, MOUSETRAP only has three components on the
critical cycle (two transparent latches and an XNOR), no stack
depths of 3, no implied inverters, and avoids the extra switching
activity of four-phase communication.

Compared with these phase-conversion approaches,
MOUSETRAP can be regarded as more of an optimized
variant, which, in some cases, may be slightly less robust. In
particular, the acknowledge signal in MOUSETRAP is sent
to the previous stage as soon as data has been received, but
before it has been securely latched in the current stage. This
optimization significantly improves the pipeline performance,
but introduces a small hold time requirement [see (8)]. This
timing constraint is typically easily satisfied in practice, as
demonstrated by simulation results, and therefore justifies the
optimization. The other approaches delay acknowledgment
until after the data has been latched. As a result, these ap-
proaches meet the hold time constraint by construction, but at
the cost of lower performance.

A final alternative approach to phase conversion is to retain
transition-signaling control, but replace the transparent latches
with dual-edge-triggered D-flip-flops (DETDFF’s) [42]: data
is latched each time the latch control is toggled. While this
approach avoids the overhead of phase conversion, it incurs a
heavy performance penalty because DETDFF’s are significantly
slower than transparent latches, and are also much larger.

B. Comparison With GasP and IPCMOS Pipelines

There are three fundamental distinctions between MOUSE-
TRAP and the most competitive recent high-speed asyn-
chronous pipelines from Sun Laboratories (GasP [33]) and
IBM (IPCMOS [25]). Overall, MOUSETRAP has the signif-
icant advantage of requiring less designer effort: it has fewer
requirements on transistor sizing, uses more standard VLSI
circuit structures, and has simpler timing constraints. Each of
these three distinctions are now discussed in detail.

First, the design methodologies of GasP and IPCMOS in-
herently expect very careful transistor sizing. In particular, the
GasP approach aims for fine-grain transistor sizing to make
all gate delays equal. As a result, it can be argued that the
GasP circuits are not really asynchronous at the level of indi-
vidual gates, but are completely balanced and timed: the cycle
time is defined by a fixed number of equal gate delays on the
critical path. The pipeline’s asynchronous behavior is observed
only at a higher level of abstraction, i.e., at the level of pipeline
stages. In IPCMOS, inter-stage communication is performed
using pulses instead of level signals. As a result, careful sizing of
output drivers is needed to ensure integrity of pulsed signals. In
contrast, while MOUSETRAP benefits from careful transistor
sizing, it is not a fundamental requirement for correct opera-
tion. Furthermore, MOUSETRAP uses transition signaling, thus
avoiding the challenging signal integrity issues of IPCMOS’s
pulse-mode communication.

Second, both the GasP and IPCMOS styles require spe-
cial-purpose VLSI circuit structures. In particular, GasP uses
aggressive nonstandard techniques such as communicating
control information on tristated wires, bidirectional commu-
nication on the same wire, and the use of self-resetting gates
in the control logic. Similarly, IPCMOS uses pseudo-nMOS
structures that may experience short-circuit conditions, thereby
requiring careful design to avoid malfunction. In addition,
IPCMOS uses switches based on pass-transistor logic. In
contrast, MOUSETRAP pipelines can be implemented using
standard cells if needed: standard transparent latches and static
logic for both datapath and control, without requiring any
specialized gate styles or components.

Finally, the timing constraints in GasP and IPCMOS are
significantly more stringent than the requirements of MOUSE-
TRAP. In particular, GasP has two-sided timing constraints
for correct operation. The pulse generated inside the control
of each pipeline stage (when new data arrives) must be long
enough in order to effectively charge/discharge both the left and
right state conductors. However, that pulse must also be short
enough so that it does not overlap with the pulses generated
inside neighboring stages; otherwise, the pulses in each pair of
adjacent stages will “fight” for control of the state conductor,
causing periods of short-circuit activity with unpredictable
behavior. Thus, there is a two-sided constraint on the width of
pulses generated by each GasP control circuit. IPCMOS has
similar two-sided constraints on the widths of the pulses used
for inter-stage communication. In contrast, MOUSETRAP
only has simple setup and hold time requirements, which are
single-sided and, in practice, usually easy-to-satisfy.

