
High-Speed Non-Linear Asynchronous Pipelines

Recep O. Ozdag1
ozdag@usc.edu

Montek Singh2
montek@cs.unc.edu

Peter A. Beerel1
pabeerel@usc.edu

Steven M. Nowick3
nowick@cs.columbia.edu

1Department of Electrical Engineering—Systems Division, USC, Los Angeles, CA 90089
2Department of Computer Science, UNC−Chapel Hill, Chapel Hill, NC 27599 (formerly at Columbia University)
3Department of Computer Science, Columbia University, New York, NY 10027

Abstract
Many approaches recently proposed for high-speed asynchro-

nous pipelines are applicable only to linear datapaths. However,
real systems typically have non-linearities in their datapaths, i.e.
stages may have multiple inputs (“joins”) or multiple outputs
(“forks”). This paper presents several new pipeline templates
that extend existing high-speed approaches for linear dynamic
logic pipelines, by providing efficient control structures that can
accommodate forks and joins. In addition, constructs for
conditional computation are also introduced. Timing analysis
and SPICE simulations show that the performance overhead of
these extensions is fairly low (5% to 20%).

1. Introduction
High-speed asynchronous design is increasingly becoming an

attractive alternative to full-custom synchronous design because
of its freedom from clock distribution and clock skew problems,
and because it naturally provides robust interfaces to slower
components (e.g., [1][2]). A number of fast asynchronous fine-
grain pipeline templates have been proposed for high-speed design,
including IPCMOS [3], GasP [4][2] and pulse-mode circuits [5].
These ultra-high-speed designs have very aggressive timing
assumptions that introduce stringent transistor sizing requirements
and high demands on post-layout verification.

In recent work, Singh and Nowick have proposed several
high-speed dynamic logic pipeline templates [6][7], as well as
high-speed static logic pipeline templates [8], that achieve
comparable performance with much less stringent timing
assumptions. The dynamic pipelines were introduced for linear
datapaths (i.e. without forks and joins), although preliminary
solutions for handling joins were proposed in [7]. In addition, an
initial approach to handling slow or stalled environments for the
limited case of linear pipelines was also proposed in [6]. However,
the synchronization problems that arise when using arbitrary forks
and joins are much more complex and challenging, and the
approaches of [6][7] do not address these issues. This paper
attempts to fill this void.

The contribution of this paper is a set of five new non-linear
pipeline templates that extend the two dynamic logic pipeline

This work was supported by a large-scale NSF ITR Award No. CCR-00-
86036, a gift from Sun Microsystems, Inc., a gift from TRW, Inc., and a
grant from New York State Center for Advanced Technology at Columbia
University.

styles from Columbia: lookahead pipelines (LP) [6] and high-
capacity pipelines (HC) [7]. Several distinct lookahead pipeline
styles were proposed in [6], both single-rail and dual-rail. This
paper builds upon one representative each of single-rail (LPSR2/2)
and dual-rail (LP3/1) lookahead pipelines, and also upon the
single-rail high-capacity pipeline (HC). The ideas presented here,
however, can be easily adapted to the remaining styles.

The remainder of this paper is organized as follows. Section
2 gives background on single and dual-rail datapaths, and reviews
some of the basic linear pipelines of [6] and [7]. Section 3 gives
an overview of some of the challenges involved in the design of
non-linear pipelines. Sections 4-6 present the new non-linear
designs in detail, including their protocols, implementation, and
timing analysis. Extensions to handle conditional computation are
proposed in Section 7 and, finally, experimental results and
conclusions are given in Sections 8 and 9.

2. Background
This section first gives background on commonly-used

asynchronous data representation schemes. Then, it reviews three
asynchronous pipelining styles: (i) LPSR2/2, a single-rail
lookahead pipeline, (ii) LP3/1, a dual-rail lookahead pipeline, and
(iii) HC, the high-capacity pipeline.

2.1 Bundled Data vs. Dual-Rail Encoding
One common paradigm of asynchronous system design is to

decompose the system into functional units that communicate data
via channels, as shown in Figure 1(a). In these channels, data can
be encoded in many ways. In the single-rail encoding scheme,
one wire per bit is used to transmit data, and an associated request
line is used to indicate data validity, as shown in Figure 1(b). The
associated channel is called a bundled-data channel [12].
Alternatively, in dual-rail encoding, the data is sent using two
wires for each bit of information, as shown in Figure 1(c) [10].
Extensions to 1-of-N and M-of-N encoding also exist.

Both single-rail and dual-rail encoding schemes are
commonly used, and there are tradeoffs between each. Dual-rail
encoding allows for data validity to be indicated by the data itself.
Single-rail, in contrast, requires the associated request line that is
driven by a matched delay line that must always be longer than
the computation. This latter approach requires careful timing
analysis but allows the reuse of synchronous single-rail logic.

Figure 1. Pipeline Channels

2.2 Lookahead Pipelines (Single-Rail)
Figure 2(a) shows the structure of one stage of the LPSR2/21

lookahead single-rail pipeline [6]. Each stage has a dynamic
function block and a control block. The function block alternately
evaluates and precharges. The control block generates the
bundling signal, Lack, to indicate completion of evaluation (or
precharge). The bundling signal is generated by an asymmetric C-
element [6], and passed through a suitable delay, allowing time for
the dynamic function block to complete its evaluation (or
precharge). Note that there is one dynamic gate for each
individual output rail of the stage, and different dynamic gates
inside a function block can sometimes share precharge and
evaluate (foot) transistors.

This pipeline style has two important features. First, the
completion signal, done, is sent to the previous stage as an
acknowledgment (Lack) by tapping off from before the matched
delay. This “early tap-off” is safe because a dynamic function
block typically is immune to a reset of its inputs as soon as the
first level of dynamic logic has absorbed the input data. The
second feature is that the control signal, Pc, is applied directly to
the function block, rather than applying the output of the
completion detector. Therefore, the function block can be
precharge-released even before the arrival of new input data. This
early precharge-release is safe because the dynamic logic
block will compute only upon the receipt of actual data. Both of
these features eliminate critical delays from the cycle time,
resulting in very high throughput.

The analytical cycle time can be expressed using the
following components:

tEval = delay of function block evaluation
tac = delay of control (asymmetric C-element)

For correct operation, the matched delay tdelay must satisfy tdelay ≥
tEval – tac. For ideal operation, tdelay is no larger than necessary,
tdelay= tEval – tac. Note that, in fine-grain pipelines, the latency
through the function block is often less than the delay of the
asymmetric C-element. In such a scenario, no matched delay is
necessary; the asymmetric C-element provides sufficient delay to
satisfy the bundling constraint. Using the above notation and
assumption, the pipeline’s analytical cycle time is:

TLPSR2/2 = 2. tEval + 2. tac

1 The 2/2 label characterizes the operation of the stage of a pipeline: 2

components in the evaluation phase and 2 component delays in the
precharge phase, forming a complete cycle.

Figure 2. a) LPSR2/2 b) LP3/1 and c) HC pipelines

The per-stage latency of the pipeline is:
 LLPSR2/2 = tEval
Note that both tEval and tac consist of two gate delays.

2.3 Lookahead Pipelines (Dual-Rail)
Figure 2(b) shows the structure of one stage of the dual-rail

LP3/12 pipeline [6]. In this pipeline, there are no matched delays.
Instead, each stage has an additional logic unit, called a
completion detector, to detect the completion of evaluation and
precharge of that stage.

Unlike most existing approaches, such as Williams’ and
Horowitz’s pipelines [9][10], each stage of the LP3/1 pipeline
synchronizes with two subsequent stages, i.e., not only with the
next stage, but also its successor. Consequently, each stage has
two control inputs. The first input, Pc, comes from the compl-
etion detector (CD) of the next stage, and the second control input,
Eval, comes from the completion detector two stages ahead.

The benefit of this extra control input is to allow a
significantly shorter cycle time. This Eval input allows the
current stage to evaluate as soon as the subsequent stage has
started precharging, instead of waiting until the subsequent stage
has completed precharging.

The analytical cycle time can be expressed as:
TLP3/1 = 3. tEval + tCD+ tNAND

The per-stage latency of the pipeline is:
 LLP3/1 = tEval

Both tEval and tCD consist of two gate delays; tNAND is only one gate
delay.

2.4 High-Capacity Pipelines (Single-Rail)
Finally, the structure of one stage of the HC pipeline [7] is

shown in Figure 2(c). A novel feature of this pipeline style is that
it uses decoupled control of evaluation and precharge: separate
Eval and Pc signals are generated by each stage's control.

2 As with the previous pipeline style, the 3/1 label characterizes the

operation of a stage of the pipeline: 3 component delays in the
evaluation phase and 1 component delay in the precharge phase, forming
a complete cycle.

Precharge occurs when Pc is asserted and Eval is de-asserted.
Evaluation occurs when Pc is de-asserted and Eval is asserted.
When both signals are de-asserted, the gate output is effectively
isolated from the gate inputs; this is a new phase, called the isolate
phase (see below).3

Much like in LPSR2/2, an asymmetric C-element, aC, is used
as a completion detector. The aC element output is fed through a
matched delay, which (combined with the completion detector)
matches the worst-case path through the function block.