C. Comparison With Wave Pipelining

The steady-state performance of MOUSETRAP is competi-
tive with that of a wave pipeline [15], [19], [40]. In particular, in
a wave pipeline, multiple waves of data are propagated between
a pair of latches; there are no other latches in the datapath. By
comparison, under steady-state operation, MOUSETRAP also
acts as a transparent flow-through combinational logic. In par-
ticular, when the waveform shaping optimization of Section II-F
is used, it is possible to keep the latches continuously trans-
parent, when a steady stream of data is being processed. Hence,
under steady state, the performance of MOUSETRAP should
be competitive with that of wave pipelines. At the same time,
much like in a wave pipeline, careful management of datapath
delays will be required in order to preserve data integrity. Other-
wise, for example, certain bits of data in a stage may be overrun
by new data bits arriving along “fast paths” from its preceding
stage.

However, reduced-swing MOUSETRAP pipelines are fun-
damentally more robust than wave pipelines. There are two
key differences. First, careful delay management is less critical
for MOUSETRAP than for wave pipelining. The reason is
that, in steady-state operation, even if the latches are not made
fully opaque, they still go through a phase in which they are
not fully transparent either. As a result, the transmission of
data bits is somewhat slowed momentarily (though not fully
stopped)—especially for the new data bits arriving along “fast

SINGH AND NOWICK: MOUSETRAP: HIGH-SPEED TRANSITION-SIGNALING ASYNCHRONOUS PIPELINES 695

TABLE I
PERFORMANCE OF MOUSETRAP FIFO (0.18-�m TSMC TECHNOLOGY)

paths”—thereby somewhat mitigating the task of careful man-
agement of datapath delays. Thus, the presence of handshake
signals in MOUSETRAP allows some degree of synchroniza-
tion even in the reduced voltage swing scenario. In contrast,
wave pipelining requires a highly accurate balancing of path
delays (including data-dependent delays), and remains highly
vulnerable to process, temperature, and voltage variations.

Second, and more importantly, MOUSETRAP provides
much greater robustness than wave pipelining in the presence
of pipeline congestion or environment stalls. In contrast, wave
pipelining fundamentally cannot handle these nonsteady-state
situations. For instance, consider the interface of a MOUSE-
TRAP pipeline with its right environment. Whether the right
environment suddenly stalls or speeds up, the pipeline grace-
fully handles these variations. If the right environment is slow
and cannot respond with an ack, the rightmost pipeline stage
quickly makes its latch opaque (since no ack is received by its
XNOR), thus preventing an overrun from the left stage. Even if
the right environment is very fast, it is correctly stalled until
the rightmost stage can deliver it data, since the environment
is waiting for the stage’s req signal. The same reasoning also
applies to the internal stages in the pipeline, making the pipeline
robust to internal delay variations and congestion as well. In
contrast, a wave pipeline lacks handshaking, and therefore
cannot adapt to variations in input or output rates or to pipeline
congestion and environment stalls.

V. EXPERIMENTAL RESULTS

Results of post-layout SPICE simulation for basic MOUSE-
TRAP pipelines are now presented.

Experimental Setup: A simple 10-stage FIFO was simu-
lated (with no logic processing). The FIFO was laid out using the
Cadence tool suite in a 0.18- m TSMC process. Two versions of
the pipeline were simulated: 1) the “unoptimized” pipeline style,
i.e., without the waveform shaping optimization of Section II-E,
but with dual-rail control and 2) an “optimized” version with
waveform shaping, corresponding to the scenario to Fig. 8(d).

Both a 4-bit FIFO and a 16-bit FIFO were simulated for the
unoptimized style. Identical control circuits were used in both
the cases (including identical transistor sizes), but control kiting
was used for the 16-bit design to handle the wider datapath
without any performance degradation (see Section II-F). For
the optimized style, the waveform shaping optimization was
performed on the 4-bit FIFO to obtain further improvement in
throughput, though at the expense of some loss of timing mar-
gins. This optimization was not performed, however, on the
16-bit FIFO because control kiting used on that design already
meant potentially tighter timing margins.

The operating conditions were 1.8 V nominal voltage supply,
300 K temperature, and a normal process corner. Simple custom

cells were designed: a pass-gate implementation of a dual-rail
XNOR/XOR pair, and an eight-transistor dynamic D-latch. (How-
ever, it should be noted that MOUSETRAP can be easily imple-
mented using any standard cell library as well.)

Simulation Results: Table I summarizes the simulation
results. The overall pipeline cycle time is given, as well as
the delays of individual components: the latch delay
and controller gate delays and . The first row,
labeled “MOUSETRAP,” presents results for both the 4- and
16-bit FIFOs without the waveform shaping optimization.
Since control kiting effectively isolates the control circuits
from the higher load represented by the wider datapath of the
16-bit design, no significant difference was observed in the
simulations for the 4- and 16-bit FIFOs. The timing constraints
of Section II-D2 were easily satisfied with adequate margins.
The second row of the table, labeled “ ,”
represents the results for the 4-bit design with somewhat ag-
gressive waveform shaping. The throughputs obtained were
quite encouraging: 2.1 GHz for the unoptimized design and
nearly 2.4 GHz for the optimized one.

These numbers compare favorably to the IPCMOS style of
Schuster et al. [25]. Their reported results of 3.3 GHz are for a
high-performance IBM 0.18- m process; this IBM process is in
practice significantly faster than the 0.18- m TSMC process we
used. In particular, the IBM process used was silicon-on-insu-
lator (SOI), whereas our process was a bulk process. Although
our designs do not include logic processing, we anticipate com-
petitive performance with IPCMOS using a comparable process
when logic is included, since one gate delay of logic adds little to
the overall MOUSETRAP cycle time. As indicated earlier, the
IPCMOS critical path is made up of 12 levels of CMOS logic,
plus a pass gate. In contrast, our MOUSETRAP implementa-
tion only uses five levels of CMOS logic, plus a pass transistor,
on its critical path (plus two additional CMOS levels if there
are forks and joins in the datapath). In addition, MOUSETRAP
has the benefit of much simpler circuit components and timing
constraints.

The simulations also demonstrate the benefit of the wave-
form shaping approach. The table shows that the optimization
resulted in an increase in throughput from 2.10 to 2.38 GHz,
representing a 13% improvement. The table shows how the op-
timization led to a decrease in , which is on the critical
path, in exchange for a slightly longer , which is not on
the critical path.

Fig. 13 shows the waveforms corresponding to the results in
the table. The top half of the figure shows the done output and
the latch enable signal for one pipeline stage of the unoptimized
design, i.e., without waveform shaping. The bottom half shows
the waveforms for the optimized design, with somewhat aggres-
sive waveform shaping. Observe that, in the bottom picture, the

696 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 6, JUNE 2007

Fig. 13. Waveforms corresponding to the results of Table I. (a) With no (or
moderate) waveform shipping. (b) With aggresive waveform shaping.

voltage swing is somewhat reduced, i.e., the latch enable signal
is not completely deasserted before it is reasserted. This sce-
nario corresponds to Fig. 8(d). The timing constraint of (8) (data
overrun) still appears to be easily met: 179 ps,
0 ps, and 68 ps. Strictly, however, the slew
rates (i.e., rise and fall times) of the latch enable signal, which
were not taken into account in (8), erode the available margin,
thereby resulting in the reduced swing. The introduction of pro-
cessing logic into the pipeline can help satisfy the timing con-
straint with more comfortable margins.

Power/Energy Consumption: Gate-level pipelining is de-
signed for the highest throughput systems, which typically have
greater power consumption.3 However, a gate-level MOUSE-
TRAP pipeline has several potential power advantages over
a gate-level synchronous pipeline. First, only active stages in
MOUSETRAP exhibit switching activity, whereas typically
all stages in the synchronous pipeline have switching activity.
While some clocked approaches employ clock gating [37] to
reduce unwanted switching, there are overheads of additional
design and verification complexity. Second, MOUSETRAP
uses transparent D-latches, while most synchronous designs

3Power consumption should be less for coarser-grain MOUSETRAP
pipelines, in which most of the power will be dissipated in the standard syn-
chronous-style bundled function blocks and their associated pipeline latches,
and relatively little in the stage controllers.