Unlike most existing pipelines, the HC pipeline stage cycles
through three distinct phases. After it completes the evaluate
phase, it enters the new isolate phase (where both Eval and Pc are
de-asserted) and subsequently the precharge phase, after which it
re-enters the evaluate phase, completing the cycle. Furthermore,
unlike the other pipelines covered in this paper as well as the PS0
style in [8], the HC pipeline has only one explicit synchronization
point between stages. Once the subsequent stage has completed
its evaluate phase, it enables the current stage to perform its entire
next cycle.

The analytical cycle time can be expressed as:
THC = tEval + tPrech+ taC+ tNAND3+ tINV

The per-stage latency of the pipeline is:
 LHC = tEval

In this design, tEval, tPrech and taC consist of two gate delays each,
though tNAND and tINV consist of only one gate delay.

3. Challenges of Handling Forks and Joins
There are two basic challenges involved in designing non-

linear pipelines: (i) synchronization of a stage with multiple
destinations (e.g., for forks), and (ii) synchronization of a stage
with multiple sources (e.g., for joins). This section discusses these
issues in detail, and outlines strategies to address them.
Subsequent sections provide our detailed solutions for each of the
three pipeline styles considered in this paper.

3.1 Slow or Stalled Right Environments in Forks
In many existing linear asynchronous pipelinessuch as

Williams’ and Horowitz’ classic PS0 pipeline [10], as well as
lookahead and high-capacity pipelinescertain acknowledgments
between stages are essentially timed pulses, i.e., some inter-stage
communications are non-persistent. In particular, after a stage
asserts its acknowledgment, causing a precharge of the previous
stage, it assumes that the precharge of that previous stage is quite
fast. Therefore, it does not explicitly check for the precharge’s
completion before de-asserting its acknowledgment signal. This
timing assumption is referred to as a fast precharge assumption,
and is typically easily satisfied. Thus non-persistence is usually
not problematic in linear pipelines: all stages can be reasonably
assumed to react fast enough to acknowledgment pulses [9][10].

However, when a datapath has a fork, non-persistence can be
a challenge. In this case, multiple acknowledgment signals are
received by the forking stage. These signals are therefore pulses,
which may be non-overlapping. Therefore, acknowledgments
may not be correctly merged using a simple C-element.

3 To avoid short circuit, Pc and Eval are never simultaneously asserted.

Figure 3. a) Fork and b) join

As an example, Figure 3(a) shows an abstract two-way fork

for a bundled datapath, where the forking stage S1 drives stages
S2 and S3. For correct operation, S1 must receive acknowledg-
ments from both S2 and S3. However, stages S2 and S3, and the
subsequent stages of each, may be operating largely independent
of each other. Suppose stage S3 is arbitrarily delayed (or stalled),
thus delaying the acknowledgment for S1 from S3. Meanwhile,
an early non-persistent acknowledgment is received by S1 from
S2, which is not delayed. As a result, the two acknowledgments
received by S1 may have no overlap, and, if combined using a C-
element, may not generate the precharge signal for S1 at all!

This problem is referred to as the slow or stalled right
environment (SRE) problem. In this paper, two general solutions
are proposed to address this issue. The first solution is to
condition the acknowledgments received from the stages
immediately to the right of the fork to make these acknow-
ledgments persistent. In this case, later stages in the non-delayed
fork branch of the pipeline (i.e., S2’s successors above) have no
further constraints on their behavior. Thus, this solution requires
only local changes, i.e., to the immediate forked stages.

The second solution requires more global modifications. In
particular, the basic control circuit of every subsequent pipeline
stage is modified so as to make all acknowledgments persistent.
As a result, the fast precharge constraint is eliminated, allowing
for simpler strategies to combine acknowledgments, which are
now persistent. In this case, later stages in a non-delayed fork
branch (i.e. S2’s successors above) are further constrained in their
behavior. (They can only go through a precharge on the new data
item, but not enter the subsequent precharge-release phase.)

Interestingly, the SRE problem can also be formulated as a
relative-timing constraint [13]: the request from the forking stage
de-asserts prior to the de-assertion of the acknowledgement from
either of the immediate forked stages (i.e., S2 and S3), thereby
preserving the four-phase handshaking protocol on the channels
in-between.