TABLE II
POWER AND ENERGY CONSUMPTION OF TEN-STAGE FIFOS

use more energy-expensive flip-flops or double latches. Finally,
a basic MOUSETRAP has only a single gate of control logic per
stage, and similar datapath loading as the synchronous pipeline,
so it is expected that local control does not incur additional
penalty over the synchronous implementation.

Experimental results are now presented to compare the power
and energy consumption of MOUSETRAP pipelines to another
asynchronous style, and to show how MOUSETRAP can be sig-
nificantly more energy efficient. In particular, the 16-bit unopti-
mized MOUSETRAP FIFO was evaluated both for power dissi-
pation when it is running at maximum throughput, and also for
energy consumed for one data item passing through one pipeline
stage. Power dissipation is relevant when considering thermal
issues and supply currents, whereas the latter figure is impor-
tant to determine energy efficiency, which is critical for mobile
and handheld systems that must operate on batteries with lim-
ited charge supplies.

Table II summarizes the simulation results for power and en-
ergy consumption. For comparison, a classic dual-rail dynamic
pipeline design by Williams and Horowitz called PS0 [39] was
also simulated. For each of the two styles, a 16-bit 10-stage
FIFO was simulated. Since PS0 is dual-rail, its datapath actu-
ally consists of 32 wires. Data items were generated randomly
for the pipelines such that each data bit has a probability of 0.5
that it changes between two consecutive data items. The middle
column of the table shows the power consumed in milliwatts for
each design. The last column shows the energy consumed in pi-
cojoules for each data item passing through one stage.

As seen in the table, MOUSETRAP has significantly better
energy efficiency, though slightly higher power consumption.
In particular, MOUSETRAP consumes 17% higher power
than PS0 (30.8 mW instead of 26.3 mW). This higher power
consumption in MOUSETRAP is solely because of its sig-
nificantly higher throughput (2.1 GHz), i.e., it performs more
“work” per second than the PS0 pipeline (0.51 GHz). In fact,
MOUSETRAP consumes 71% lower energy per item per
stage, i.e., it is 3.5 times more energy efficient for the same
computation. There are two reasons for the greater energy
effiency of MOUSETRAP. First, it has lower switching activity
because approximately only half the data bits switch between
consecutive data items; in contrast, in dual-rail PS0, one rail
of each bit must rise and precharge for each data item (i.e.,
4 switching activity). Second, MOUSETRAP does not need
completion detectors, which are required in PS0 and are a
significant source of energy consumption. Taken together, these
two factors would suggest an energy advantage for MOUSE-
TRAP of greater than 4 ; however, the benefit is slightly less
(3.5) because MOUSETRAP uses static latches, which are
somewhat more energy expensive than the dynamic gates used
in the PS0 pipeline.

SINGH AND NOWICK: MOUSETRAP: HIGH-SPEED TRANSITION-SIGNALING ASYNCHRONOUS PIPELINES 697

VI. CONCLUSION

A new pipeline design style, MOUSETRAP, was introduced
for high-throughput applications that use static logic datapaths.
The pipeline uses simple structures for both latches and control,
and an efficient and highly-concurrent event-driven protocol.
The pipelines have only two simple one-sided timing constraints
which in practice are usually easy to satisfy.

Optimizations are introduced at the logic and circuit levels,
to further improve throughput. In particular, one style merges
latches and logic gates through use of C MOS, resulting in a
style that is particularly well-suited for gate-level pipelining.
Another optimization removes critical inverter delays from the
cycle time by implementing the control circuits in dual rail.
Finally, a circuit-level optimization further speeds up critical
events through a “waveform shaping” approach. As a result, in
steady-state operation, the pipeline performance is comparable
to that of wave pipelines, and yet the new pipelines are more
robust and require much less design effort.

ACKNOWLEDGMENT

The authors would like to thank Prof. S. Furber and Prof. J.
Garside of the University of Manchester, for pointing out poten-
tial issues of short-path timing violations when using the wave-
form shaping strategy.