3.2 Slow or Stalled Left Environments in Joins
The second challenge is one of synchronization with multiple

input channels in joins, as shown in Figure 3(b).
A problem can arise if an “eager” function block is used for

the implementation of stage S3, i.e., S3 may produce outputs after
consuming only one (not both) of its data inputs (see [9]). For
example, suppose S3 contains a dual-rail OR function that
evaluates eagerly (i.e., as soon as one high input bit arrives).
Then, after evaluation, it will send an acknowledgment to both S1
and S2, even though S1 may not have produced data. As a result,
if input stage S1 is particularly slow or stalled, it may receive an
acknowledgment from S3 too soon. This behavior can treat the
output of the slow stage as a new unwanted data token, and thus
corrupt the synchronization between the stages!

This problem is referred to as the stalled left environment
(SLE) problem. Note that the SLE problem does not arise in
single-rail pipelines: a stage can verify that all of its senders have
produced valid data by examining the associated bundling signals.

There are two solutions to this problem. One solution is to
simply use “non-eager” function blocks; that is, every function
block explicitly checks for the validity of all of its dual-rail inputs,
before producing a valid output. Such function blocks are
sometimes referred to in literature as weakly-indicating or weak-
conditioned logic blocks [10][11][12][15][16]. However, the term
“weak-conditioned” is often used in a somewhat more restrictive
sense than “non-eager”: weak-conditioned logic blocks not only
explicitly check for the validity of all inputs before producing an
output, but they also explicitly check for the reset of all inputs
before resetting the output. Therefore, non-eager blocks are
sometimes referred to as “semi-weak-conditioned.”

The second solution is to allow eager function blocks, but
still ensure that the generation of the acknowledge signal occurs
only after data from all of the input stages has been received. This
latter solution requires modification to the control, and is
discussed in more detail in the sections that follow.

The SLE problem can also be formalized as a relative-timing
constraint: the join stage must generate an acknowledgement
signal only after all input channels to the join stage have valid
data, thereby preserving the four-phase handshaking protocol on
all input channels.

4. Lookahead Pipelines (Single-Rail)
Handling joins in single-rail lookahead pipelines is

straightforward, and was initially proposed in [7]. The join stage
receives multiple request inputs (Lreq’s), all of which are merged
together in the asymmetric C-element (aC) that generates the
completion signal. In particular, each additional request is
accommodated by adding an extra series transistor in the pull-
down stack of the aC element. The aC will only acknowledge the
input sources after all of the Lreq’s are asserted and the stage
evaluates.

To handle forks, on the other hand, a C-element must be
added to the forking stage to combine the acknowledgments from
its immediate successors. In addition, other stages of the pipeline
must also be modified to overcome the SRE problem of Section
3.1. As discussed earlier, the problem is that the acknowledge
signal from an immediate successor to a forking stage is non-

persistent; it may be de-asserted before its predecessor forking
stage has completed its precharge. This section gives two distinct
solutions for correctly handling such forks in LPSR2/2.

4.1 Solution 1 for LPSR2/2 Forks
The first solution is to modify only the immediate successor

stages (say S2 and S3) of a forking stage (S1), in order to make
their acknowledges persistent. In particular, in each such
immediate successor stage, the Lack acknowledgment signal is
made persistent by effectively latching it, and the stage’s next
evaluation is delayed until its predecessor has completed its
precharge. For LPSR2/2, this solution is shown in Figure 4: the
Lack generation logic is made persistent and the control of the
foot transistor is also modified.

Figure 4. a) Modified first stage after the fork.
b) Detailed implementation of individual gates

The new control circuit operates as follows. Assume a
forked stage S2 has just evaluated and the acknowledgment signal
Lack has just been asserted. Eventually, the right environment
will assert Rack, causing the output of the dynamic latch, X, to be
asserted (X=0, i.e., active low), effectively latching the non-
persistent acknowledgment signal. Note that the X output is held
low even when Rack is de-asserted. In particular, X is de-asserted
(X=1) only after Done goes low, in turn caused by Lreq going low,
which indicates that the input forking input stage has precharged.
Effectively, the foot transistor now prevents any re-evaluation
until after X goes low, thus delaying re-evaluation until all inputs
(including any slow input) are guaranteed to have precharged.

These modifications ensure that even late acknowledgments
from another stage S3, immediately after the fork, are guaranteed
to be properly received by forking stage S1, while still ensuring
that S3 satisfies the fast precharge constraint. As a result, the SRE
problem is solved. Interestingly, the interaction of S3 with the
remainder of the pipeline to its right remains unchanged: the
stages to the right of S3 are unmodified, and thus allowed to
generate non-persistent acknowledgments.