REFERENCES

[1] ARM, Cambridge, U.K., “ARM offers first clockless processor core,”
(2006). [Online]. Available: http://www.eetimes.com/news/latest/
showArticle.jhtml?articleID=179101800

[2] M. Borah, R. M. Owens, and M. J. Irwin, “High-throughput and low-
power DSP using clocked-CMOS circuitry,” in Proc. Int. Symp. Low-
Power Design, 1995, pp. 139–144.

[3] L. Carloni, K. McMillan, and A. Sangiovanni-Vincentelli, “The theory
of latency insensitive design,” IEEE Trans. Comput.-Aided Design In-
tegr. Circuits Syst., vol. 20, no. 9, pp. 1059–1076, Sep. 2001.

[4] A. Chakraborty and M. R. Greenstreet, “Efficient self-timed interfaces
for crossing clock domains,” in Proc. Int. Symp. Adv. Res. Asyn-
chronous Circuits Syst., 2003, pp. 78–88.

[5] T. Chelcea and S. M. Nowick, “Robust interfaces for mixed-timing sys-
tems with application to latency-insensitive protocols,” in Proc. ACM/
IEEE Design Autom. Conf., 2001, pp. 21–26.

[6] T.-A. Chu, “Synthesis of self-timed vlsi circuits from graph-theoretic
specifications,” Ph.D. dissertation, Lab. Comput. Sci., MIT, Cam-
bridge, 1987.

[7] P. Day and J. V. Woods, “Investigation into micropipeline latch design
styles,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 3, no.
2, pp. 264–272, Jun. 1995.

[8] A. Dooply and K. Yun, “Optimal clocking and enhanced testability for
high-performance self-resetting domino pipelines,” in ARVLSI, 1999,
pp. 200–214.

[9] M. Ferretti and P. A. Beerel, “Single-track asynchronous pipeline
templates using 1-of-N encoding,” in Proc. Design, Autom. Test Eur.
(DATE), 2002, pp. 1008–1015.

[10] S. Furber, “Computing without clocks: Micropipelining the ARM
processor,” in Proc. Asynchronous Digit. Circuit Design, Workshops
Comput., 1995, pp. 211–262.

[11] S. B. Furber and P. Day, “Four-phase micropipeline latch control cir-
cuits,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 4, no. 2,
pp. 247–253, Jun. 1996.

[12] H. v. Gageldonk, D. Baumann, K. van Berkel, D. Gloor, A. Peeters, and
G. Stegmann, “An asynchronous low-power 80C51 microcontroller,”
in Proc. Int. Symp. Adv. Res. Asynchronous Circuits Syst. (ASYNC),
1998, pp. 96–107.

[13] Handshake Solutions, Eindhoven, The Netherlands, “Home page”
(2006). [Online]. Available: http://www.handshakesolutions.com

[14] D. Harris and M. Horowitz, “Skew-tolerant domino circuits,” IEEE J.
Solid-States Circuits, vol. 32, no. 11, pp. 1702–1711, Nov. 1997.

[15] O. Hauck, M. Garg, and S. A. Huss, “Two-phase asynchronous wave-
pipelines and their application to a 2D-DCT,” in Proc. Int. Symp. Adv.
Res. Asynchronous Circuits. Syst. (ASYNC), 1999, pp. 219–228.

[16] H. M. Jacobson, P. N. Kudva, P. Bose, P. W. Cook, S. E. Schuster, E. G.
Mercer, and C. J. Myers, “Synchronous interlocked pipelines,” in Proc.
Int. Symp. Adv. Res. Asynchronous Circuits Syst., 2002, pp. 3–12.

[17] J. Kessels, A. Peeters, and S.-J. Kim, “Bridging clock domains by syn-
chronizing the mice in the mousetrap,” in Proc. Power Timing Mod-
eling, Optimization Simulation (PATMOS), volume 2799 of Lecture
Notes Comput. Sci., 2003, pp. 141–150.

[18] A. M. Lines, “Pipelined asynchronous circuits,” Master’s thesis, Dept.
Comput. Sci., California Inst. Technol., Pasadena, 1998.

[19] W. Liu, C. T. Gray, D. Fan, W. J. Farlow, T. A. Hughes, and R. K.
Cavin, “A 250-MHz wave pipelined adder in 2-� m CMOS,” IEEE J.
Solid-States Circuits, vol. 29, no. 9, pp. 1117–1128, Sep. 1994.

[20] A. J. Martin, A. Lines, R. Manohar, M. Nystroem, P. Penzes, R.
Southworth, and U. Cummings, “The design of an asynchronous
MIPS R3000 microprocessor,” in Proc. ARVLSI, 1997, pp. 164–181.

[21] C. Molnar, I. Jones, W. Coates, J. Lexau, S. Fairbanks, and I. Suther-
land, “Two FIFO ring performance experiments,” Proc. IEEE, vol. 87,
no. 2, pp. 297–307, Feb. 1999.

[22] C. E. Molnar and I. W. Jones, “Simple circuits that work for compli-
cated reasons,” in Proc. Int. Symp. Adv. Res. Asynchronous Circuits
Syst. (ASYNC), 2000, pp. 138–149.

[23] V. Narayanan, B. Chappell, and B. Fleischer, “Static timing analysis
for self resetting circuits,” in Proc. ICCAD, 1996, pp. 119–126.

[24] R. O. Ozdag and P. A. Beerel, “High-speed QDI asynchronous
pipelines,” in Proc. Int. Symp. Adv. Res. Asynchronous Circuits Syst.,
2002, pp. 13–22.

[25] S. Schuster, W. Reohr, P. Cook, D. Heidel, M. Immediato, and K.
Jenkins, “Asynchronous interlocked pipelined CMOS circuits oper-
ating at 3.3–4.5 GHz,” in Proc. ISSCC, 2000, pp. 292–293.

[26] C. L. Seitz, “System Timing,” in Introduction to VLSI Sys-
tems. Reading, MA: Addison-Wesley, 1980, ch. 7.

[27] M. Singh, “The design of high-throughput asynchronous pipelines,”
Ph.D. dissertation, Dept. Comput. Sci., Columbia Univ., New York,
NY, 2001.

[28] M. Singh and S. M. Nowick, “Fine-grain pipelined asynchronous
adders for high-speed DSP applications,” in Proc. IEEE Comput. Soc.
Annu. Workshop VLSI, 2000, pp. 111–118.

[29] M. Singh and S. M. Nowick, “High-throughput asynchronous pipelines
for fine-grain dynamic datapaths,” in Proc. Intl. Symp. Adv. Res. Asyn-
chronous Circuits Syst. (ASYNC), 2000, pp. 198–209.

[30] M. Singh and S. M. Nowick, “MOUSETRAP: Ultra-high-speed tran-
sition-signaling asynchronous pipelines,” in Proc. Int. Conf. Comput.
Design (ICCD), 2001, pp. 9–17.

[31] M. Singh and M. Theobald, “Generalized latency-insensitive systems
for single-clock and multi-clock architectures,” in Proc. Design,
Autom. Test Eur. (DATE), 2004, pp. 1008–1013.

[32] M. Singh, J. A. Tierno, A. Rylyakov, S. Rylov, and S. M. Nowick,
“An adaptively-pipelined mixed synchronous-asynchronous digital
FIR filter chip operating at 1.3 gigahertz,” in Proc. Int. Symp. Adv.
Res. Asynchronous Circuits Syst., 2002, pp. 84–95.

[33] I. Sutherland and S. Fairbanks, “GasP: A minimal FIFO control,” in
Proc. Int. Symp. Adv. Res. Asynchronous Circuits Syst. (ASYNC), 2001,
pp. 46–53.

[34] I. Sutherland, B. Sproull, and D. Harris, Logical Effort: Designing Fast
CMOS Circuits. San Mateo, CA: Morgan Kaufmann, 1999.

[35] I. E. Sutherland, “Micropipelines,” Commun. ACM, vol. 32, no. 6, pp.
720–738, Jun. 1989.