The only new timing assumption introduced by this template,
compared to LPSR2/2, is that the Rack pulse width must be long
enough to properly latch it. This pulse width assumption, however,
is less restrictive than the original timing assumption that remains:

the pulse width must be longer than the stage’s precharge time.

4.2 Solution 2 for LPSR2/2 Forks
The second solution is to modify each stage on all paths beyond
the forking stage, so that they do not de-assert their acknow-
ledgments until after all input stages are guaranteed to have
precharged. This solution can be implemented using the modified
LPSR2/2 template shown in Figure 5 in which the asymmetric C-
element is converted to a symmetric C-element. As suggested
earlier, this modification removes the fast precharge constraint,
implicitly solving the SRE problem.

Figure 5. An LPSR2/2 stage with a symmetric C-element

4.3 Pipeline Cycle Time
For the first solution, the cycle time expressions do not

change if the additional acknowledgment signals simply increase
stack height and do not add additional gates. For multi-way forks
and joins, however, the cycle time will increase by the additional
C-elements needed to combine them. For the second solution, the
cycle time becomes:

TLPSR2/2 = max (2. tEval + 2. tgc, tEval + tprech + 2. tgc)

5. Lookahead Pipelines (Dual-Rail)
This section extends a dual-rail lookahead pipeline, LP3/1, to

handle forks and joins. Since both the stalled left environment
(SLE) and the stalled right environment (SRE) problems of
Section 3 can arise in dual-rail pipelines, detailed solutions are
presented for both forks and joins.

5.1 Joins
Unlike LPSR2/2, the LP3/1 pipeline has no explicit request

line and thus may not function correctly unless it is modified to
handle the SLE problem in joins. Our proposed solution allows
the use of eager function blocks; however it still ensures that no
acknowledgment is generated from a stage until after all its input
stages have evaluated.

In particular, our solution is to add explicit request signals to
each input channel of a join stage, and feed them into the join
stage’s completion detector, as illustrated in Figure 6. The join’s
completion detector now delays asserting its acknowledgment
until not only the function block is done computing, but also until
after all of its input stages have completed evaluation.

Figure 6. The LP3/1 pipeline with a modified CD to
handle joins

Note that the additional request signals are taken from the

outputs of the preceding stages’ completion detectors. While this
modification does not affect the latency of the pipeline, the
analytical cycle time changes to:

TLP3/1 = 2. tEval + 2. tCD+ tNAND

5.2 Forks
To handle forks, as in the single-rail lookahead pipeline,

LPSR2/2, a C-element is added to the forking stage to combine the
multiple acknowledgments it receives from the fork branches. In
addition, there are two solutions for the slow or stalled right
environments. These solutions are similar in essence to the
solutions for the single-rail case, but adapted to dual-rail.

The implementation of solution 1 is very similar to LPSR2/2
and involves modifying the forking stage and the first stages after
the fork to make Lack1 persistent and not generate nor use Lack2
signals. First, the completion detector (CD) of the first stages
after the fork are modified such that the acknowledgment signal is
de-asserted only after the forking stage has precharged, as shown
in Figure 7. Second, the re-evaluation of the function block of
this stage is delayed until after the forking stage has precharged
using a decoupled foot transistor controlled by the Y signal.
Finally, the generation of Lack2 is removed from this stage (notice
that Lack2 does not appear in Figure 7). Thus, the PC signal of
the forking stage is controlled directly by Lack1 signals, thereby
eliminated the need for a NAND gate in the forking stage.
Consequently, in this forking structure, the feedback is limited to
one stage ahead, rather, than the original two stages ahead.

The second solution is to add an explicit request line to all
LP3/1 channels and delay de-assertion of the acknowledgment
(Lack1 in this case) until after all immediate predecessors have
precharged, as shown in Figure 8. The request line is generated
via a C-element that combines the incoming request line(s) and
the output of the completion detection. The output of this C-
element becomes the new Lack1. Because the C-element de-
asserts its acknowledgment only after Lreq is de-asserted, the fast
precharge constraint is removed, solving the SRE problem.

For solution 1, compared to the original LP3/1 template, the
cycle time is slightly increased to:

TLP3/1 = 2. tEval + 3.tCD+ tPrech
For solution 2, the cycle time increases to:

TLP3/1 = tEval + 3.tCD+ tNAND

Figure 7. a) Modified first stage after the fork. b)
Detailed implementation of the additional gates

Figure 8. The LP3/1 stage with a C-element

6. High-Capacity Pipelines (Single-Rail)
Next, the basic linear high-capacity style is generalized to

include forks and joins. Since the high-capacity style uses single-
rail encoding, it already has a request line associated with the data,
and thus handling slow or stalled left environments is not an issue.
However, because the acknowledgment signals in the high-
capacity pipelines are non-persistent, much like in lookahead
pipelines, the problem of handling slow or stalled right
environments needs to be addressed.

In this section, the basic high-capacity style is first extended
to handle arbitrarily slow environments, and then generalized to
accommodate forks and joins.

6.1 Handling Arbitrary Environments
Figure 9 shows a simple modification to the original stage

controller, which allows the high-capacity pipeline stage to
interface with arbitrarily slow left and right environments.

In the new pipeline, the acknowledgment from a high-
capacity stage is made persistent by replacing the NAND3 gate in
the control by a state holding generalized C-element (gC), as
shown in Figure 9(b). In particular, the gC-element behaves as
follows. The acknowledgment signal Rack now only triggers the
assertion of the precharge control signal, Pc. The precharge
signal then stays asserted (i.e. persistent) until it is de-asserted by
the input request signal Rreq going low. In addition to this change
to the NAND3 gate, the inverter is replaced by a NOR2 gate with
an additional input. This NOR2 gate conditions the stage’s Eval
signal, to ensure that the subsequent evaluation phase is delayed
until the stale input data has been reset.

Figure 9. a) Original and b) New HC stage

In the new version of the HC pipeline stage, the state variable,
ok2pc, is pulled out of the stage controller, and instead placed into
the channel between stages N-1 and N.

This new placement of the state variable is justified as
follows. The function of the state variable is to keep track of
whether stages N-1 and N are computing the same token, or
distinct (consecutive) tokens; precharge of N-1 is inhibited if the
tokens are different. If there are two stages, say S1 and S2,
supplying data for stage S3, two separate state variables are used,
one to keep track of whether stages S1 and S3 have the same
token, and the second to keep track of whether stages S2 and S3
have the same token. Similarly, if stage S3 had two successors,
S4 and S5, we propose to have two distinct state variables, one
each for the pair (S3, S4) and the pair (S3, S5).4

To summarize, it is logical to have the aC element, which
implements the state variable ok2pc, pulled out of the stage
controller and placed in-between stages N-1 and N (i.e., moved
into the channel). In addition, the gC element is also moved into
the channel to avoid extra wiring.

6.2 Handling Forks and Joins
Using the above generalizations to handle slow environments,

an HC stage can now be extended to handle forks and joins.
Figure 10 shows the implementation of a template for stage, N, for
the case where stage N is both a fork as well as join. The multiple
reqin’s, ok2eval’s and ack’s are handled by simple modifications to
the linear pipeline of Figure 9(b).

Multiple reqin’s: Each additional reqin is handled by adding
a single series transistor to the aC element that makes up the
completion generator, much like in LPSR2/2 (Section 4). Hence,
done is generated only after all input streams have been received.

Multiple ok2eval’s: Each additional ok2eval is handled by
adding it as an extra input to the NOR gate that produces the eval
signal. Consequently, the stage is enabled to evaluate (eval
asserted) only after all of the ok2eval signals are asserted, i.e. after
all of the senders have precharged.

Multiple ack’s: Multiple ack’s are handled by OR’ing them
together. Since the ack’s are all asserted low, the OR gate output
goes low only when all the ack’s are asserted, thus ensuring that
precharge occurs only after the stage’s data outputs have been
absorbed by all of the receivers. The OR gate is actually
implemented as a NAND with bubbles (inverters) on the ack

4 Note that, unlike HC, the LP styles do not need state variables in their

channels because their operation is relatively less concurrent.

inputs. This NAND has an additional inputthe stage’s
completion signalwhose purpose is to ensure that, once
precharge is complete, Pc is quickly cut off. Otherwise, Pc may
get de-asserted slightly after Eval is asserted, causing momentary
short-circuit between supply and ground inside the dynamic gates.

Figure 10. A 2-way join 2-way fork HC stage

6.3 Pipeline Cycle Time
If only joins are present, the cycle time is only slightly

increased. Compared with the cycle time obtained in [7], the new
cycle time equation has a NOR delay instead of an inverter delay,
and a gC delay instead of a NAND3 delay:

THC = tEval + tPrech+ taC+ tgC+ tNOR
If forks are also present, then the cycle time increases by the

delay of the OR gate which is needed to combine the multiple
acknowledgments:

THC = tEval + tPrech+ taC+ tgC+ tNOR+ tOR
In these expressions, tEval, tPrech, taC and tOR consist of two gate
delays each; tNOR and tgC consists of only one gate delay each.