[36] J. Tierno, A. Rylyakov, S. Rylov, M. Singh, P. Ampadu, S. Nowick, M.
Immediato, and S. Gowda, “A 1.3 GSample/s 10-tap full-rate variable-
latency self-timed FIR filter with clocked interfaces,” in Proc. Int. Solid
State Circuits Conf., 2002, pp. 60–444.

[37] V. Tiwari, D. Singh, S. Rajgopal, G. Mehta, R. Patel, and F. Baez, “Re-
ducing power in high-performance microprocessors,” in Proc. ACM/
IEEE Design Autom. Conf., 1998, pp. 732–737.

[38] C. van Berkel, M. Josephs, and S. Nowick, “Scanning the technology:
Applications of asynchronous circuits,” Proc. IEEE, vol. 87, no. 2, pp.
223–233, Feb. 1999.

[39] T. Williams, “Self-timed rings and their application to division,” Ph.D.
dissertation, Dept. Electr. Eng. Comput. Sci., Stanford Univ., Stanford,
CA, 1991.

[40] D. Wong, G. De Micheli, and M. Flynn, “Designing high-performance
digital circuits using wave-pipelining,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 12, no. 1, pp. 24–46, Jan. 1993.

698 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 15, NO. 6, JUNE 2007

[41] G. Yee and C. Sechen, “Clock-delayed domino for adder and combi-
national logic design,” in Proc. ICCD, 1996, pp. 332–337.

[42] K. Yun, P. Beerel, and J. Arceo, “High-performance asynchronous
pipeline circuits,” in Proc. Int. Symp. Adv. Res. Asynchronous Circuits
Syst. (ASYNC), 1996, pp. 17–28.

Montek Singh received the B.Tech. degree in elec-
trical engineering from IIT Delhi, Delhi, India, and
the Ph.D. degree in computer science from Columbia
University, New York, NY, in 2002.

He is an Assistant Professor with the Department
of Computer Science, the University of North
Carolina, Chapel Hill. His research interests include
the area of asynchronous circuits and systems,
especially circuits and synthesis tools for the design
of high-speed pipelined systems. In 2005, he was
brought onto the DARPA CLASS Program (led by

Boeing), to develop, in collaboration with Handshake Solutions, an indus-
trial-strength automated synthesis flow for designing high-speed pipelined
asynchronous systems. His work has been transferred to industries, including
IBM, Boeing, and Handshake Solutions (a Philips subsidiary).

Dr. Singh was a recipient of a Best Paper Award at the 2000 IEEE Async
Symposium, a Best Paper Finalist Nomination at the 2002 Async Symposium,
and an IBM Faculty Award in 2004. He was a Program Committee Co-Chair for
the Async’07 Symposium and the FMGALS’05 Workshop.

Steven M. Nowick received the B.A. degree from
Yale University, New Haven, CT, in 1976, and the
Ph.D. degree in computer science from Stanford Uni-
versity, Stanford, CA, in 1993.

He is an Associate Professor with the Department
of Computer Science and Electrical Engineering, Co-
lumbia University, New York, NY. His main research
interest is on CAD tools, as well as design methods,
for the synthesis, analysis, and optimization of asyn-
chronous and mixed-timing digital systems. In 2005,
was brought onto DARPA’s CLASS project, headed

by Boeing, with participation of a Philips-based startup (Handshake Solutions),
to create a commercially-viable CAD tool flow for designing asynchronous sys-
tems. He was also a co-founder of the IEEE Async Symposia series.

Dr. Nowick was a recipient of a National Science Foundation (NSF) Faculty
Early Career (CAREER) Award (1995), an Alfred P. Sloan Research Fellow-
ship (1995), an NSF Research Initiation Award (RIA) (1993), two Best Paper
Awards, one at the 1991 International Conference on Computer Design and
the other at the 2000 IEEE Async Symposium, and two medium-scale NSF
ITR Awards for asynchronous research in 2000. He was Program Committee
Co-Chair of Async’94 and Async’99 and General Co-Chair of Async’05, and
was Program Chair of the IWLS’02 Workshop. He is currently an Associate
Editor of the IEEE Transactions on Computer-Aided Design and of IEEE
TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS.