7. Conditionals
There are other complex pipeline structures that allow

conditional reading and writing of data. Such structures can also
be adapted for use as memory cells. This section briefly discusses
the implementation of two such constructs for the LPSR2/2 style.
Similar circuits can be derived for the other pipeline styles.

As the first example, Figure 11(a) shows a conditional read
structure, where the stage reads data from one of several input
channels, or, in general, from a subset of several input channels.
The decision as to which channels are read from is determined by
a bit pattern supplied by a special “select channel.” Only those
channels that are read from are acknowledged. Similarly, Figure
11(b) shows a conditional write, where the stage reads from an
input channel, and writes to one of several output channels. The
choice of which channel to write to is once again determined by
the word supplied by the select channel. The stage that writes the
data receives an acknowledgment only from the output channel
where the data is written. Note that the C-elements are only
symmetric for the Rack input and asymmetric for all others.

The second example is a one-bit memory implemented using
the LPSR2/2 style, as shown in Figure 12. A and C represent the
input and output channels. Channel B provides internal storage.
S is an input control channel that selects the write or read

operation. When S0 is high, the memory stores the value at the
input channel A to the internal storage B; both A and S channels
are acknowledged. When S1 is high, the memory is read, and the
result is made available on the output channel C. At the same
time, the S input channel is acknowledged.

Figure 11. a) Conditional read and b) write.

Figure 12. A one-bit LPSR2/2 memory

The detailed implementation of the storage element is shown
in the dotted box (similar to [11]). Assuming that there is
some data value stored initially, one of the dual-rail bits of B is
high and the other is low. When an input A is applied and S0 is
asserted, if the value of input A is different from the stored value
B, then first both rails of B are lowered (i.e. old memory content
is erased), and then one of the two B rails is asserted high, thereby
storing the new data. On the other hand, if the value to be written
into the memory and the value already stored are identical, then
no further action is taken. The C-element, which generates the
acknowledgment of the input channel LackA, is reset using its
own output, since it doesn’t receive an acknowledgment from any
other channel. The output of this C-element is passed through a
delay whose latency matches to the delay of writing the internal
node B, to allow sufficient time for the data value to be stored in
the memory.

8. Simulation Results
HSPICE simulations were performed to quantify the

overhead of accommodating non-linear datapaths compared with
linear datapaths. In particular, simulations were performed for the
fork and join structures for each of the three pipeline styles
considered: LPSR2/2, LP3/1, and HC.

The simulations were performed on pre-layout schematic
designs, using a 0.25 TSMC process with a 2.5V power supply at
25

o
C. The purpose of these simulations was only to do a relative

comparison of the performance of linear and non-linear pipeline
templates. Hence, no attempt was made to fine-tune the transistor
sizing to achieve optimum performance. In particular, all
transistors were sized in order to roughly achieve a gate delay
equal to a small inverter (Wnmos=0.8um, Wpmos=2um, and
L=0.24um) driving a same-sized inverter. For the purposes of this
comparison, wire delay also has been ignored.

The results of simulation are summarized in Table 1. The
cycle times (in ns) are given for each of three styles, first for a
linear pipeline, then for a pipeline with a fork, and finally for a
pipeline with a join. The columns labeled “Sol1” give results for
those designs that are derived using the first solution strategy, i.e.,
by making only local changes to the stages immediately next to
the fork or join point (see Section 3.1). Similarly, the columns
labeled “Sol2” give results for designs that use the second solution
strategy, where all of the pipeline stages must use modified
completion detectors. Note that while the joins add only ~5% to
the cycle time, the forks increase the cycle time by ~20% because
of the additional C-element needed. Note also that the cost of the
more robust solution 2 compared to solution 1 is generally less
than 5%.

LPSR2/2 LP3/1 HC

Sol1 Sol2 Sol1 Sol2 Sol2
Linear 0.99 1.06 1.20 1.28 0.93
Fork 1.23 1.29 1.41 1.45 1.20
Join 1.05 1.10 1.27 1.34 1.01

Table 1. Cycle time (ns) of original linear pipelines vs.
proposed non-linear pipelines.

9. Conclusions
This paper has introduced new high-speed asynchronous

circuit templates for non-linear dynamic pipelines, including forks,
joins, and more complex configurations in which channels are
conditionally read and/or written. Two sets of templates arise from
adapting the LPSR2/2 and LP3/1 pipelines and one set of
templates arises from adapting the HC pipelines.

Timing analysis and HSPICE simulation results demonstrate
that forks and joins can be implemented with a ~5%−20%
performance overhead over linear pipelines. All pipeline
configurations have timing margins of at least two gate delays,

making them a good compromise between speed and ease of
design. One possible area of future work is to formalize the
specification and design of these templates using relative-timing
based synthesis [13]. Moreover, a more detailed comparison with
other high-speed non-linear pipeline approaches such as IPCMOS
[3], GasP [4], and pulse-mode [5][14] would be interesting.

References
[1] K.S. Stevens, S. Rotem, R. Ginosar, P. A. Beerel, C.J. Myers, K.Y.

Yun, R. Kol, C. Dike, M. Roncken, “An asynchronous instruction
length decoder,” in IEEE JSSC, Volume: 36 Issue: 2, Feb. 2001 pp.
217–228.

[2] W.S. Coates, J.K. Lexau, I.W. Jones, S.M. Fairbanks, and I.E.
Sutherland. “FLEETzero: an asynchronous switching experiment,”
in Proc. of ASYNC, 2001, pp. 173–182.

[3] S. Schuster, W. Reohr, P. Cook, D. Heidel, M. Immediato, and K.
Jenkins. “Asynchronous interlocked pipelined CMOS circuits
operating at 3.3-4.5 GHz,” in ISSCC 2000, pp. 292–293.

[4] I. Sutherland, and S. Fairbanks. “GasP: a minimal FIFO control,” in
Proc. of ASYNC, 2001, pp. 46–53.

[5] Mika Nystrom. Asynchronous Pulse Logic. Ph.D. thesis, Caltech,
2001.

[6] M. Singh, and S.M. Nowick. “High-throughput asynchronous
pipelines for fine-grain dynamic datapaths,” in Proc. of Intl. Symp.
on Adv. Res. in Asynchronous Circ. and Syst. (ASYNC), 2000, pp.
198–209.

[7] M. Singh, and S.M. Nowick. “Fine-grain pipelined asynchronous
adders for high-speed DSP applications” in Proc. of IEEE Computer
Society Annual Workshop on VLSI, Orlando, FL, April 2000, pp.
111–118.

[8] M. Singh, and S.M. Nowick. “MOUSETRAP: Ultra-High-Speed
Transition-Signaling Asynchronous Pipelines” in Proc. of Intl. Conf.
on Computer Design (ICCD), Austin, TX, September 2001.

[9] T.E. Williams, and M.A. Horowitz. “A Zero-overhead self-timed
160ns 54b CMOS divider,” in ISSCC Digest of Technical Papers,
1991, pp. 98-296.

[10] Ted Eugene Williams. Self-Timed Rings and their Application to
Division. Ph.D. thesis, Stanford University, May 1991.

[11] Andrew Matthew Lines. Pipelined Asynchronous Circuits. M.Sc.
thesis, California Institute of Technology, June 1995, revised 1998.

[12] Charles L. Seitz. “System Timing,” in Carver A. Mead and Lynn A.
Conway, editors, Introduction to VLSI Systems, chapter 7. Addison-
Wesley, 1980.

[13] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A.
Yakovlev. “Petrify: a tool for manipulating concurrent specifications
and synthesis of asynchronous controllers.” In IEICE Transactions on
Information and Systems, Volume: E80-D, No: 3, March 1997.

[14] Luis A. Plana and Stephen H. Unger. “Pulse-Mode Macromodular
Systems,” in Proc. of Intl. Conference on Computer Design (ICCD),
pp. 348-353, October 1998.

[15] Christian D. Nielsen. “Evaluation of Function Blocks for
Asynchronous Design,” in Proc. of EURODAC, pp. 454-459, 1994.

[16] V.I. Varshavsky (ed.). Self-Timed Control of Concurrent Processes:
The Design of Aperiodic Logical Circuits in Computers and Discrete
Systems. Kluwer Academic Publishers, Dordrecht, The Netherlands,
January 1990.

	Introduction
	Background
	Bundled Data vs. Dual-Rail Encoding
	Lookahead Pipelines (Single-Rail)
	Lookahead Pipelines (Dual-Rail)
	High-Capacity Pipelines (Single-Rail)

	Challenges of Handling Forks and Joins
	Slow or Stalled Right Environments in Forks
	Slow or Stalled Left Environments in Joins

	Lookahead Pipelines (Single-Rail)
	Solution 1 for LPSR2/2 Forks
	Solution 2 for LPSR2/2 Forks
	Pipeline Cycle Time

	Lookahead Pipelines (Dual-Rail)
	Joins
	Forks

	High-Capacity Pipelines (Single-Rail)
	Handling Arbitrary Environments
	Handling Forks and Joins
	Pipeline Cycle Time

	Conditionals
	Simulation Results
	Conclusions

